
Merge and Termination in Process Algebra

J.C.M. Baeten,
Dept. of Computer Science, University of Amsterdam,

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

R.J. van Glabbeek,
Dept. of Software Technology, Centre for Mathematics and Computer Science,

P. 0. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract: In VRANCKEN [14), the empty process e was added to the Algebra of Communicating
Processes of BERGSTRA & KLOP [3, 4). Reconsidering the definition of the parallel composition
operator merge, we found that It is preferable to explicitly state the termination option. This
gives. an extra ~ummand in th~ defi~ing equation of merge, usinQ the auxiliary operator.,/ (tick).
We f1~d that tick can be defined in terms of the encapsulation operator ilH. We give an
operational and a denotational semantics for the resulting system ACP{ and prove that they
are equal. We consider the Limit Rule, and prove it holds in our models.
Note: Partial support received from the European Communities under ESPRIT contract no.
432, An Integrated Formal Approach to Industrial Software Development (Meteor).

1. INTRODUCTION

Having been introduced to the Algebra of Communicating Processes of BERGSTRA & KLOP [3, 4),
many people ask the question why there is no neutral element for the sequential composition ·.The
neutral element for alternative composition + is the constant o, that is used to denote deadlock,
unsuccessful termination. A constant e satisfying the laws e·x = x·e = x must stand for an empty
process, a process that terminates immediately and successfully. The investigation of what happens
when we want to add such a constant to ACP was started by KOYMANS & VRANCKEN [9). It turned out
that the constant Eis very useful, but that the technicalities involved were substantial. For instance, the
just quoted paper contained a non-associative merge operator. This problem was remedied in
VRANCKEN [14), where the theory ACP was modified and extended to Acpe. In practice, the constant e
already showed its usefulness in BERGSTRA, KLOP & OLDEROG [5], where e was needed to define the
constant d denoting divergence.
This paper was motivated by a reconsideration of the interaction of merge and empty process in the
papers [9], [1!1-). Merge is the parallel composition operator II. Not considering communication for the
moment, the merge of processes x and y will interleave the actions of x and y. In xlly, there are three
possibilities: a step from x can be executed, or a step from y, or the process can terminate (only if both x
and y have that option). These options are present in the defining axiom of merge:

xlly = x[Ly + y[Lx + v(x)·v(y).
Here, we use the auxiliary operators lL (left-merge) and '1 (used to indicate termination). Now, in [9] and
[14), the left-merge is used also to indicate the termination possibility. We think that a separation of the
two notions makes a more refined treatment possible, and can lead to a better understanding of the issues
involved.
In section 2, we first discuss termination in a setting without communication, using the free merge. In
section 3, we add communication, and prove some theorems, such as the elimination theorem and the
expansion theorem. We also briefly discuss infinite processes. In section 4, we discuss different
semantics for our theory, namely a term model and two graph models. The term model is based on
action relations, is operational (cf. MILNER [11), PLOTKIN [13]), while the second graph model is
denotational. We prove that these models are isomorphic.
In these models, guarded recursive specifications have unique solutions. We prove that these models are
complete for our theory w.r.t. closed terms, i.e. we have a complete axiomatisation for them. A short
proof of this fact was not published before, even for the theory ACP without empty process.

154

Finally, in section 5, we consider the Limit Rule of BAETEN & BERGSTRA [I], and prove that a

restricted version holds in our models. The Limit Rule says that if we have an equation that holds for

all finite processes, then it holds for all processes.
ACKNOWLEDGEMENT. The authors express their gratitude to Jan Bergstra and Henk Goeman, for help

in developing the concepts defined in this paper.

2. PROCESS ALGEBRA WITH FREE MERGE

In this section, we consider the case of merge without communication, the so-called free merge.
Our starting point is the theory PA as defined in BERGSTRA & KLOP [2], without empty process e.
For other algebraical theories of concurrency, see e.g. MILNER [10] or HOARE [8].

2.1 Process algebra starts from a collection of given objects, called atomic actions, atoms or steps. These

actions are taken to be indivisible, usually have no duration and form the basic building blocks of our

systems. The first two compositional operators we consider are -, denoting sequential composition,

and + for alternative composition. If x and y are two processes, then x·y is the process that starts the

execution of y after the completion of x, and x+y is the process that chooses either x or y and executes

the chosen process (not the other one). Each time a choice is made, we choose from a set of alternatives

(see axioms A 1-3 below). We do not specify whether a choice is made by the process itself, or by the

environment. We leave out· and brackets as in regular algebra, so xy + z means (x·y) + z. ·will always

bind stronger than other operators, and + will always bind weaker.
On intuitive grounds x(y + z) and xy + xz present different mechanisms (the moment of choice is

different), and therefore, an axiom x(y + z) = xy + xz is not included.
Next, we have the parallel composition operator II, called merge. The merge of processes x and y will

interleave the actions of x and y. In xlly, either a step from x can be executed, or a step from y. These

options are present in axiom Ml. Here, we use the auxiliary operator lL (left-merge). Thus, xlly is xlly,
but with the restriction that the first step comes from x, and likewise for yllx. Axioms M2-4 give the

laws for IL.

2.2 DEADLOCK. We enlarge the signature of PA, by adding the special constant o, denoting deadlock,

the acknowledgement of a process that it cannot do anything anymore, the absence of any alternative (see
BERGSTRA & KLOP [3, 4]). o has axioms A6-7. A process that ends in o terminates unsuccessfully. The

theory PA plus o is called PA~;.

2.3 SIGNATURE AND AXIOMS. A is a given (finite) set of atomic actions. All elements of A are constants
of PA0. Further, PAs has binary operators +,.,11.IL, and a constant Ii (Ii e A).
The axioms of PA0 are presented in table 1. There a e Av{o}, and x,y,z are arbitrary processes.

X+Y=Y+X Al xlly = xlly + yllx Ml

(x + y) + z = x + (y + z) A2 allx = ax M2
X+X=X A3 axlly = a(xlly) M3
(x + y)z = xz + yz A4 (x + y)ILz = xll_z + yllz M4

(xy)z = x(yz) A5
X+O=X A6
OX= 0 A7

Table 1. PA0.

2.4 EMPTY PROCESS. Now we add the empty process e, giving us the theory PA°\/. e is the neutral

element of sequential composition, so has axioms ex = xe = x (A8,9). In a sum, as in x + e, it tells us

155

that the process can terminate immediately and successfully. We introduce the operator,,/ to indicate
whether or not a process can terminate immediately: ,,/(x) = E if x has the termination option, and ,,/(x) =
8 otherwise. Axioms Te 1-4 give an axiomatisation of,,/: we just rename all atomic actions into 8, and
distribute ,/ over + and ·.
Now, in xlly, there are three possibilities: we can start with a step from x, or with a step from y, or the
process can terminate, if both x and y have this option. A simple case distinction learns us that the
termination summand of xlly can be represented by '\/(xH(y) (= -l(y)·,,/(x)). See axiom MTl. Finally,
axioms EM2-4 are the laws for left-merge.

2.5 SIGNATURE AND AXIOMS. We have in the signature of theory PA-I as constants all elements of
Au{o,E}, the binary operators +,.,ll,11_, and the unary operator'\/. The axioms are presented in table 2
below. There a e Au{o}, and x,y,z are arbitrary processes.

x+y=y+x Al O+E=E A6
(x + y) + z = x + (y + z) A2 ox= 8 A7
E+E=E A3 EX= X A8
(x + y)z = xz + yz A4 XE= X A9
(xy)z = x(yz) AS

xllY = xll_y + yll_x + -l(xH(y) MTl Tel
ell_x = 8 EM2 Te2
axll_y = a(xlly) EM3 Te3
X+ ll_z = xll_z + ll_z EM4 Te4

Table 2. PA'\/.

