133

THE SEMANTICS AND COMPLEXITY OF PARALLEL PROGRAMS
FOR VECTOR COMPUTATIONS. Part II
by

E.K. BLUM

Abstract

Recent research in parallel numerical computation has tended

to focus on the algorithmic level. Less attention has been given
to the programming level where algorithm is matched, to some
extent, to computer architecture. This two-part paper presents a
three-level approach to parallel programming which distinguishes
between mathematical algorithm, program and computer
architecture. In part I, we motivate our approach by a case study
using the Ada language. In part II, a mathematical concept of
parallel algorithm is introduced in terms of partial orders. This
serves as the basis of a theory of parallel computation which
makes possible a precise semantics and a precise criterion of
complexity of parallel programs. It also suggests some notation
for specifying parallel numerical algorithms. To illustrate the
ideas presented in part II, we concentrate in part I on parallel
numerical computations which have vector spaces as their central
data type and which are intended to be excuted on a multi-
processor system. The Ada language, with its task constructs,
allows one to program computer algorithms to be executed on
multi-processor systems, rather than on "vector (pipelined)
architectures”. To provide a concrete example of the general
problem of programming parallel numerical algorithms for multi-
processor computers, part I includes a case study of how Ada can
be used to program the solution of a system of linear equations
on such computers. The case study includes an analysis of
complexity which addresses the cost of data moment and process
control/synchronization as well as the wusual arithmetic
complexity.
Part I appears in an issue of BIT dedicated to Peter Naur on his
60th birthday. It is my pleasure to dedicate part II to Jaco de
Bakker on the occasion of his 25th anniversary at the
Mathematisch Centrum.

134

1. Introduction

Many computational systems involve operations on vector guantities which
can be executed in a concurrent mode. We consider the specification/design of
such svstems. In our view, specification takes place on three levels : (1) the
mathematical algorithm level; (2)the program level; and (3) the computer
architecture level. Actually, this view is an idealization of the practical
cases in which it is not always possible to separate the three levels of
specification, either logically or in order of performance. Nevertheless, we
shall treat them as distinct levels.

We assume that specification starts on level 1 with some mathematical
equations expressing the system input-output function. For example, the
solution of a system of linear equations is specified by the eguations
Ax = b and x = A_lb, where A is a nonsingular n x n matrix and b is an
n-dimensional vector. The equations involve basic operations on basic sets in
one or more data types; e.g. the operations in numerical computations are the
arithmetic operations on integers and reals and the boolean operations on
{0, 1). However, as in our example, they may include operations on vectors and
matrices. Such a purely mathematical specification may be regarded as taking
place on the highest level, which we shall call level 1a. On level 1b, the
mathematical equations are transformed into equations which specify a
mathematical algorithm. In our example, these are the equations defining the
familiar Gauss elimination algorithm. (See Part I) The notion of parallel
mathematical algorithm needs to be made more precise and we do this in section
2 in a fairly general context. In numerical algorithms involving vectors, a
natural parallelism is often implicit in the operations on components. Hoé%er,
there are usually several different modes of parallel execution possible. To
achieve the most efficient usage of the architecture available on level 3, it
may be necessary to specify explicitly which parallel mode is to be

selected.As yet, there is no standard notation for this kind of specification.

135

2. The three-level way

As remarked above, we wish to propound the thesis that
programming of numerical algorithms is one level of a three-level
specification procedure. In this section, we shall make more
precise our general conception of levels 1 and 2. On level 1, a
mathematical specification of a problem is formulated using
mathematical concepts and notations. Level 1 is usually separable
into two sub-levels, la and 1lb. On level la, a non-algorithmic
description of the problem is given, generally as a set of
equations to be solved. The equations involve formulas built up
in conventional informal notation from yvariables, constants and
gperators in prescribed data types. For numerical problems, it
suffices to limit the discussion to what we shall call the
npumerical data types. These comprise the "standard” types,
integer, real, Boolean and real array. The operations in these
types include the "standard" arithmetic operations on integers
and reals, the algebraic operations on vectors and matrices of
linear algebra and the "standard" Boolean operations. We need not
be more precise than this for our purposes. In our example, the
equations are written in the familiar form Ax = b, where A is a
given nxn non-singular matrix and b is a given n-vector. The
solution can be expressed by the equation x = A" 1lb. It is well-
known that this equation does not lead to an efficient algorithm
for computing x. If we postulate that A can be factored so that A
= LU, where L is lower triangular and U is upper triangular, then
the first equation becomes LUx = b. Setting Ux = y, we obtain the
equivalent pair of equations Ly = b, Ux = y, which, with A = LU,
define the problem in a way that leads to an efficient algorithm.
As we know, it is generally necessary to apply a permutation
matrix, P, to A before it can be factored. So actually, PA = LU
and pivoting must be done in the algorithm. This is the kind of
mathematical formulation that should be done on level la prior to
designing a numerical algorithm.

