91

BMACP

J.A. Bergstra
Programming Research Group, University of Amsterdam
Department of Philosophy, University of Utrecht

J.W. Klop

Department of Software Technology, Centre for Mathematics and Computer Science
Department of Computer Science, Free University Amsterdam

ABSTRACT. A new axiom system BMACP combines the axiom systems BMA (basic module
algebra) and ACP (algebra of communicating processes) in such a way that the addition operator
(+) which stands for module combination in BMA and for alternative composition of processes in
ACP are both realised by the same operator (+) in BMACP. A closed process-module expression
in BMACP denotes a process together with a specification of some auxiliary processes and all of
these may be parametrised by some other processes.

This paper was written in honour of J.W. de Bakker on the occasion of the 25th anniversary
of his association with the CWI. This work has been sponsored in part by ESPRIT project 432
METEOR.

1. MIXING PROCESS EXPRESSIONS AND DECLARATIONS

A topic that currently receives some interest is the design of specification languages in which
process algebra in some form is used to describe dynamic aspects of target systems. Several
difficulties have to be mastered mainly due to the fact that these specification languages combine
declarative parts (declarations of data types, action alphabets, process names, state operators) and
imperative parts (process expressions):

(i) How to syntactically combine process descriptions and data type descriptions? (LOTOS
[Br 88] provides a sense of direction, PSFg [M&V 88] redesigns a part of LOTOS in terms of
ACP [BK 84] and ASF [BHK 89], further CRL [SP 89] a language that is being defined in the
RACE project SPECS is yet another combination.)

(ii) How to define the meaning of modular algebraic specifications involving process
descriptions (noticing the fact that for infinite processes bisimulation semantics is not obtained as
an initial algebra semantics of their finite equational process specifications in process algebra, this
in contrast with the case for finite processes)?

(iii) How to design formalisms combining process and data descriptions in such a way that
the term rewriting paradigm is exploited best for both data and process specifications?

(iv) To what extent is equational logic sufficiently expressive for specification languages that
combine data and process definitions?

(v) What are appropriate scope rules for local declarations of actions, process names and
data?

92

(vi) What, if any, is the relationship between encapsulation and abstraction in process algebra
and data abstraction (information hiding) as it occurs in static data type specifications.

2. MODULE ALGEBRA, A WAY OUT FOR THE LAZY THEORIST

The main dogma of module algebra is that the modularization constructions for specification
languages fail to have a standard semantics and even fail to possess a simple model that reflects the
intuition of the naive practitioner in the way the trace model describes the behavior of sequential
and concurrent systems. Thus in [BHK 86] various models for module algebra have been found
which are all quite different. In fact it is rather the absence of a single convincing model than the
presence of various nice models which is the message of [BHK 86}.

Modular specifications of processes can be described by embedding them in a module algebra
on top of the process algebra. For this to be useful there is no need whatsoever for a 'nice'
compositional semantics of the module algebra that assigns to modular process specifications a
meaning that is intrinsic in terms of processes, behaviors, transition systems or something similar.
Module algebra suggests the following minimalistic approach to the semantic problems connected
with modularized specification languages.

(i) Introduce an algebraic syntax that allows to describe the module expressions that may be
relevant for a particular (fragment of) a specification language that is being studied. Denote the
resulting module expressions with ME. Define which expressions are normal forms, thus defining
a class NMF(ME). The normal forms should show little or none of the modularisation
mechanisms.

(ii) Provide a calculus C (or rather an equational proof system) that allows to transform each
module expression to a normal form in the sense of (i).

(iii) Define a meaning for the module expressions in normal form in terms of the underlying
concepts. It may be the case that only a part NMF* of NMF(ME) can be provided with a proper
meaning. NMF* contains the ‘nice’ normal forms. The meaning of B in NMF* is denoted with
SEM(B). It may well be rather difficult to pin down exactly the nice cases NMF*.

(iv) Prove that this meaning for NMF* is independent from the way in which the normal
form was obtained by equational reasoning in the calculus C. Thus if A in ME has two normal
forms B1 and B2 then Bl is part of NMF* if and only B2 is and in that case SEM(BI1) =
SEM(B2). This fact will then be referred to as the soundness of the calculus C. (One may consider
the fact that C admits transformation to normal forms as completeness.)