2.6 REMARKS. In PA-I, we have different versions of the axioms A3 and A6 of PA0. Using axioms
A4,7,8, it can be seen that the new versions are equivalent to the old ones. As we will see in section 3,
the axiom M2 of PA0 is derivable from PA-I if we add the extra axiom ellx = x. It is debatable whether
or not this axiom ellx = x should be included in PA-I. We have chosen not to, since it is derivable for all
closed terms (see section 3). PA,,/ differs from PAE of VRANCKEN [14], by the use of the termination
operator'\/. In [14], the termination option is represented by ell_x.
Originally, we considered a binary operator .J, instead of the unary operator ,,/, .J, is the so-called
"termination merge'', and x.Ly = E iffboth x and y have the termination option, and 8 otherwise. In this
case, the axiom MTl would read xlly = xll_y + yll_x + x.Ly. The operator l can be axiomatised by the
following laws:

x.Ly = ylx, de= E, ax.Ly = 8, (x + y)lz = xlz + ylz.
The idea to use a unary operator came from Jan Bergstra.
Before we discuss some consequences of PA'\/, we first introduce communication in section 3. Results
for the system PA,/, so without communication, can be obtained from the results in section 3 by
forgetting the communication function.

3. ALGEBRA OF COMMUNICATING PROCESSES
We introduce the communication of the system ACP (Algebra of Communicating Processes) of
BERGSTRA & KLOP [3, 4]. If two processes simultaneously execute two atomic actions that can
communicate, the result is a communication action. In xlly, we will add a fourth summand: the execution
of a communication action, with components from x and y. Below we define the system ACP-1.

156

3.1 SIGNATURE AND AXIOMS. A is a given (finite) set of atomic actions. On A, we assume that a
communication function y is given: y is a partial binary function, that is commutative and

associative, i.e. for all a,b,c e A:
y(a,b) = y(b,a)
y(y(a,b),c) = y(a,y(b,c)),

(and each side of these equations is defined just when the other side is). Ify(a,b) is defined (we write
'Y(a,b)J.), and y(a,b) = c, it means that actions a and b can communicate, and their communication is c;

if y(a,b) is not defined, we say that a and b do not communicate.
All elements of A are constants of ACP-1. Further, ACP.J has binary operators +,.,ll,ll, J, unary

operators ClH, EK (for H,K ~A) and constants 8,E.
The axioms of ACN are listed in table 3 below.
There, a e Au{8}, H,K ~A and x,y,z are arbitrary processes.

x+y=y+x Al O+E=E A6

(x + y) + z = x + (y + z) A2 ox= 8 A7

E+E=E A3 ex= x A8

(x + y)z = xz + yz A4 XE= X A9

(xy)z = x(yz) AS
a I b = y(a,b) if y(a,b)J. CFl

alb=8 otherwise CF2

xlly = xlLy + y\l_x + x I y + '1(x)·'l/(y) EMl xiy=yix EMS

i::lLx = 8 EM2 xii::= 8 EM6

ax\l_y = a(xl\y) EM3 x I ay = (x I a) lLY EM7

(x + y)\l_z = xlLz + y\l_z EM4 x I (y + z) = x I y + x I z EM8

OH(E) = E DO EK(E) = E EO

<JH(a) =a ifaeH Dl EK(a) =a ifa e K El

<JH(a) = 8 if a e H D2 EK(a) = E ifa e K E2

oH(x + y) = oH(x) + ClH(y) D3 EK(x + y) = EK(x) + EK(Y) E3

a x =o x ·a E4

I is the communication merge: x I y is just like xl\y, but with the restriction that the first step must be
a communication action, with components from x and y. Now ifr(a,b) = c, we can calculate that allb =

ab + ba + c; if we do not want the a,b to occur separately, but only in the communication, we have to
encapsulate them, using the encapsulation operator aH: if H = {a,b}, we get OH(allb) =c. aH
blocks all atomic actions from H \;;;;A, by renaming them into 8. Lastly, EK is also a renaming operator,
that erases all actions from K ~ A, by renaming them into E.

We did not list 'I/ as an operator of ACP'I/, because it has become definable: -.J is just a A, the operator that
renames all atomic actions into 8. This fact was pointed out to us by Henk Goeman. We will still use the

notation { though.

3.2 REMARKS. Axioms Tel-4 of PA-V are just the axioms D0,2,3,4 for the operator (JA- ACN differs
from ACPe of VRANCKEN [14], by the use of the termination operator. Other differences are that in
[14], yis a total function from AxA to Au{8}, while in this paper, '"(is a partial function from AxA to A.
Also, in the axioms in [14], a varies over A, not over Au{8}, which necessitates more axioms. Lastly,
we left out the axiom (X I y) J z = x I (y I z), as we saw no reason for its inclusion (it will be an axiom of

Standard Concurrency, see below).

157

The syste1:1 ACJ>E itself differs in several aspects from the system ACP of BERGSTRA & K.LOP [3]. Most

of these differences were a consequence of the addition ~f the constant e. Another difference is the

inclusion of axiom EMS, the commutativity of the communication merge, which decreased the number
of axioms needed.

3.3 LEMMA. The following equations are derivable from the system ACP'-1 (a,b e Au{o}):
1. axllby = byllax 2. x I o = o
PROOF: Straightforward. For 2, use EM6,8 and A6.

3.4 LEMMA. In the system ACP-V plus extra axiom ellx = x the following equations are derivable (a,be
Au{o}):
1. x = xll_e + -V(x)
4. a\ bx= ax \ b = (a\ b)x

PROOF: Straightforward.

2. xlle = x 3. allx = ax

5. ax I by= (a I b)(xl\y)

3.5 Note that equation 3.4.1 states that we can write each process as the sum of its termination option

(-.J(x)) and the summands that start with an atomic action (xll_e). Equations 3.4.3-5 are axioms of ACP.

In the next lemma, we focus on another equation that is of special interest, namely the assertion that -V(x)

must be either e or 15 (note that x = x + e amounts to saying that x has an e-summand):

-.J(x) = e iff x = x + e, and -V(x) = o otherwise (Te5).

3.6 LEMMA. In the system ACP-V plus extra axiom Te5 the following equations are derivable:

1. xlly = yllx 2. -J(x)ll_y = o 3. -V(x) \ Y = o
PROOF: Straightforward.

3.7 DEFINITION. A basic term is a closed term of the form

t = aoto + ... + a 0 .1t0 . 1 + bo + ... + brn.1 (+ e)

for certain n,m e N, certain ai,bj e Au{o}, basic terms ti and the summand e may or may not occur. If

the summand e does not occur, we must have n+m > 0.
We usually abb:eviate such expressions, in this case to t = 2-kn aiti + Lj<m bi (+ e). Note that we can

always write t = 2-i<n aiti + Lj<m bj + -V(t), for it is easy to see that ;/(t) = e iff t has a sumrnand e, and

-V(t) = o otherwise.

The set of basic terms BT can be inductively built up as follows (working modulo laws Al-3 and A9):

1. ee BT
2. if a e Au{o} and x e BT, then ax e BT
3. if x,y e BT, then x+y e BT.
Alternatively, if Li<O Xj denotes 8, we can build up BT as follows:

- If n e N, ai e Au{o} and ti e BT (for i<n), then Li<n aiti (+ e) e BT.

Both these inductive schemes can be used in proofs.

3.8 DEFINITION. Let p be a process. We say p has a head normal form if there is an n e N,

processes Pi (i<n), and constants ai e Au{o} such that P = Li<n aiPi (+ e).

Note that by definition, all basic terms have a head normal form. It is easy to prove that all processes that

have a head normal form satisfy Te5 of 3.5, and the following equations:
1. -.J(xll_y) = -V(x \ y) = 8 2. -.J(-J(x)) = -J(x).