136

Oon level 1b, a mathematical algorithm {(m.a.) is designed to
compute the solution specified by the level la equations. The
m.a. is likewise expressed in conventional notation using
equations, except that the equations must explicitly define their
left-hand sides and, for vector problems, logical quantifiers are
used to specify iterations. In this example, the mathematical
algorithm is the familiar Gauss elimination method for computing
the LU factorization and then solving the triangular algorithms
also require Boolean conditions expressed by if-then clauses and
Boolean or, and, not operations. The equations and conditions
again involve formulas constructed from variables and operators
in the data types. Although the variables are to be associated
with values in the data types, there is no connotation of storage
of values. In particular, there is no notion of "old" value and
"new" value of a variable, x. These are level 2 concepts. On
level 1. to denote the changing values caused by a recursive
iteration, an index is associated with x; e.g. x(i-1) represents
the old value of x at the beginning van the ith iteration and
% (i) the new value after this iteration. There is no dynamic
operation like an assignment, which changes the "state" of a
"memory location™ for x. Memory is a level 2 concept. Thus, level
1lb is essentially applicative (i.e. functional). Although there
are formal applicative languages like the lambda calculus and
much ongoing research into functional programming, at present we
usually rely on traditional mathematical notation enriched with
special notation to specify m.a.'s of the kind encountered in
vector computations. Since there are no standard notations for
specifying the parallel aspects of such m.a.'s, we present some
of our own in part I.

What we have called "traditional" or "conventional”
mathematical notation has evolved over the last three centuries,
with many conventions already present in the works of Descartes,
Pascal and Fermat. This notation, with its formulas involving
numerical constants, letters for variables, symbols such as "+"
for operations, superscripts for exponents and punctuation such a
parentheses has been absorbed into most modern programming
languages. Given a precise syntax (e.g. in Backus-Naur form) in
languages like Fortran, Algol, Pascal and Ada, formulas have a

137

structure representable by parse-trees. The parse-tree embodies a
partial ordering of the "applications” of operations to operands.

The parse tree also specifies a partial order subexpressions
which corresponds to an ordering of the functional combinators
which perform composition and tupling of functions. The
functional structure implicit in a parse-tree defines a "data
flow"” relation between the results of certain operations and the
"input” operands of other operations. Indeed, this non-
algorithmic functional aspect of formulas is their essential
mathematical meaning. Traditional notation also includes
equations, in particular, those of the form "variable = formula".
A set of such equations may specify a partial order of
applications which is not a tree.

The functional structure of formulas and equations is
"static”. Algorithms involve something more, namely, a dynamic
aspect that translates into a temporal partial ordering of the
applications of operations, i.e. a "control-flow". In the
classical formal notions of algorithm (e.g. of Turing, Post,
Markov}, which are not concerned with efficiency and complexity,
the control flow is essentially sequential (i.e. totally
ordered) . To deal with efficiency, complexity and parallelism we
shall reformulate the notion of algorithm using partial orders of
applications. Although these partial orders are implicit in the
traditional notation for formulas and equations and would seem to
be a consequence of the data flow ordering, this becomes less
obvious when logical conditions and iteration specifications are
included. In fact, when level 3 computational constraints are
imposed, such as number of processors, speeds of operations and
inter-processor communication, the partial order may not be
entirely a consequence of the static functional structure of
formulas. To prepare for this level 1b, attention shoud be
focused on how an m.a. should be composed out of partial
orderings of applications of operations to operands. Thus, level
1b is intermediary between the functional approach on level 1 a
and the typical programming approach on level 2.

On level 2, the m.a. is transformed into a computer algorithm

described by a computer program. It is generally accepted that

138

most programming languages provide practical counterparts to the
classical formal systems for specifying "effective procedures”.

A computer algorithm is an effective procedure constructed from a
basis of operations provided by the particular languages used to
write the program. Although the basis differs from language to
language, there is a common core, some of which we have already
mentioned (e.g. the standard Boolean and arithmetic operations).
Aside from recent functional programming languages, most
languages provide an assignment operation which changes the state
of an abstract store (memory) associated with the variables in a
program. There is also an implicit finite-state control unit, as
in a Turing machine, and many of the basis operations (e.g. goto)
are for the purpose of manipulating the control state. The
transformation of an informal specification of a level 1lb
mathematical algorithm into a formal computer program specifying
a computer algorithm on level 2 is the essential task of the
computer programmer.

Most programming languages are not applicative with respect
to the operations which manipulate the state of the store and the
controls state, since there are no state variables of type state
that can be used explicitly in programs. For example, in an
application of the assignment operation, the "current" store
state is an implicit operand and the "next" store state is an
implicit result. A goto is an operation on the implicit control
state which has a new control state as result. In the multi-task
programs in Ada, the control state can have a complex structure
distributed over many concurrent tasks. We note that the
synchronization primitives of Ada permit quasi-orders rather than
partial orders of applications; i.e. it can happen that deadlocks
occur. Presumably, such deadlocked programs are incorrect as far
as m.a.'s are concerned. A parallel computer algorithm can be
regarded as a system of concurrent "processes”. The simplest kind
of process is the sequential algorithm. How processes are to be
joined together into a system of concurrent processes which
interact is still a subject of resarch. In the three-level way, a
programmer faced with the problem of transforming a given m.a.