The virtue of this procedure is that the meaning of a complex module expression A can be
understood as follows:

93

(i) If A is an entire system then find a normal form B for A. If B is in NMF* then SEM(B) is
the semantics of A.

(ii) If A is a component that has to be put in a context C[.] then one may safely simplify A
using the rules of the calculus without the risk of changing SEM(C[A]) if it is defined. In particular
A can be reduced to a normal form B and its intuitive meaning is then A C[.]. C[B].

For the semantic description of complex specification languages the above program is much more
easily carried out than the definition of an abstract and compositional semantics that provides a nice
and natural mathematical meaning to every expression in ME. Of course this simply means that one
(temporarily) withdraws from mathematical semantics and focusses on term models.

2.1. Fixed points and the {-construct

We introduce an extension BMACP of ACP from [BK 84] by adding to it a part of the module
algebra BMA of [BHK 86]. This extension should help in the solution of the problems (i), (ii) and
(v) mentioned in 1 above. Further the axiom system BMACP sheds light on the status of the
|L-operator in process algebra. We expand on the latter point first. The authors started working in
process algebra after a talk by De Bakker held in Utrecht in June 1982. Then he posed the problem
about the existence of fixed points of unguarded recursion equations in the topological model of
processes that he developed in cooperation with Zucker (see {[deBZ 82]). Our approach as reported
in [BK 82] was to restrict attention to the case with a finite set of atomic actions and to define the
equational axiom system PA involving alternative composition, sequential composition, merge and
an auxiliary function named left merge. This axiom system PA has an initial algebra A . This
model allows finite projections Ap, in which all processes are cut off after n steps. These finite
projections are also models of PA. Then it was shown that the family of algebras A, has a
projective limit denoted with A o, which is a model of PA and more importantly can be
isomorphically embedded in the aforementioned model of De Bakker and Zucker. By proving that
all recursion equations can be solved in all finite projection algebras A, it follows immediately that
all equations are solvable in A o and the problem posed by De Bakker was solved.

Now one easily proves that an unguarded equation of the form X = P(X) has more then one
solution in A . In our view the algebra A, stands out as a typical example of a process algebra.
We have not yet found a natural way, however, to single out one canonical solution of (unguarded)
recursion equations in A .. It follows that the definition of a [i-construct in the style of CCS [M
80] poses difficulties in A oo. Indeed LX . P(X) must denote some *fixed' solution of the equation
X = P(X). Exactly because of these problems the first author strongly feels that the |[L-construct
should not be a part of process algebra. (Due to his history in lambda calculus the second author
has a genuine sympathy for the binding mechanism of the |i-construct, however.) The axiom

94

system BMACP that we will describe allows the use of fixed point definitions within process
expressions without any presuppositions concerning the (canonical) solvability of equations in a
model.

Tt should be added immediately that the semantic pretentions of BMACP are minimal. Thus
there is no implication that we can assign a meaning to fixed point constructions more often or in
any better way than is possible with other theories. Rather conversely the meaning of the fixed
point constructions is left completely open.

It should be noticed that the process theory of De Bakker and Zucker combines aspects of
earlier process theories such as CSP [H 78] and CCS [M 80] by simultaneously using general
sequential composition (taken from CSP) and a branching time semantics (taken from CCS). The
main difference between CCS and the axiom system ACP from [BK 84] is due to the fact that in
ACP general sequential composition is a primitive operator and not just prefix multiplication. In
this sense ACP is an indeed an algebraic form of the model proposed in [deBZ 82].

This paper is not the first one that combines process algebra and module algebra. In [vGVY
88] a much more natural combination is used. There the export mechanism of module algebra is
used to hide the auxiliary functions left merge and communication merge after they have been
helpful for the specification of the merge. This is needed if a transition to more abstract semantic
models is to be made by adding equations that may be inconsistent in the presence of these
auxiliary operators but are consistent in their absence.