158

3.9 THEOREM. For every closed ACP'J-term t there is a basic terms such that ACP-V I- t = s.

This is the so-called elimination theorem.

PROOF: Let RACP'J be the full system ACP'J, excluding axioms A 1-2 and EMS, but including equation

a[Lx = ax, used as a rewrite system (from left to right), modulo axioms Al-2 and EM5. Working

modulo axioms Al-2 and EMS means that we consider terms that are equal using these axioms, to be

identical. Note that a[Lx = ax follows from A9, EM3 and ellx = x. Below we will prove that, using

RACP'1, any closed term t can be rewritten to a basic terms, and moreover ACP'11- ellt = t for closed

terms t. From this the elimination theorem follows.

Let RACP'J-E denote the system RACP'1 without the rewrite rules E0-4.

We start by proving that RACP'1-E is a terminating rewrite system on EK-free terms, and all its normal

forms are basic terms. We first need some definitions. We define the length and width of a closed

ACP'1-term t without occurrences of the eK-operator inductively in table 4 below. As an auxiliary

operator, we also define Te(t), the number of termination possibilities oft. The awkward expression for

w(ul\v) is the result of working out the four summands of EML

Roughly, the length of a term indicates the maximal number of steps that can occur when the term is

executed, and the width gives the number of alternatives at the start of the execution, multiplied by 2 for

every renaming operator aH around the term. Finally, we define the size oft, s(t), to be the pair <l(t),

w(t)>, with pairs ordered alphabetically.

t= Te(t) l(t) w(t)

e 1 1 1

a e Au{o} 0 1 1

U+V Te(u) + Te(v) max(l(u),l(v)) w(u) + w(v)

u·v Te(u)·Te(v) l(u) + l(v) w(u) + Te(u)·w(v)

ul\v Te(u)·Te(v) l(u) + l(v) 3·w(u) + (1 + 2·Te(u))·w(v) + w(u)·w(v)

ullv 0 l(u) + l(v) w(u)

ulv 0 l(u) + l(v) w(u)·w(v)

a1-1(U) Te(u) l(u) 2·w(u)

Table 4. Termination count, length and width of an EK-free ACP'J-term.

The proof now proceeds via a number of claims.

CLAIM 1: Lett be a closed ACP'J-terrn with no EK-operator. Then:

i. application of A 1-2, EM5 or a rewrite rule does not increase the size oft;

ii. any proper subterm oft has a smaller size than t.
PROOF: Easy.
CLAIM 2: The rewrite system RACP'J-E is (strongly) terminating for closed ACF,/-terms without EK

operator.
PROOF: Suppose it is not terminating. Lett be a closed ACP'J-term of minimal size, such that there is an

infinite reduction sequence t -7 t1 -7 t2 -7 A reduction on ti is called external (outermost) if it

works on the main operator of ti, and internal if it works on a proper subterm of ti. From claim 1 it

follows that it is not possible that from some ie Non, the sequence consists of internal reductions only.

Therefore, there must be infinitely many external reductions in this sequence. Now note the following

facts:
•Among these external reductions there are no reductions A3, A6-9, CFl-2, EM2,6 or D0-2, since they

decrease the size of the term, contradicting the minimality oft.

•Therefore, there are no external reductions in the sequence, working on a term u + v, and hence there

are no external reductions resulting in a term u + v.

• Thus, all external reductions in the sequence are from the list A5, EM3,7, D4 and allx = ax, so result

in a term u[L v or u·v.

159

•The allowed external reductions working on a term u\L v (EM3 and a\l_x = ax) result in a term u'·v'.

• The only allowed external reduction working on a term u·v is AS. It results in another term u'·v', but

with u' having a smaller size than u.
Thus, apart from the first two, all external reductions must be AS-reductions. Therefore, in t ~ t1 ~ t2

~ ... we have, from some ion, ti = Uj"Vj, with s(ui) decreasing with each external reduction. This is

impossible, and so claim 2 is proved.
CLAIM 3: All closed terms without EK-operator, which are normal forms w.r.t. the rewrite system

RACP'1-E, are basic terms.
PROOF: By induction on the structure of closed normal forms t. t must be a constant ae A, e,o, or a term

u+v, u·v, u!Jv, u\L v, u Iv or ClH(u). Since also u and v are normal forms, we may assume that they are

basic terms. Ift = u·v with u E: A, ift = uJJv, u\l_v, u lvor ClH(u), orifthas more than onee-summand,

then t cannot be a normal form. In the other cases t is a basic term.

CLAIM 4: Using RACP'1, any closed term t can be rewritten to a basic terms.

PROOF: For terms without EK-operator this follows from claims 2 and 3. For the general case it suffices

to prove that for all basic terms t there is a basic terms such that EK(t) reduces to sin RACP..J. This only

requires a straightforward induction on the structure of basic terms.

CLAIMS: ACP'11- ellt = t for closed terms t.
+ Lj<m bi (+ e). For any application of a\l_x = ax in this process, claim 1 learns that x has a smaller size

than t. Thus ACN I- a\l_x = ai::\l_x = a(ellx) = ax (by induction) and therefore ACP..J I- t = s. Thus

ACP..J I- ellt =ells= e\l_s + s[Le + e Is+ ..J(e}..J(s) = o + Lkn ai(sdle) + Lj<m bj(Elie) + o + ..J(s) =

Li<n aisi + Lj<m bie + '1(s) (by induction)= s = t.

The elimination theorem now follows from claims 4 and S.

Note that as a consequence of the elimination theorem, all closed terms have a head normal form.

3.10 PROPOSITION. For all closed ACP..J-terms x ,y ,z we have the following laws of standard

concurrency:
ellx = x
'1(x) = e iff x = x + £,and ..J(x} = o otherwise

'1(xlly) = ..J(x)"--J(y)
x I (y I z) = (x I y) I z (x[Ly)[Lz = x\l_(yliz)

(x I y)[Lz = x I (y[Lz) xll(yllz) = (xliY)llz.

PROOF: The first one is proved in 3.9. The second and third are easy to prove for all head normal forms,

and therefore hold for all closed terms by 3.9.

For the others, note that because of the elimination theorem we can assume that x,y ,z are basic terms.

We use the second induction scheme in 3.7. Write
x = Li:;;n aixi (+ e), y = Lj:;;m biYi (+ e) and z = L1<:;;p ckzk (+ e)

(aj,bj,Ck e Au{8}). By induction hypothesis, we can assume that the proposition holds for all triples

(xi,y1z), (Xi>Yj,Z), (Xj,yj·,zk)· Then:
1. x I (y I z) = Li,j,k (ai (bj I ck))(xill(Yjllzk)) (EM6, 3.4.S) = Li,j,k ((ai I bj) I ck)((xillYj)lizk)

(definition ofy, induction hypothesis)= (x I y) I z.

2. (x[Ly)[Lz =({Li aixi (+ i::)}[Ly)[Lz =Li (ai(xdly))[Lz =Li ai((xdly)Jiz) =Li ai(xdl(y!Jz))

(induction hypothesis)= Li aixilL(yllz) = x[L(yJJz).

3. (x I y)\Lz = (Li,j (ai I bi)(xillYj))[Lz = Li,j (ai I bj)((xdlYj)liz) =

= Li,j (ai I bj)(xill (y/·llz)) (induction hypothesis)= Li,j aixi I bj(Yjllz) = x I (y[Lz).