139

(specified in some informal notation) would analyze the m.a. into
purely sequential m.a.'s combined using cominators for
composition, paralleling and recursion. These combinators are
usually realized as synchronization and control operations on
level 2. We illustrate this in our Ada case study.

Finally, on level 3, the computer algorithm is transformed
into a specific computer system. A computer system is
characterized by its architecture which configures a set of
hardware and software components.

Some of the more routine difficulties in programming are
being ameliorated by "tools" that increase the skill of the
programmer in dealing with complex syntactic details and in
manipulating files. However, in complex problems, the major
difficulties lie elsewhere and are primarily semantic. From the
perspective of the three-level way, we identify the following
sources of semantic difficulties in the programming of parallel
algorithms, which may occur in the sequential case as well.

1) The mathematical algorithm that a programmer starts with
may nog be precisely specified and conventional mathematical
notation may be inadequate to the task.

2) The mathematical algorithm may be incompletely specified,
in which case the specification must be completed on level 2 as
part of the programming.

3) The constructs provided in the programming language may
not match the mathematical algorithm constructs, making the level
lb-to-level 2 transformation a complex one.

4) Programs describe computer algorithms to be executed on
some real computer system, hence must include computer-oriented
specifications (e.g. date storage) that permit them to be
translated into a level 3 specification that can be executed. The
inclusion of these details is often tantamount to the design of a
virtual computer system.

140

5) The level 2-to-level 3 translation is performed by a
compiler and a run-time system that must deal with bounded
resources (memory, processors, timing constraints, communication
bandwidths, interconnections, etc.) and the problems raised by

the general-purpose stored-program concept.

To achive efficient compilation the programmer must often provide
further implementation-dependent information on level 2. This
many have to be done in an environment that is an extension of
the formal framework of the programming language, requiring the

programmer to attend to level 3 matters as well.

6) For parallel algorithms there is the further difficulty
that there is no generally accepted formal model analogous to
those for sequential algorithms.

Ideally, the solution to these difficulties is to eliminate
level 2 entirely. The historic trend to higher-level languages,
which made great early strides when assembly languages were
replaced by Fortran, Algol, Pascal etc. has failed to come even
moderately close to this ideal with more recent languages. In
fact, for parallel algorithms, the quest for maximum speed and
efficiency may make this ideal unattainable. However, it seems
possible to greatly reduce the effort on level 2 by attacking the
deficiencies on all three levels.

141

3. Mathematical algorithms

If f is an n-aryv operation and a;....,a are valid operands in its
domain, then an application of f to these operands yields a result,
f(al,...,an), in one of the numerical data types. For brevity, we shall use
vector operands, writing a for (al,...,an) and f(a) for the result. We shall
also allow vector variables as operands. As a simple example, 2+3 denotes the
application of the integer add operation to the operand (2,3) with the result
5. (Usually, we use infix notation.). 3+2 is a different application of + with

operand (3,2) and the same result. An expression containing variables will be

regarded as (denoting) a family of applications. We call such a family a

symbolic application. Thus, x+3 denotes a symbolic application: which is the
family of all applications consisting of adding 3 to an integer.‘In general, a
symbolic application, r(x), parametrized by x = (xl,...,xn).is to be regarded
abstractly as a mapping r: Dlx...xDn ~> Ap, where Xy varies over data tvpe Di
and Ap is the set of all applications of some operation, ur.. For any value

v = (vl,...,vn) with v,e Di' the mapping yields an application, r(v), in the
family. r(v) consists of operation w.. an input operand, In(r(v)), and a
result, Res(r(v)). If In(r(v)) is in the domain of ©o then we recuire that
Res{r(v)) = ur(In(r(v))) and otherwise Res(r(v)) = L, where 1 is a special

element read as "undefined". Thus, if r(x) is given by the formula x+3, where

+ is integer addition, then r(2) is the application with In(r(2)) = (2, 3) and

Res(r(2)) = 5. So r(2) (+, (2, 3), 5). On the other hand, In(r(~2)) is

(~+2, 3} and Res(r(v2))

'}

i. In most of this paper, symbolic applications will
be specified by conventional mathematical formulas and eguations, but this
does not preclude their representation by other means, such as tables, for

example. For convenient reference, we summarize the foregoing in a definition.

142

Definition 1. An application, a, is a triple consisting of an operation

@ an input, In(a), and a result, Res(a), such that
Res(a) = wa(In(a)) whenever In(a) € Dom(ua) and otherwise Res(a) = 1. A

symbolic application is a family of applications all having the same

operation.