2.2. Processes involving declarations
We can imagine that readers find our proposed BMACP rather grotesque and perhaps even
clumsy. One of our purposes with the development of ACP is to provide extensions of ACP which
are helpful for the design of specification languages. It turns out that each particular specification
language design project leads to a multitude of matters of marginal scientific interest about which
so-called 'design decisions' have to be made. The extension of ACP to BMACP addresses one of
these marginal and somewhat unattractive aspects: scope rules for local process declarations in
modular process specifications. The problem involved in these scope rules is easily illustrated with
the main equation about & in ACP:

8-X=58
If X contains a process declaration with an unbounded scope then the equation is simply false. In
BMACP we replace this equation by

§ - X = 3(X).
Here A is the collection of all atomic actions and d (process removal) replaces all atoms in X on an
active position by 8. Now 9 leaves the declarations of X unaffected, in fact it computes the
declarations of X. ACP can be retrieved from BMACP by assuming the absence of declarations in

95

process expressions (i.e. 3(X) = 8). (Notice that the axiom system PA is obtained in a similar way
from ACP. If all communications lead to 5 then ACP reduces to PAg. So this way of extending a
process algebra axiomatisation has precedents, be it that BMACP seems to have no models that can
be viewed as a process algebra in any useful sense.)

2.3. A module algebra of recursive process specifications
Similar to the module algebra of [BKH 86] we may view individual recursion equations as atomic
modules and import them to a class of modules (or rather module expressions) by an embedding
operator <>. Modules are then composed by means of an infix operator + which is then overloaded
to denote the combination of specification modules as well as alternative composition of processes.
Thus a list of defining equations will be represented as a combination of its elements (put between
angular brackets). An example is as follows:

P=a-Q@+<Q=Db- Q.
Now in many cases one is interested in process expressions that are written with use of the
operators of process algebra and names of recursively defined processes. We propose that such
process expressions may occur in sums besides recursion equations between angular brackets.
From a different viewpoint one may say that we extend the algebra of process expressions with
expressions of the form <P = X> with P a process name and X a process expression. A typical
example is:

a-Q+<Q=b .
If two such process expressions are combined with + their process parts are added in the way of
process algebra and their declaration parts are added in the way of module algebra. If two such
processes are merged then their process parts are merged and again the declaration parts are
combined in the way of process algebra. The process part of a pure declaration like <R = b - R> is
just 5.

It will turn out that BMA contains an erasing axiom X = X + (V 0 X) which will be replaced
by X = X + a(V 0O X). Notice that for purely declarative module expressions the identity 3(X) =
X holds.

3. BMACP(A,Y,N), THE SIGNATURE

Let A be a finite collection of atomic actions not including 6. Ag denotes the union of A and (5}.
N is an infinite alphabet of process names disjoint from A. The function Y denotes the
communication function which is a partial mapping of type A X A = A which is associative and

commutative. We will first describe the signature of the axiom system BMACP(A, Y,N). The role
of the parameters A and N is to provide collections of constants for the sorts AP (atomic processes)

96

and PN (process names). The most important sort (type of interest) is the sort PM of process

modules which at the same time plays the role of the processes of ACP and of the modules in

BMA. The sort SIG wil contain signatures of process modules. In our setting such a signature is

nothing more than the finite set of process names that are declared in the module.

begin signature Zgmacp(A, N)
sorts N

constants
a- AA
& - AP
@ - SIG
n - PN
Id ~ ER

functions (canonical embeddings)
i_aa_ap: AA = AP
i~ap_pm: AP - PM
i_pn_sig: PN - SIG
i—pn_pm: PN - PM

(process names)

(atomic actions)

(atomic processes)

(process modules)

(elementary renamings = pairs of process names)
(signatures = finite subsets of PN)

(for a € A, atomic action)
(deadlock)

(empty signature)

(for n € N, process name)
(identity)

(embedding of actions into atomic processes)
(embedding of atomic processes in PM)
(embedding of process names in SI1G)
(embedding of process names in PM)

functions (inherited from process algebra)

+ PMx PM - PM

< PMx PM = PM
ll: PM x PM = PM
[L: PMx PM ~ PM
|- PMx PM - PM
3 PM = PM

(alternative composition, serving as
module combination as well)
(sequential composition)

(merge)

(left merge)

(communication merge)
(encapsulation, for each subset H of A)

functions (inherited from module algebra)

+: 516 x SIG - SI6

n: SIG x SIG - SIG

Z: PM - SIG

T:.516 - PM

o: SIG x PM - PM

r: PN x PN - ER

2 ER - SIG

 ER x SIG - SIG

< ER x PM - PM

< ER X PN - PN

functions (new)

9. PM - PM

<=>»PNxPM-PM
end signature Sgmacp(A, N).