4. xJl(yllz) = x[L(y iz) + (yilz)[Lx + x I (yllz) + ..J(x)·v'(yilz) =(using 3.6.2-3)

= x[L(yliz) + (y[Lz)[Lx + (z[Ly)[Lx + (y I z)[Lx + x I (y[Lz) + x I (z[Ly) + x I (y I z) + ..J(x)"--J(yilz) =

= (xll_y)[Lz + yll_(zllx) + zll_(yllx) + (y I z)ll_x + (x I y)ll_z + (x I z)[Ly + (x I y) I z + ..J(x}..J(y)..J(z) =

(using 3.6.1 and EMS)
= (xlLy)[Lz + yll_(xllz) + zll_(xlly) + (z I y)[Lx + (x I y)ll_z + (z I x)ll_y + z I (x I y) + ..J(x}..J(y)..J(z) =

160

= (xll_y)ll_z + (yll_x)ll_z + zll_(xlly) + z I (yll_x) + (x I y)ll_z + z I (xll_y) + z I (x I y) + -J(xlly)·.../(z) =
= (xlly)ll_z + zll_(xlly) + z I (xlly) + -J(xlly)·.../(z) = (xlly}llz.

3.11 NOlE. We usually assume that the laws of Standard Concurrency hold for all processes. Therefore,
they are often called the axioms of Standard Concurrency.
Often, we also assume the following Handshaking Axiom:

x I y I z = ~ (HA).
It says, that all communication is binary, i.e. only involves two communication partners.

3.12 PROPOSmON. In ACP'J with standard concurrency and handshaking axiom we have the following
expansion theorem (n~1):

II Xj = L XjlL(II xk) + L (Xj I Xj)IL(II Xk) + n -J(Xj)
isn isn kSn,k;lf kj91 kSn,k,.i,j iSn

(Where lhsn Xj means Xoll ... llXn, and Ilisn Xj means XQ"··· "Xn.)
PROOF: This follows from the axioms of standard concurrency and the handshaking axiom similar to the
case of ACP (BERGSTRA & TuCKER [6]) or AC?£ (VRANCKEN [14]). The only difference is, that we
have to keep track of the termination option.
We use induction on n. The case n=1 is exactly the axiom EMI. The induction step is as follows:

lhsn+1 Xj = (llisn Xj)11Xn+1 =
= (lhsn Xj)ILXn+1 + Xn+1 IL(lli!>n Xj} + (lhsn Xj} I Xn+1 + .../(lhsn Xj)-J(xn+1).

We consider these four terms in turn, and use the induction hypothesis. The first:
(lhsn Xj)ILXn+1 =
= Lisn (xilL(llkSn, k,.i xk))1Lxn+1 + Li<jsn ((xi I xi/ILC llkSn, k,.i,j xk))1Lxn+1 + B (by 3.6 and EM4) =
= Li!;;n xilL((llkSn, k,.i xk)llxn+1) + Li<jsn (xilxj)ll((llkSn, k,.i,j Xk)llxn+1) (use 3.10) =
= LiSn xilL(llkSn+1, k,.i xk) + Li<:)Sn (xdxj)IL((llkSn+1, k,.i,j xk).
The second term is equal to Xn+1 ll(llkSn+1, k"'n+1 xk), and the third:
(lhsn Xj) I Xn+ 1 =
=LiSn {XilL(llkSn, k,.i Xk)) lxn+1 + Li<j:Sn ((xilxj·)IL(llkSn, k;lf,j Xk))1Xn+1 + B (by 3.6andEM8) =
= Lisn {Xii Xn+1llL(llkSn, k;Oi xk) + ~<j:Sn (xi I Xj Xn+1)IL(llk:Sn, k'>'i,j xk) (use 3.10) =
= Li<n+ 1 {Xii Xn+ 1) lU llkSn+ 1, k,.i,n+ 1 Xk) (by handshaking axiom).
Finally, the fourth term is equal to Ilisn+1 -J(xi) by the third axiom of standard concurrency.
Adding the obtained expressions gives the desired result.

3.13 Until now, we have mainly looked at closed terms. However, most processes encountered in
practice cannot be represented by a closed term, by an element of the initial algebra of ACP'J, but will be
specified recursively. Therefore, we are interested in models that also contain infinite processes,
processes that can perform infinitely many actions consecutively. The algebraic way to represent such
processes is by means of recursive specifications. In this section, we introduce some terminology.

3.14 DEFINITION. A recursive specification over ACP'J is a set of equations {X = tx: X e V}, with

Va set of variables, and tx a term over ACP'J and variables V. No other variables may occur in tx. There
is exactly one equation X = tx for each variable X.
A solution of the recursive specification E (in a certain domain) is an interpretation of the variables of V
as processes such that the equations of E are satisfied.
The Recursive Definition Principle (RDP) says that every recursive specification has a solution.
In section 4, we will discuss models of ACP'J that satisfy RDP.
Recursive specifications are used to define (or specify) processes. If E has a unique solution, and X e

V, let <X I E> denote the X-component of this solution. If E has more than one solution, <X I E>
denotes 'one of the solutions of E', and can be regarded as a kind of variable, ranging over these

161

solutions. If E has no solutions (possible in a model, not satisfying RDP), then no meaning can be

attached to <X I E>. In a recursive language, the syntactical constructs <X I E> may appear in the

construction of terms. This limits the class of models of the language to the ones satisfying RDP.
If E = {X = tx : X E V} is a recursive specification, and t a term, then <t I E> denotes the term t in which

each occurrence of a variable X E V is replaced by <X I E> . Thus, the assumption that the terms <X I
E> are solutions of E may be stated as follows (X E V):

<X I E> = <tx I E>.
Note that we cannot have that every recursive specification has a unique solution, for E = {X = X} has

every process as a solution. Therefore, we formulate the condition of guardedness below, and will claim

that in the models of section 4, every guarded recursive specification does have a unique solution.

3.15 DEFINITION. i. Lett be a term over ACP'J without Ekoperator, and X a variable in t. We call the

occurrence of X in t guarded if X is preceded by an atomic action, i.e. t has a subterm of the form a·s,
with a E A, and this X occurs in s. Otherwise, we call the occurrence of X unguarded.

ii. A recursive specification {X = tx : X E V} is guarded if no EK-operator appears and each occurrence

of a variable in each tx is guarded.
iii. The Recursive Specification Principle (RSP) is the assumption that every guarded recursive

specification has at most one solution. Thus, in a model satisfying RDP and RSP, each guarded

recursive specification has a unique solution. Also note that each solution of a guarded recursive

specification has a head normal form, so results 3.6 hold for such processes.

3.16 NOTE. In section 5, we will formulate the Limit Rule (LR), and we will prove that a restricted

version holds in the models of section 4. The Limit Rule says that any equation that holds for all closed

terms, holds for all processes.
As a corollary, we find that the axioms of Standard Concurrency of 3.10 hold in the models.

4.SEMANTICS
We consider different semantics for ACP-,J. First, we define a term model (using the syntactical

constructs <X I E> of 3.14) by means of action relations. Action relations appear in MILNER [11),

PLOTKIN [13) and in the setting of process algebra, in VAN GLABBEEK [7].

4.1 DEFINITION. Let lP' be the set of process expressions, closed terms over the signature of ACP-,J

and recursion constructs <X I E> of 3.14. On JP', we define binary predicates -78 for each a E A, and a

unary predicate ..1-, generated by the rules in table 5 below.

a-?ae
x -?a x' => x+y -?a x' & y+x -?a x'
x -?a x' => xy -?a x'y

eJ-
xt => (x+y)t & (y+x)J-

xJ- & y -?a y' => xy -?a y' xJ- & yt => (xy)t

x -78 x' => xlly -78 x'lly, yllx -78 yllx' & x[Ly -?a x'lly xt & yJ, => (xlly)t

x -?a x' & y -?by' & 'Y(a,b) = c => xlly -?0 x'lly' & x I y -?c x'lly'

x -78 x' & a e H => aH(x) -?a aH(x') xJ- => aH(x)J-

x -78 x' & a e K => EK{x) -?a EK(x') xt => EK(x)t

x -?a x', a e K & EK(x') -?by => EK(x) -?b y x -?a x', ae K & EK(x')t => EK(x)t

<ty I E> -78 v => <X I E> -?a v <ty I E>t => <X I E>..1-

Table 5. Action relations.