A symbolic applicdtion represents a function's graph, but note that the
functions involved may be different even when the same operation is used, as
in x+2, x+3 and x+y. In algorithms, applications occur in a dynamic context
that must be specified. For example, the formula (2+3)*4 can be intervreted a
a dynamic sequence of two applications, 2+3 followed by 5*4. The formula,
(3+2)*(2+4) denotes either of the sequences (3+2, 2+4, 5*6) or (2+4, 3+2, 5*6
to compute the result, 30. This ambiguity can be used to advantage in paralle
algorithm specification. On level la, we interpret a mathematical formula as
denoting a function and a partial order of functional (data-flow)
dependencies. On level 1b, we shall interpret such a formula as suggesting a
partial order (p.o.), of applications in a temporal sense. In simple cases,
this p.o. can be represented as a finite tree. In the preceding example of
formula (3+2)*(2+4), we have the familiar tree,

3 2 2

b4 +

%

v

Figure 1

(Note the implied order of the operands in such a figure.)

Suppose p and g are two p.o.'s on a set S. We say that p is a refinement
of q if g < p as binary relations. Let ¥ be a conventional formula and SP the
p.o of its parse-tree. If p.o.'s p and g are refinements of e then

executing the applications according to p yields the same results as

143

executing them according to q. For example, both of the application sequences
given above are refinements of the p.o. in Figure 1 and yield the same result.
We shall use < to denote partial orders. We say that an application, r, is a
predecessor of application s in a p.o. if r<s. It is an immediate predecessor
if there is no u such that rsuss.

A formula that contains a (vector) variable x = (xl,...,xn) can be
interpreted as denoting a set, F(x), of symbolic applications, each
parametrized by zero or more of the x4 variables, and having a partial order
specified by the structure of the formula. For example, let f(x) be the
formula (3+x)*(x+4). The p.o. which f(x) denotes can be represented by a tree

having the structure,

Figure 2

where the parameter x can have any integer value. The set, F(x), is the set
(x, 3, 4, 3+x, x+4, (3+x)*(x+4)}. (We shall consider constants and variables
to be O-ary operations.) Note that the application (3+x)*(x+4) is obtained by
tupling of the applications 3+x and x+4 followed by composition with the
application y*z. Later, we shall replace tupling by a parallelling combinator
and composition by a sequencing combinator. The tree represents a partial
order, < , on the symbolic applications in F(x). If v is an element in a data
type, then F(v) is the tree obtained by substituting v for x. There is a
partial order, Sv' on F(v) induced by < in a natural way; e.g. F(2) and 52 are
given by Figure 1 in this example.

Partial orders have been considered in a variety of contexts as a basis
for the semantics of concurrent processes. What is new in what follows is the

choice of algebraic applications, suitably indexed, as the elements of a

144

partial order in a natural way that leads to a precise definition of
mathematical algorithm and algorithmic complexity. This also seems to provide
a natural mathematical framework for both the static and dynamic structure of
parallel algorithms and their computations. We treat applications and partial
orders abstractly, rather than syntactically, to allow for a variety of
notations on level 1b, including some which may not fit into the usual
algebraic syntax of terms. Furthermore, as we wish to give a dynamic
interpretation of applications occurring in a temporal partial order in a
computation which may be specified by expressions combined with equations and
various logical and control operators, we cannot restrict the orders to trees.
For example, although the pair of equations, x = 2+1, y = (3+x)*(x+4) can be
combined into one with a single right-side term (tree), they can also be
interpreted to specify the following algorithm: compute x as the result of the
application 2+1, substitute the result, 3, for x in the formula for y, then do
the set of applications {3+3, 3+4) in some order (possibly in parallel) and
finally do 6*7. This p.o. of applications is not a tree. It can be depicted by

a kind of Hasse diagram as in Figure 3. (Downward paths specify the p.o..)

Figure 3

Observe that this p.o. has several minimal elements (1,2,3,4) to start the
computation. Compare figure 3 with Figure 4, which is the tree obtained from

Figure 2 by tree substitution of 2+1 for x.

3. 2, L1 2. 1
N ’\.+ [//

- + Figure 4

4

145

The algorithm devicted in Figure 4 computes the result 42 also, but has two
instances of the application 2+1. In transforming this algorithm into a
parallel computation, we shall interpret this to mean two executions of the
same application. In this case, this is clearly avoidable a priori. However,
it is possible that at level 2 such duplication is actually more efficient
when executed on two processors if data access operations are included in the
complexity analysis. (They can also be included on level 1b by using the
identity operation. See below.) In general, such repetition is unavoidable a
priori. For example, in the formula (3+(2+x))*((2+y)+4), it may happen that x
and v are both set egual to 1 in other equations. To distinguish instances of
the same application, we are led to consider indexed sets of applications. The
indexing could be done with reference to the syntactic structure of the
formulas and eguations which specify an algorithm, but, again, we do not wish
to restrict the method of indexing to be constrained by conventional syntax as
there may be other ways to specify the "control flow". Hence, we shall allow
arbitrary posets as indexing sets.

Definition 2. Let (J, £) be a poset (the indexing poset) and F(x) a set

of symbolic applications, each parametrized by zero or more variables in the

sequence of distinct variables, x = (xl, x2, ...). An algorithmic structure

(a.s.) on F(x) is given by an indexing function, ap: J -> F(x), which defines

an indexed poset, (F(x))J, of symbolic applications. We denote the a.s. by
((F(x))J, <). Further, for each value sequence, v, and r(x)€e F(x), let r(v) be
the corresponding application. Define F(v) to be the set of all r(v) such that

Res(r(v)) # L. Let Jv ¢ J consist of the indices, j, for which ap(k)(v)eF(v)

for all k £ j. Define an indexed poset, (F(v))Jv, by the derived indexing
function ap,,: Jv -> F(v) given by apv(j) = r(v), where r(x) = ap(j). Let Sv be
the p.o. which is the restriction of £ to Jv. We call ((F(v)JV, sv) a

(parallel) computation structure (pcs) of the a.s.

146

Remark. It is convenient to say that application ap(j) precedes ap(k)

1° xz,...) which parametrize the symbolic

applications in F(x) take values in data types Di' Each symbolic application,

when j < k. The variables x = (x

r(x), is a family defined by a mapping, r: Di Xoa X Di -> Ap., on finitely

1 n
many of the data types. We say that r(x) depends on X; ... Xy . It is
1 n

convenient to regard each variable, X, @as a symbolic application which is a
family of O-ary applications. For a sequence of values ,v, the application
xi(v) is the O-ary operation Vi In most algorithmic structures, the
parametrizing variables X will be included in the structure as O-ary
applications which are predecessors of certain applications. This will be the
case when ordinary formulas are used to specify the structure. We call such Xy

input variables. In this paper, we shall assume that all Xy which parametrize

an a.s. are input variables. For each (input) value, v, the results of certain
maximal applications (if any) can be indexed as outputs. To output an
intermediate result (of a non-maximal application), we can force it to be the
result of a maximal application simply by adjoining the identity operation.at
that point.

An a.s. specifies permissible "control flow" or execution dynamics of a
computation. It is also necessary to specify functional structure ("data
flow") as would be implicit in a parse-tree. In an a.s., there must also be
some relation between the inputs and results of its various applications
whereby the needed inputs of any application are the results of applications
which are predecessors. This is provided in the next definition.

Definition 3. An algorithm structure ((F(x))J, sJ) is said to be a

mathematical algorithm (m.a.) if it has the following algorithmic properties:

147

{1) The set of minimal applications is finite;

(2) Each application has a finite number of predecesors and immmediate
successors;

(3) For each value sequence, v, there exists a data flow function, Dv,
defined on J as follows. For je J, let r(x) = ap(j) have an operation part of
arity n 2 1. Then Dv(j) = (jl,...,jn), where the ji are predecessors of Jj such
that In(r(v)) = (Res(apv(jl)),...,Res(apv(jk))).

If s_ is total, the m.a. is called seguential and if p is a total order

J

which is a refinement of = then the m.a. is said to be segquentialized by p.

3’

To illustrate these concepts, let us define an a.s. for the formula

(3+(x+y))*((x+y)+4). Let J be the poset given by the diagram in Figure 3a.

jl /32
Figure 3a

33 ~.

e \ T
™~ .
Je \si\\\\\§\\\\\~ - Jq

/ja

An a.s. is defined by the indexing ap(jl) = X, ap(jz) = vy, ap(ja) = X+y,

ap(j,) = 3, apljg) = 4, aplig) = 3+(x+y), apliy) = (x+y)+4,

ap(ja) (3+(x+y))*((x+y)+4). For v = (2,1), we get the poset F(v) in Figure
3, which is isomorphic to Figure 3a since all symbolic applications are
defined for v = (2,1). The data flow function Dv is defined for each j in J

as the pair of immediate predecessors when ap(j) has a binary operation.

It follows from algorithmic property 3 that every minimal application is

148

O-ary, since otherwise it would have at least n 2 1 predecessors. From
property 1 it follows that there are a finite number of starting points for a
computation of an m.a. .From property 2 it follows that at any point in a
computation there are only a finite number of parallel paths. We see that an
m.a., ((F(x))J, SJ), gives rise to a parametrized (by the values of x) family
of indexed posets of applications. If we think of each indexed application as
residing in a micoprocessor able to execute its operation, each such indexed
poset, ((F(v))Jv, Sv), suggests various possible dynamics (temporal orders) of
execution of the applications in it. If j Sv k, then apv(j) should not
(usually cannot) be executed later than apv(k). This insures that all results
needed as inputs to an application are computed prior to its execution. (The
microprocessor for apv(j) would have to be connected to the one for apv(k) to
allow the proper data flow.) An execution of all the applications apv(j), j e

Jv, satisfying these temporal constraints is a parallel computation of the

m.a. for input data v. The p.o. SJ allows different dynamical modes of

parallel execution. These modes correspond to different refinements of sJ.

For example, consider the equations x = a+l, y = (3+x)*(x+b). An m.a.
which they specify can be represented by a diagram obtained from Figure 3 by
replacing the nodes 2 and 4 by a and b respectively. a and b are input
variables. Assigning the values 2 and 4 to a and b respectively yields the pcs
in Figure 3, which defines the possible parallel computations of the algorithm
for these input data. This is a simple example, of course. In the case
study,we shall consider a real algorithm in which vector and recursive
iterations occur.