162

The intuitive meaning is as follows:
• x ~a y means that x can evolve into y by executing the atomic action a,
• x.J.. means that x has a termination option.
Note that we defined the action relations in such a way that x ~a x' iff ex ~a x', and x.J.. iff ex.J... This is
why we can consider the process expression p to be identical to the expression ep, i.e. we consider

process expressions modulo axiom A8. This identification makes the following proofs easier.

4.2 DEFINITION. A bisimulation is a binary relation R on lP, satisfying (for a E A):
1. if R(p,q) and p ~a p', then there is a q' such that q ~a q' and R(p',q');
2. if R(p,q) and q ~a q', then there is a p' such that p ~a p' and R(p',q');
3. if R(p,q), then p,J.. if and only if q.J...
If there exists a bisimulation R with R(p,q), we say p and q are bisimilar, and write p H q. .

The notion of bisimulation was introduced by PARK [12]. Also see MILNER [11]. BERGSTRA & KLOP

[4] and VRANCKEN [14].

4.3 THEOREM. His a congruence on ACP--J-terms.

PROOF: We have to check the following:
1. p ±± p 2. p H q => q ±± p 3. p ±± q & q ±± r => p tl r
4. pH p' & q tl q' => pOq ±± p'Oq' for 0 = +,-,11.lL I; dH(P) tldH(P'), likewise for £K·
Now, let p,q,r,p',q' E lP and let R,S be bisimulations on lP.
We define the following relations on lP.
I: I(p,p) for p E lP.
R-1: R-1 (p,q) iff R(q,p).
RoS: RoS(p,r) iff 3q e lP: R(p,q) and S(q,r).
R·q: R·q(p·q,p'·q) iff R(p,p').
RIIS: RllS(pllq,p'llq') iff R(p,p') and S(q,q').
dH(R), £K(R): dH(R)(dH(p), oH(q)) iff R(p,q), and similarly for £K·
Now 1,2 and 3 follow since I, R-1 and RoS are bisimulations (as can be checked easily).

For 4, suppose R(p,p') and S(q,q').
+:Ru Su {(p+q, p'+q')} is a bisimulation relating p + q and p' + q';
· R·q u S is a bisimulation relating p·q and p'·q';
I\: RIIS is a bisimulation relating pllq and p'llq';
\L: RIIS u {(p\Lq, p'\Lq')} is a bisimulation relating p\Lq and p'\Lq';
I: R\IS u {(p I q, p' I q')} is a bisimulation relating p I q and p' I q';

OH, £K: OH(R) is a bisimulation relating oH(P) and oH(P'), and £K(R) one relating £K(P) and £K(P').

4.4 THEOREM. lP/ti is a model of ACF--J.
PROOF: Straightforward.

4.5 THEOREM. ACP--J is a complete axiomatisation of P/H for closed terms (without recursion

constructs <XIE>).
PROOF: We have to show that ift ±± s holds for closed terms t,s, then ACF--J f- t = s. Since lP/H is a

model for ACF--J, the elimination theorem tells us that we only have to prove this for basic terms t,s. For
basic terms, this follows by means of a structural induction argument (using the second inductive
scheme from 3.7) from the following two observations, that are not hard to prove:
i. t ~at' iff t has a summand at';

163

ii. t-1- iff t has a summand e.

4.6 THEOREM. RDP holds in ?/H.
PROOF: This is immediate: the H-congruence class of <X I E> is the X-component of a solution of E in

'f?'/H.

It takes some more work to prove that the principles RSP and LR hold in ?/H. Therefore, we will skip

this here, and treat this in section 5.
In the sequel, we describe a graph model for ACP{ that can be considered as a visualisation of the
model P/H above.

4.7 DEFINITIONS. In this paper, a graph is a rooted, countably branching, directed multigraph. An edge

goes from a node to another (or the same) node. We consider only countably branching graphs, so

each node has only a countable number of outgoing edges. Graphs need not be finite (have finitely many

nodes and edges), but we must be able to reach every node from the root in finitely many steps. An

endnode of a graph is a node with no outgoing edges. A path 7t in a graph g is a finite alternating

sequence of connected nodes and edges of g. A tree is a graph in which the root has no incoming edge,

and all other nodes have exactly one incoming edge. Note that a tree has no cycles, no path from a node

back to the same node. The zero graph 0 consists of a single node and no edges.

A process graph is a graph in which each edge is labeled with an element of A, the set of atomic

actions, and nodes may have a label J.. Such nodes are called termination nodes. Gj, is the set of all

process graphs. An a-step in a process graph from s to s' is an edge going from s to s' with label a E

A, notations -?a s'.

4.8 DEFINITION. We define a map graph from the set of process expressions'!?' to the set of process

graphs Gj, as follows. Let p E '!?'. graph(p) has a node for each q E '!?' that is reachable from p (i.e.

there is a series of atomic actions a 1 , ... ,an such that p -7a1 ... -7an q). The node corresponding to p

itself will be the root of graph(p). There is an edge labeled a between two nodes exactly when the a

labeled action relation holds between the corresponding process expressions. A node receives an -1--label

exactly when the corresponding process expression can terminate.
Conversely, we define a map term from Gj, to'!?' as follows. Let g E Gj,. We define a guarded

recursive specification E as follows: take a variable X e V for every node in g. Then, if the node X has

outgoing edges labeled a 1,. .. ,an, to nodes X1 , ... ,Xn respectively, we take as equation for X in E:

X = a1X1 + ... + anXn (+ e),
with the surnmand e appearing iff X has a -1--label. If X has no outgoing edges, and no -1--label, we put X

= o. Then, if X0 is the variable of the root of g, we define term(g) = <Xo I E>.

Next, the notion of bisimulation translates easily to the present case, as we see below.

4.9 DEFINITION. Let g ,h E Gj,, and let R be a relation between the nodes of g and the nodes of h. R is a

bisimulation between g and h, notation R: g H h, iff

1. the roots of g and h are related;
2. if R(s,t) and s -7a s' is an edge in g (with a e A, s,s' nodes of g and ta node of h), then there is a

node t' in h such that t -7a t' and R(s' ,t');
3. if R(s,t) and t -7a t' is an edge in h, then there is a nodes' in g such that s -7a s' and R(s',t');

4. if R(s,t), then s-1- (nodes has a -1--label) if and only iftJ..

If there exists a bisimulation between g and h, we say g and hare bisimilar, and write g H h.

4.10 PROPOSITION. i. If p,q E lP then pH q iffgraph(p) H graph(q);

ii. If g,h e Gj, then g H h iffterm(g) ±:?. term(h);

164

iii. For g E GJ.. graph(term(g)) = g, for p E lP' term(graph(p)) H p.

PROOF: In iii, g = h means that g and h are isomorphic. This is the case if there exists a bijective

bisimulation between them. Let N be the set of nodes of graph g e GJ... Then {Xi : i e N} is the set of

variables, used in the construction ofterm(g) and {<Xi I E>: i e N} is the set of q e JP', reachable from

terrn(g) = <Xo I E>. This gives a bijective mapping between the node sets of g and graph(term(g)),

which is clearly a bisimulation. So we have proved the first part of iii. Now i. is trivial and ii. as well as

the second part of iii. follow easily:
-g H h ~ graph(term(g)) H graph(term(g)) ~ term(g) .ti terrn(h),

-graph(terrn(g)) Hg, so graph(terrn(graph(p))) H graph(p), so terrn(graph(p)) .tip.

4.11 From 4.10 we can conclude that we can define all operators on G,J.. as the image of the same

operators on lP' (i.e. g + h = graph(term(g) + terrn(h)), etc.). It is also possible to define the operators
explicitly on GJ.., but we will not do so here. Now, the models GJ).H and P/H become isomorphic

models, and thus, GJ../tl is a sound and complete model of ACP.,,/, in which RDP and RSP hold.

4.12 EXAMPLES. In fig. 1, we use an incoming arrow without a label to indicate the root of a graph, and
an outgoing arrow without a label to indicate a termination node. In i, we see graph(o) = graph(<X I

X=X>); in ii, graph(e); in iii. graph(<X IX= aX>); in iv, graph(a + e), in v, graph(ab + ac), and

in vi, graph(a(b + c)) (for a,b,c e A). Note that the graphs in v, vi do not bisimulate.

i. ! ii.

~
iv. h

Fig. 1.

Although the graph model IGJ).H is very useful, we still want to present another graph model G,&'±:Ze.

which is more denotational. In this second graph model, we also have edges with label e and 8. This

increases the expressive power, and simplifies the definition of operators + and EK, but makes the

definition of bisimulation and the operators II.LI_, I harder. The model Ge&".tie is essentially the same

model as the graph model of VRANCKEN [14).

4.13 DEFINITION. A process graph in the set G,0 differs from a graph in GJ.. in three aspects: first,
graphs must be finitely branching, second, edges are labeled with elements of Au{o,e}, and third, we

have no node labels. We will see that the restriction to finitely branching graphs is not a real restriction.

4.14 DEFINITION. We define the notion of an e-bisimulation on Ges as in VRANCKEN [14]. In this

definition, we need the following notation: E stands for a path of e-edges, a connected series of 0 or

more e-steps (so e is the transitive and reflexive closure of -7E).

Let g,h be process graphs, and let R be a relation between nodes of g and nodes of h. R is an e

bisimulation between g and h, notation R: g .tie h, iff

165

1. The roots of g and h are related.
2. If R(s,t) and from s, we can do a generalized e-step followed by an a-step to a nodes' (s ...,e ~as')
with ae A (so a.i:e, a.i:o), then from t in h, we can do a generalized e-step, followed by an a-step to a
node t' with R(s' ,t'), sot ...,.e ~at'.
3. Vice versa: if R(s,t) and t -.e ~at' is a path in h with ae A, then, in g, there is a nodes' such that s
..... e ~as' and R(s',t').
4. If R(s,t), s' is an endnode in g, and s e s', then, in h, there is a node t' such that t' is an endpoint
and t et'.
5. Vice versa: if R(s,t), t' is an endnode in h, and t et', then, in g, there is a nodes' such that s' is an
endpoint and s e s'.
Graphs g and h are e-bisirnilar, g tie h, if there is an e-bisimulation between g and h.

4.15 EXAMPLES. See fig. 2 below. We have a,b e A, so,,i,o,e.

i.

iii.! .ti
e

Fig. 2.

4.16 LEMMA.~ is an equivalence relation on Gel>·
PROOF: Straightforward.

4.17 LEMMA. Each ~-equivalence class contains a nonzero process tree.
PROOF: Let g be a process graph. We find a tree h that is e-bisimilar tog by unrolling g, i.e. we have a
node in h for each path from the root in g. Edges and labels in h are defined in the obvious way; the root

166

of h corresponds to the empty path in g. We leave the details of this construction, and the verification of
the e-bisimilarity, to the reader. We use the notation tree(g) for the tree obtained by unrolling g. If h

turns out to be the zero graph 0, we use the second tree in 4.15.iii instead.

4.18 GEof~ will be the domain of the graph model for ACP-V. The interpretation of a constant u e
Au{o,E} is the equivalence class of the graph with two nodes and a single edge between them labeled u.
What remains is the definition of the operators of ACN on Geof~. We will define these operators on
Ge15 (the parallel operators only on process trees) and will then show that~ is a congruence relation

w.r.t. them.

4.19 DEFINITIONS. 1. +.If g,h e GEo• graph g+h is obtained by taking the graphs of g and hand
adding one new node r, that will be the root of g+h. Then, we add two edges labeled E: from r to the

root of g, and from r to the root of h.
EXAMPLE:

' at + =

0
a

0
Fig. 3.

Note that it doesn't work to just identify the roots of g and h: if we do that in the example, it is possible
to do an a-step after having done some b-steps. This fact is also illustrated in example 4.15.vi, and
complicates the explicit definition of+ in GJ...
2. ·.If g,h e GEo• graph g·h is obtained by identifying all endpoints of g with the root node of h. If g

has no endpoints, the result is just g. The root of g·h is the root of g.
EXAMPLE:

= a

0
Fig. 4.

3. II. The definition of the merge on GEo is rather complicated. Therefore, we will only define the merge

on nonzero process trees. Using lemma 4.17, this definition can be extended to GEo·
If g,h are nonzero process trees, graph gllh is the cartesian product graph of graphs g and h, with
'diagonal' edges added for communication steps, and with non-e-edges 'orthogonal' to an incoming E

step turned into 0-steps. By this, we mean the following: if (s,t) is a node in g II h, then it has the
following outgoing edges (u,v e Au{o,E}, a,b e A):
i. an edge (s,t) -tu (s',t) ifs -tu s' is an edge in g, and u = E or h has no edge t" -tE t;
ii. an edge (s,t) -715 (s' ,t) ifs -tU s' is an edge in g, u ;e E and h has an edge t" -tE t;

167

iii. an edge (s,t) ~v (s,t') ift ~v t' is an edge in h, and u = e or g has no edges" .-+£ s;
iv. an edge (s,t) ~~ (s,t') ift ~v t' is an edge in h, u * E and g has an edges".-+£ s;
v. an edge (s,t) ~'Y(a,b) (s',t') ifs ~as' is an edge in g, t ~b t' is an edge in h and 'Y(a,b) is defined
(these are the diagonal edges).
The root of g II h is the pair of roots of g and h.
Edges (s,t) ~u (s' ,t) are called vertical edges, and edges (s,t) -+u (s,t') are horizontal edges.
EXAMPLE: Suppose y(a,b) = c, and y(d,b) is not defined. See fig. 5.

b

II

0
Fig. 5.

In this example, we see why some edges must be blocked, must be turned into o: we have to make the
one b-step o, for if we start with a b-step, ad-step must still be possible.
4. lL. If g, h are nonzero process trees, graph g lL h is obtained from graph g 11 h by turning all horizontal
and diagonal edges, that are reachable from the root by a generalized e-step, into &.edges.
EXAMPLE: the last example turns into:

b

d

lL

Fig. 6.

5. I. Similar to 4: If g,h are nonzero process trees, graph g I his obtained from graph gllh .by turning
all horizontal and vertical edges, that are reachable from the root by a generalized e-step, and do not have
label e, or do have label E but lead to an endpoint, into &.edges.
EXAMPLE: we use the same example. See following page.

168

b =

Fig. 7.

6. aH, EK· If g E GeS• obtain aH(9) by replacing all labels in g from H by 8, and obtain EK(9) by
replacing all labels from K by e.
This finishes the definition of the operators of ACN on Ges· Then we also have the operators on
Gu)~. if we use the following theorem 4.21.

4.20 NOTE. In VRANCKEN [14], the parallel operators 11.lL. I are defined on a wider class of graphs, a
class which is closed under these operators. This makes proofs of statements about them much easier.

4.21 THEOREM.~ is a congruence relation on Ges·
PROOF: As in VRANCKEN [14].

4.22 THEOREM. Gu)~ is a model of ACN.
PROOF: As in VRANCKEN [14].

4.23 REMARK. We also obtain models of Acf>'J, if instead of limiting ourselves to finitely branching
graphs, we allow all countably branching graphs, the set Gea00• Also, the set R of all finite (or regular)
process graphs modulo ~ and the set F of all finite and acyclic process graphs modulo f:ie form
models of ACN.
As we already stated in 4.13, it does not matter that we limit ourselves to finitely branching graphs
instead of countably branching graphs. This is the content of the following lemma.