As yet, we have said nothing about the effective calculability of the
indexing function ap and the data flow function D. Indeed, the symbolic
application has not been restricted to be effectively calculable (i.e.

computable). We defer such issues to the choice of a particular formal

notation for m.a.'s.

149

The branching produced by execution of Boolean conditions is easily
accommodated into the partial order structure of an m.a., but, of course, it
should not be confused with the forking produced by parallel execution. One
way to include (deterministic) branching in an m.a. is to use the if-then-else
operation. If b then f else g can be interpreted applicatively as an operation
having three operands, b, f, and g.Thus, the two equations, x = a+5,

y = if x > 2 then x+1 else x*3, would specify the m.a. depicted below

S

-2 .1

Figure 5 11’—_”4,_—'_,,_14/
-then-else

in which if-then-else has the result x+1 if x > 2 and x*3 otherwise, where

5

w

all x's have been replaced by a+5 (as indicated by the unlabeled nodes). The
operations >, +, and * can be applied in any order prior to if-then-else. This
parallel interpretation of if-then-else would lead to a level 2 parallel

flowchart 1like

[:=:_x:> z] = %]

[Y:= if b then u else v]

in which there is a three-way fork and join. A more conventional approach to

logical branching is simply to consider a symbolic application like x > 2 as
denoting two disjoint families of applications, those (like 3 > 2) having the
result True and those (like 1 > 2) having the result False. If we denote these
families by rT(x) and rF(x), then rT(a) = ((3,2), >, True),

rF(l) = ((1,2), >, False), rF(a) = ((3,2), >, 1) and rT(l) = ((1,2),>, 1).

The diagram in Figure 5 would be replaced by the one in Figure 6 below.

150

Figure 6

»*

false

The arcs labelled "true" and "false" indicate which application results are to
have x+1 as successor and which are to have x*3. Thus, rT(x) SJ x+1 and

rF(x) SJ x*3. According to Definition 3, this p.o. defines an m.a. which has
the execution dynamics of the conventional sequential flowchart with a test
box for x > 2 having a two-branch exit. Finally, in passing, we note that
non-deterministic branching in an m.a. can be done by an application of a
"choice" function. For example, Choice(x+1l, x+3) would allow either x+1 or x+3
as a result, indicating that either application can be performed at the point
of the Choice application. Such non-deterministic algorithms can be defined as
sets of m.a.'s. Thus, a formula like Choice(x+1, x+3)*(4+x) would specify a
set of two m.a.'s, one given by the formula (x+1)*(4+x) and the other by the
formula (x+3)*(4+x) as in Figure 2.

By using the branching combinators {both deterministic ones like
if-then-else and non-deterministic ones like Choice) together with other
combinators, m.a.'s of a complex structure can be composed out of simple
m.a's. It seems possible that the static structure of most m.a.'s in practice
can be analyzed and synthesized with relatively few combinators, making
possible an algebra of m.a.'s analogous to the algebra of processes in [37].
The following combinators seem most natural: seguencing (or composition}),

paralleling (or union) and recursion (or iterated composition). Various

versions of these combinators have been studied in the context of programming
Fart T:
languages, flowcharts and processes 9?7, 38, 46-48). We sketch their

definition for m.a.'s. (A complete development is the subject of ongoing

151

research. We illustrate their use in the case study.)

In terms of ordering, sequencing is a matter of connecting designated
maximal elements (the outputs) of a p.o. to designated minimal elements (the
input variables) of another p.o. This is easy to visualize when the Hasse
diagrams of the p.o.'s are simple. Intuitively, for two m.a.'s, f and g, we
can form a new m.a., f-g, in which designated output nodes of f are connected
to designated input nodes of g. For example, suppose we use a conventional
equational specification of an m.a. in which f is given by the eguation,

X = 2+1 and g by v = (3+x)*(x+4). One possible sequencing is given by Figure
3a in which the two instances of the input variable x are replaced by the
output node (+) representing the application 2+1. This could be interpreted to
mean that the result of 2+1 can be accessed concurrently by 3+x and x+4. To
take into account actual data access operations on x {(at levels 2 and 3) in
which data accesses to x probably occur serially, we may wish to specify an
m.a. in which the result of 2+1 (stored in x) is accessed first by x+4 and
then by 3+x. To do this, we introduce the identity operation, id , and the
application id(x), which has input x and result x. We then form an alternative

sequencing, f-_ g shown in Figure 3b.

o
2. //1
el
3. id < id 4
~
. 7
\\‘ »
— o
F— Figure 3b

o denotes a "connection" mapping which maps the two input (x) nodes of g onto
the output (+) node of f. Then the application x is replaced by id. The
applications 3+x and x+4 are changed accordingly. Now to specify the serial
data accesses, we add a directed edge from one id node to the other, which
yields a refinement of the p.o in Figure 3a.

We make these intuitive ideas of sequencing more precise in the following

152

definition.