4.24 LEMMA. Let g e Gea00• Then there is a graph h e Ges such that g ~ h.
PROOF: The proof is visualised in fig. 8 below: we can replace an infinite branching by a "spine" of e
steps with the summands branching off consecutively.

Fig. 8.

4.25 DEFINITION. Now we show that the models GeSf'~ and P/B are isomorphic. A map from Ges to
G.j. is defined in three steps, as follows. Let g e Ges·

169

1. Unroll g to a tree, as defined in 4.17. This gives tree(g).
2. Leave out all intermediate e-steps, i.e. ifs ~Et is an edge in tree(g}, and t is not an endpoint, then

leave out the edge and identify sand t; this gives int(tree(g}). The operation int may cause infinite
branchings to appear, so we can only say int(tree(g)) e Ge000•

3. Leave out all remaining c:-edges, leaving a node-label .J, for each removed edge, i.e. ifs ~et is an
edge (so t is an endpoint), remove it and attach a label .J, to s. Furthermore, attach a label .J, to each
endnode. Then, leave out all o-edges, and remove all nodes and edges that cannot be reached any more
from the root. This gives end(int(tree(g))). Note that end(int(tree(g))) e GJ..

4.26 LEMMA. 1. Let g e Geo· Then: g tie tree(g) tie int(tree(g)).
2. Let g,h e Ge000 with no intermediate c:-edges. Then: g tie h <=> end(g) tlend(h).

PROOF: 1. The first bisimulation is motivated in 4.17. Note that the second only holds in case we are
dealing with trees: we must have that an c:-edge does not have any 'neighbours', there must be no other

edges between the same two nodes. In case we do have trees, the bisimulation is easy, for the endpoints
of c:-steps need not be related at all.
2. This is easy.

4.27 We can conclude from lemma 4.26 that the models G..j,/H and Gee/tie are isomorphic models
(since it is not hard to see that the resulting mapping from G eo/f±e to G J,/H is a surjective
homomorphism w.r.t. the operators), and thus, Gee/tie is a sound and complete model of ACP'1, in
which RDP and RSP hold.

4.28 THEOREM. The theory ACP'1 is a conservative extension of the theory ACP of BERGSTRA & KLOP
[3], i.e. for all closed ACP-terms s,t we have:

ACP'11- s = t <=> ACP 1- s = t.
PROOF: The theory ACP consists of axioms Al-7 of PA0 (see 2.3), axioms CFl,2, EM3,4,8 and Dl-4
of ACP'1(see3.1), the equations in 3.4.3,4,5, axiom EMl of ACP'1 without the last summand, and the
axiom (x + y) I z = x I z + y I z. As in 4.5 (using ii. t ~a c: iff t has a summand a), we can show that
ACP is a complete axiomatisation of P/H for closed terms, i.e. for closed ACP-terms t,s we have t tl s
iff ACP I- t = s. Together with 4.5, this gives the conservativity.

5. LIMIT RULE
In this section, we discuss the Limit Rule, introduced in BAETEN & BERGSTRA [1]. Furthermore, we
present the Fresh Atom Principle (FAP), first mentioned in V AANDRAGER [15]. We show that FAP, a
restricted version of the Limit Rule, and also the Recursive Specification Principle of 3.15 hold in our
models.

5.1 DEFINITION. Let s(x1 ,. .. ,Xn), t(x1 ,. .. ,Xn) be ACP--1-terms with variables among X1,. .. ,Xn. Let
S(P1 ,. . .,pn). t(p1 , ... ,pn) be the terms obtained after substituting P1 , ... ,pn for X1 , ... ,Xn, respectively.
Then the Limit Rule reads:
LR: S(P1 , ... ,pn) = t(P1 ,. . .,pn) for all P1 , Pn e BT ::::} s(x1,. . .,Xn) = t(x1 ,. .. ,Xn)·
We leave as an open question whether LR holds in the models of section 4. Next, we formulate a
restricted version of LR, LR-, that will be shown valid in these models.

5 .2 DEFINITION. In order to formulate LR-, we should realize that the theory ACP--1 has the set of atomic
actions A, and the communication function yon A, as parameters. Thus, whenever we state that ACP--1
f- p = q, we mean that for every choice of parameters A and y (A containing at least the atoms occurring
in p,q), we can derive p = q. Also, the models are parametrised by A and y, so when we state that p = q

170

holds in a model, we mean that it holds for every choice of parameters. This practice can lead to

misunderstandings, however, when we have an implication, as in the Limit Rule. The Limit Rule as

stated, means:
for every choice of parameters A,y.
if S(P1 , ... ,pn) = t(P1 , ... ,pn) for all P1 , .. .,pn e BT, then s(x1 ,. . .,Xn) = t(x1 , .. .,Xn)·

The restricted version LR- will have two restrictions: first we will limit ourselves to terms not involving

EK-operators, and second, we will put the quantification over all parameters in a different place:

Let s(x1 , .. .,Xn), t(x1 , ... ,Xn) be ACPV'-terms without EK-operator.

LR-: If for every choice of parameters A,y and for all p1 ,. . .,pn e BT we have

S(P1 , .. .,pn) = t(P1 , .. .,pn),
then (for every choice of parameters A,y) s(x1 , .. .,Xn) = t(x1 ,. . .,Xn).

5.3 DEFINITION. The Fresh Atom Principle (F AP) says that we can use new (or 'fresh') atomic

actions in proofs. In fact, using FAP (without justification!) is already standard practice in many

writings on process algebra. FAP was introduced informally in V AANDRAGER [15), although the name

was used earlier by Jan Willem K.lop.

Here again, it is important to mention the parameters explicitly.
Suppose we have an atomic action set A and communication function y given. Then we add an atom f e:
A, and extend y to Au{f}, yielding y*. Now FAP says, that an equation p = q over the signature with

parameters (A,y) may be proved using the parameters (Au{f}, y*) in the proof.

Semantically, we can formulate this as follows.
Let Ol be a model of ACP{ i.e. for every choice of parameters A;y, we have a model Ol(A,y) for the

theory ACP-V with parameters A,y. Now a (parametrised) model Ol satisfies FAP, if such an

embedding (A, y) -7 (Au{f}, y*) can be extended to an injective homomorphism Ol(A,y) -7

Ol(Au{f} ,y*).

5.4 PROPOSITION. P/H satisfies FAP.

PROOF: We have to prove that if pH q in lP'(Au{f}) and p,q are process expressions over A, then also

pH q in lP'(A).
So let p,q be process expressions over A. Then all action relations starting from p and q have labels

from A, and all process expressions reachable from p and q are again expressions over A. Thus, any
bisimulation on lP'(Au{f}) relating p and q can be restricted to lP'(A), and R \;;; lP'(A) x lP'{A) is a

bisimulation over action relations {--?a: a e Au{f}}, iff Risa bisimulation over action relations {-7a: a

EA}.

5.5 LEMMA. Let f be an atomic action such that for all a,b e A y(a,f}i (is not defined) and y(a,b) ;o!o f.

Then:
e{tj(x Dy) = e{f}(x) 0 e{f}(y} for 0 =+,-,II ,LI_, I, and e{1}(i1H(x)) = aH(e{t}(x)) for H 1:;; A.
PROOF: Straightforward.

5.6 DEFINITION. In order to show that LR- and RSP hold in P/H we need some auxiliary notions, that

may also be interesting in their own right. First we define the projections of a process. To that end, we

enlarge the signature of ACP-V with unary operators 1tn, for n e N. Then we add the axioms PR (for a

e Au{o}) (on the following page).

7tn(e) = e
7to(ax) = o
1tn+ 1 (ax) = a·1tn(x)

171

We see that the operator n:n cuts off the process after it has executed n (atomic) steps; the remaining steps
are replaced by o. In order to define the operators 1tn on the models f/H and G.1/±±, we provide the

following action rules for 1tn:
x ~a x' ~ 1tn+1 (x) ~a n:n(x') x.1 ~ n:n(x).1.

It is easy to check that H remains a congruence on f and f/H satisfies the axioms of table 6.

5.7 PROPOSITION. The following equations are derivable for closed ACP'1-terms. Moreover, they hold
in f/H.
1. 1tn(x" 0 Y) = 1tn(1tn(x) 0 7tn(y)) for 0 = +,-,ll,IL I.
2.1tn(ClH(x)) = ClH(1tn(x)) for H ~A.

PROOF: Straightforward, using one of the inductive schemes in 3.7. Note that the analogous statement
for the operator EK does not hold.

5.8 DEFINITION. The process g E Gj/H is finitely branching if there is a finitely branching graph in

its equivalence class. Since f/H and GerJ~ are isomorphic to G.J/.t±, this property carries over to the

other models.

5.9 PROPOSITION. The domain of finitely branching processes (inside one of our models) is closed

under the operators +,-,11.lL I ,aH, but not under EK·

PROOF: Straightforward.

5.10 PROPOSITION. Let p E f/H be finitely branching, and let n E N. Then there is a basic term qn

such that
7tn(P) = qn holds in P/H.
PROOF: This is easiest to see in the model Gj/H, and transfers by isomorphism to f/H.

5.11 PROPOSITION. For any process p E f(A)/H, and fresh atom f e A, there is a finitely branching

process q E JP(Au{f})/H such that E(fj(q) = p. 1

PROOF: This follows by considering fig. 8 in 4.24: replace every infinite branching by a spine off-steps
to obtain q; renaming f into e gives a process that bisimulates with p.

5.12 DEFINITION. The Restricted Approximation Induction Principle (AIP-) says that a

finitely branching process is completely determined by its finite projections, i.e. if p is finitely

branching, and q is such that 7tn(P) = 7tn(q) for all n, then p = q.
The "-" refers to a version of AIP without the restriction to finitely branching processes. For more

information on AIP-, see v AN GLABBEEK [7].

5.13 THEOREM. AIP- holds in P/H.
PROOF: As in VAN GLABBEEK [7]. There, a version of AIP- is used, which is less restrictive, with

bounded processes instead of finitely branching processes. It is easy to see that a finitely branching

processes is bounded in the sense of [7].

5.14 THEOREM. The Recursive Specification Principle RSP holds in f/H.

172

PROOF: Let E be a guarded recursive specification over variables V, and X e V. Since all variables have

a head normal form (3.15), process p = <X I E>/H is finitely branching. By 5.10, the finite projections

of P are equal to basic terms. But it is easy to see that these basic terms only depend on the equations in

E, and not on the particular solution. So, any solution must have the same finite projections, and hence

is equal to p by AIP-.

5.15 THEOREM. The Restricted Limit Rule LR- holds in Y?/H.

PROOF: Let s(x1 ,. .. ,Xn), t(X1 ,. .. ,Xn) be ACP\f-terms without EK-operator such that for every choice of

parameters A;y, and any P1 ,. . .,pn E BT we have S(P1 , .. .,pn) = t(P1 , ... ,pn) holds in P(A)/H. We have

to show that s(x1 , ... ,Xn) = t(x1 ,. . .,Xn) holds in P/H. This is the case if for every choice A,y we have

S(P1 ,. .. ,pn) ±:± t(P1 ,. .. ,pn) for all P1 ,. .. ,pn e P(A).

So let A,y be given and suppose p1 ,. .. ,pn e P(A). Let f be a fresh atom. Choose (using 5.11) finitely

branching q1,. .. ,qn e P(Au{f}) such that E(f}(qi) = Pi (1 ::;i::;n). For each k e N, choose (using 5.10)

basic terms r1k,. . .,rnk such that n:k(qi) =rt Now by 5.7 we have for each k e N

n:k(s(qk.,qn)) = n:k(s(n:k(q1), .. ., n:k(qn))) = n:k(s(r1k,. .. ,rnk)) =

= n:k(t(r1k, .. .,rnk)) = 1tk(t(% .. .,qn)).

Thus, by AIP- and 5.9, we have s(q1 ,. . .,qn) = t(q1 ,. . .,qn), and hence, by 5.5,

S(P1 , .. .,pn) = S(E(f}(q1), .. ., E(f}(qn)) = E{f}(s(q1 ,. .. ,qn)) = E(f)(t(q1 ,. .. ,qn)) = t(P1 , .. .,pn).

REFERENCES

[l] J.C.M.BAETEN & J.A.BERGSTRA, Global renaming operators in concrete process algebra, report

CS-R8521, Centre for Math. & Comp. Sci., Amsterdam 1985. To appear in Inf. & Computation.

[2] J.A.BERGSTRA & J.W.KLOP, Fixed point semantics in process algebras, report IW 206,

Mathematical Centre, Amsterdam 1982.

[3] J.A.BERGSTRA & J.W.KLOP, Process algebra for synchronous communication, Inf. & Control 60

(113), pp. 109 - 137, 1984.
[4] J.A.BERGSTRA & J.W.KLOP, Algebra of communicating processes, in: Proc. CWI Syrop. Math. &

Comp. Sci. (J.W.de Bakker, M.Hazewinkel & J.K.Lenstra, eds.), pp. 89 - 138, North- Holland,

Amsterdam 1986.
[S] J.A.BERGSTRA, J.W.KLOP & E.-R. OLDEROG, Failures without chaos: a new process semantics for

fair abstraction, in: Proc. IFlP Conf. on Formal Description of Programming Concepts - III, Ebberup

1986, (M.Wirsing, ed.), North-Holland, Amsterdam, pp. 77 - 103, 1987.

[6] J.A.BERGSTRA & J.V.TUCKER, Top down design and the algebra of communicating processes, Sci.

of Comp. Progr. 5 (2), pp. 171 - 199, 1985.

[7] R.J. v AN GLAB BEEK, Bounded nondeterrninism and the approximation induction principle in process

algebra, in: Proc. ST ACS 87 (F.J.Brandenburg, G.Vidal-Naquet & M.Wirsing eds.), Springer LNCS

247, pp. 336 - 347, 1987.
[8] C.A.R.HOARE, Communicating sequential processes, Prentice Hall 1985.

[9] C.P.J.KOYMANS & J.L.M.VRANCKEN, Extending process algebra with the empty process E, report

LGPS 1, Dept. of Philosophy, State University of Utrecht, The Netherlands 1985.

[10] R.MILNER,A calculus of communicating systems, Springer LNCS 92, 1980.

[11] R.MILNER, Lectures on a calculus of communicating systems, in: Seminar on concurrency

(S.D.Brookes, A.W.Roscoe & G.Winskel, eds.), Springer LNCS 197, pp. 197 - 220, 1985.

(12] D.M.R.PARK, Concurrency and automata on infinite sequences, in: Proc. Sth GI Conf.

(P.Deussen, ed.), Springer LNCS 104, pp. 167 - 183, 1981.

[13) G.PLOTKIN,An operational semantics for CSP, in: Proc. Conf. Formal Description of Progr.

Concepts II (D.Bj121rner, ed.), pp. 199 - 223, North-Holland, Amsterdam 1982.

[14] J.L.M.VRANCKEN, The algebra of communicating processes with empty process, report FVI 86-

01, Dept. of Comp. Sci., Univ. of Amsterdam 1986.

[15] F.W.V AANDRAGER, Process algebra semantics of POOL, report CS-R8629, Centre for Math. &

Comp. Sci., Amsterdam 1986.