Definition 4. Let f = ((F(x))J, sJ) and g = ((G(y))I,sI) be a.s.'s., with
respective indexing functions ap; and ap;. We assume INJ = 0. Let (r)Jl be a
subfamily of outputs of f and (y')I a subfamily of input variables of g. Let
g (Y')I - (r)J be a ;onnection function which maps the set I'c I of indices
of (Y')I into the set of indices J'<cJ of (r)J. Define G(y]r))IlJ, to be the
indexed family obtained by modifying (G(y))I as follows: Replace each minimal
input variable apI(i) € (y')I by apJ(c(i)) and replace i€l by o(i). If
apI(i) e (y') is not minimal, replace it by the application which has the
identity as its operator and Res(apJ(o(i)) as its input. This yields a new

indexing set, I|J*, with a p.o. and a new a.s. (G(er))IIJ" Let s be

J-I
Then the indexed family

113

the p.o. which is the transitive closure of SJUSIIJ"

(F(x))J U (G(er))1|3- with (Ju I|J',s) as indexing p.o. is an a.s., f-g,

J-I
called a sequencing of f and g.

In a conventional equational specification of an m.a., the variables on
the left sides usually prescribe how a sequencing is to be done. Thus, Figure
3 depicts A& sequencing of the elementary algorithm 2+1 with the m.a. shown
in-Figure 2, as specified by the equations y = (3+x}*(x+4), x =2+1. (Our
sequencing combinator for algorithmic structures is somewhat analogous to
sequencing of processes in [37], where the variable x is said to be
"internalized" and output-input matching is modelled abstractly by monoid
morphisms and a "restriction" operation. Processes are level 2 or 3 constructs
in our approach.) Also note that definition 4 is independent of the choice of

a syntax for m.a. specification. This makes it simple to establish the

following basic property of sequencing.

153

Lemma 1. If f and g are m.a.'s, then so is any seaquencing f-g.

Proof. We simply verify the algorithmic properties (1), (2) and (3) in
definition 3. Properties (1) and (2) are immediate from the definitions. To
establish (3), we simply define a data-flow function, ng, for f-g in a
natural way. Let v be a sequence of input values. For an application, ap, in f

we set ngv(ap) = va(ap), where D is the data-flow function of f with the

fv
input values, v, replacing the input variables of f. For an application, ap,
in g, there are two cases. If all inputs of ap are connected to outputs of f,
then the results, w, of these outputs for input values v are considered as
input values for g and we set ngv(ap) - Dgw(ap), where Dgw is the
corresponding data-flow function of g. If some input variable, ¥y of g is
left unconnected, then the value vy is used as the input value of Y in
combination with the values w.

We now give the definition of the paralleling combinator.

Definition 5. Let f and g be as in definition 4. The paralleling of f and
g is the a.s., filg, having (x, y) as input variables and the outputs of both f
and g. Its indexing poset is the union I U J with p.o. SI] SJ..

This is the purest kind of parallel combinator, since it does not
establish any serial connections between f and g. However, it appears to
suffice for the numerical algorithms considered in this paper. Of course, when
filg is sequenced with another a.s., the outputs of f and g may be commingled.

Lemma 2. If f and g are m.a.'s, then filg is an m.a.

Proof: Immediate from the definitions of m.a. and paralleling.

>0
Definition 6. A recuwsive iteration on a.s., f, is an an a.s., £ ,

obtained by a potentially infinite seguence of sequencings of f with "copies"
of itself in which each input of one copy is connected in a uniform way to an
output of the preceding copy.

Under appropriate conditions on the sequencing, if f is an m.a., then so

154

is fo.. We shall not prove such a result here , but illustrate it with a
parallel m.a. for the factorial function, n! = n*(n-1)!, starting with 1! = 1.
In eguation form, we specify parallel n! as follows using some notation
explained below.
FACTORIAL(n) is

{y(0) = 1, FACT(0) = 1, x = n};

for i = 0,...,INFINITY loopb

(y(i+1) = if x>y(i) then y(i)+1 else O, FACT(i+1)=y(i)*FACT(i)}endloop
We use braces to delimit sets of equations that may be evaluated in parallel,

whereas the semi-colon denotes sequencing. The for...loop...endloop notation

denotes iterated sequencing of the m.a. delimited by loop and endloop. As in
conventional usage, the outputs y(i+i), FACT(i+1) are to replace the inputs
y(i), FACT(i) of the next iteration. To represent the p.o. of this m.a.,
consider the equations in the second pair of braces. These define an m.a., £,
with three input variables, x, y, FACT, and a p.o. depicted schematically by
the solid lines in Figure 7.1. In Figure 7.2, the solid lines depict a copy of
f with inputs replaced by Id nodes, indicating connection to the previous
output nodes connected by dashed arcs. Output nodes are also labelled Id.

FACT

Figure 7.1

Figure 7.2

. 0 \\\»Id

Together, Figures 7.1, 7.2 depict f-f. An infinite sequence of such connected
figures would depict the m.a. f°@, an infinite p.o. which can be defined
mathematically as a fixed-point of an appropriate combinator. This is a
well-known approach to recursion. (e.g. see [37].) f>e can also be defined

set-theoretically, as we have done, as a transitive closure. The construction

155

of the m.a. for FACTORIAL(n) is completed by the sequencing fo~f°° where fO
is the initialization m.a. consisting of the three O-ary applications n, 1,1
to be connnected to x, y, and FACT in Figure 7.1. Although this is a parallel
m.a. for n!, we have used the second interpretation of if-then-else in which
x>y denotes two families of applications. Using the value L as in Definition
3, each integer value,v, of n determines a finite computation structure,
FACTORIAL(v), having v copies of f and the output v!.
We are now able to give a precise definition of the complexity of an

algorithm. If an m.a., ((F(x))J, < is sequential, it determines a unigue

5

computational dynamics for each input value sequence, v, since <, is a total

order. The discrete time dynamics can be represented as a seguence of

applications (ap(l), ap(2),...), possibly infinite if recursion is involved,
where ap(i) is considered to be executed in a time interval [ti, ti+1)' If the
m.a. is parallel and if Sv is not a total order, then any refinement, sv', of

Sv gives rise to a discrete-time dynamics of execution. We shall define two
models of discrete-time dynamics: synchronous and asynchronous. Consider the
indexed family (F(v))Jv. We partition it into a possibly infinite seqguence of
PYRRRY where 81 is the family of all applications

ab(j) such that j is a minimal element of s;, S

disjoint subfamilies Sl, S

2 is the family of ap(j) such

that all immediate predecessors of j are (indices of elements) in S S

1’ 73
consists of all ap(j) such that j has all its immediate predecessors in SIUS2

and at least one in 52 and so on. Thus, Si contains precisely those ap(j) such

that all immediate predecessors of j are in Uk<isk and at least one is in

51—1' Let to< t1<"' be a seguence of time points. In a synchronous dynamics
model, all ap(j) in S:.l are executed in the interval [ti-l' ti)' Since the

ap(j) may not be distinct applications, there can be multiple executions of an

application in any interval.

156

Definition 7. The segquence S(s;) = (S S.,...) defined above is called

1" T2
the synchronous parallel computation determined by s; and Si is its ith step.

The synchronous time-complexity of ((F(v))Jv, S;) is the length of S(s;). Let

Rv be a set of refinements of sv. The synchronous time-complexity of the m.a.

((F(x))J, <) re}ative to Rv is C{(v) = min(length s(sv) : sv e Rv).

In [49§fb24£;nchronous model of computation is adopted for measuring
complexity. Their model is described in terms of "synchronous processors, each
having access to the same storage ... and ... at any parallel step i, any
processor may use any input or any element computed by any processor before
step i...". Our Definition 7 makes this concept mathematically precise purely
in terms of p.o.'s and extends it to include constraints on the 'p.o.'s. For
example, to define the notion of "k-parallelism" (48] we restrict the
refinements in Rv to those in which each set S1 has at most k applications. As
in most complexity definitions, in numerical algorithms it is usually possible
to characterize inputs v according to some size criterion, say size(v), in
such a way that complexity is a function of size(v) rather than v itself. For
example, in the problem Ax = b, we can take the dimension , n, of the vector
space as size(v).

In an asynchronous dynamics model, not all applications in Si are
executed in interval [ti—l'ti)' Some may be delayed waiting for operands which
are results of preceding "slow" application executions or may themselves be
slow. To model this kind of asynchronous dynamic behavior we introduce a
duration function, d:F(v) -> N, which prescribes an integer time duration
d(r(v)) 2 1 for each application. Then the completion time for ap(j)e (F(v))Jv
relative to s; is the integer t{(ap(j)) given by

t(ap(3)) = max{t(ap(i)) : is, J) + d(ap()).

In synchronous dynamics, d(r(v)) =1 for all r(v).

157

Definition 8. Let ((F(v))Jv, s;) be a parallel computation structure of
the m.a. ((F(x))J, SJ). Let dv be a duration function on F(v) and let Asi be
the subfamily of ((F(v))Jv consisting of those ap(j) such that

t(ap(j)) = i. The sequence (AS,) is called an asynchronous parallel
i .

computation of the m.a.. The length of (Asi) is the maximum i such that ASi i

nonempty. The asynchronous time-complexity, Ac(v), of the m.a. relative to a

set, D, of duration functions and a set, Rv, of refinements of sv is the
minimum of the lengths of all asynchronous parallel computations determined b
D and Rv'

Most of the theoretical studies of algorithmic complexity are based on
the synchronous model of dynamics . Asynchronous complexity studies would
probably restrict the set, D, of duration functions. A reasonable restriction
would be to functions which prescribe the same duration to all applications
having the same operation part or similar operation parts; e.g. all arithmeti
operations would have the same duration for all operands. We shall make this
kind of restriction in our case study in section 5. We remark, in passing,
that if we allow duration functions which .are infinite for some applications,
then it seems possible to model such properties as safety and liveness of

asynchronous computations..This is a matter for future study.

E. K. Blum

Mathematics Department

University of Southern California
Los Angeles 90089, California

March 14, 1989

Acknowledgement: This research was partly supported by N.S.F. grant CCR 8712192