(combination of signatures)
(intersection of signatures)

(visible signature)

(embedding of signatures in PM)
(export)

(elementary renaming / permutation)
(signature implicit in renaming)
(application of renaming)
(application of renaming)
(application of renaming)

(process removal)
(process declaration module)

97

4. (META)VARIABLES, IMPLICIT EMBEDDING CONVENTION, AXIOM SCHEMES

4.1. Declaration of variables
The axioms of BMACP(A,Y,N) are introduced in the following section 5. There are some
preliminaries to the listing of the axioms that need detailed attention. First we will declare the
variables that will be used in the axioms:
begin variables for Sgmacp(A, N)
PO, QO0, RO ~ PN [metavariables over N)
P,Q,R - PN
X, Y, Z-PM
U, V, W - SIG
a0, b0, - AA [metavariables over A
a,b,c— AP
r - ER
end variables

We will discuss the meaning of the attribute metavariable below. First we need an explanation of
the (partial) implicit embedding convention.

4.2, Implicit embedding convention, implicit abbreviation convention, generalised
implicit embedding and abbreviation convention

The implicit embedding convention allows to omit the embedding functions i_aa_ap,
i_.ap—pm, i_pn_sig, i_pn_pm whenever this will not lead to ambiguities. This means that
equations and terms will be written in such a way that it is always clear how to augment an
expression with the embedding functions in order to obtain a well-typed term or equation. Thus a
precondition for an expression, equation or conditional equation to be well-formed is that it allows
a unique type assignment involving the introduction of embeddings. Here it is understood that a
variable must always be declared with a unique type in advance.

The implicit abbreviation convention allows to use prefixes of the names of the embeddings
if these contain enough information to obtain unambiguous typing. Thus besides i_aa_ap,
i_ap_pm, i_pn_sig and i_pn_pm, also i, i_aa, i_ap and i_pn are admitted. The
convention will the allow to complete the name of the embedding function such as to obtain a term
that is well-typed. Again there must be a unique way to do this. Moreover it is allowed to add
additional embeddings if that helps to obtain a well-formed expression or equation again under the
condition that this can be done in a unique way only.

A peculiar fact is that the implicit embedding convention may weaken the language because
some identities can only be written in a way that allows additional but unintended typings. By
prefixing the equation with [~1E] it is indicated that no implicit embeddings and abbreviations are
used or allowed. This introduces a complication for the syntax which is completely harmless for

98

the human user. We provide two examples: (i) On basis of the signature Zgmacp(A, N) one
obtains the PM expression
T(i—pn_sig(P) + (X)) + i_ap—pm(a) - 8 + i_pn_pm(Q) O
(i_pn_pm(P) || <P = i_aa_pm(b) * i_pn_pm(P) + i_aa_pn(c)>).
Using the implicit abbreviation convention this expression is written as:
TG(P) + Z(X)) + i(a) - & + i(Q) o (i(P) || <P = i(b) - i(P) + i(c)>).
Then using the implicit embedding convention this expression is written as:
TP+IXN+a-6+QoO(P|<P=b:P+c>)
(i) The equation Id - P = P is not well-formed because it has three different correct completions:
Id-P=P,Id"-i_pn_sig(P) = i_pn_sig(P) and
Id - i—pn_pm(P) = i_pn_pm(P).

Finally the generalised implicit embedding and abbreviation convention allows to use expressions
having different completions to a well-typed expression if on basis of the other axioms the different
completions can be proved equal. This convention should be used with care. A typical example is
the expression (r P) || Q. Obviously the subexpression - P must have type PM. But that can
be done using different completions: r - i_pn_pm(P) and i_pn_pm(r - P). Based on the
presence of an axiom that identifies both expressions it is legitimate to use I' - P as an expression
of type PM.

It should be noticed that the mentioned conventions serve only one purpose: to allow a
readable presentation of an algebraic specification in a many-sorted language. At the level of
abstract syntax one always means the fully disambiguated version of the text.

4.3. Axiom schemes with metavariables
The axioms involving variables over AA and PN should in fact be understood as axiom schemes
where every possible substitution from A resp. N is generated. Therefore negative conditions such
as P = Q are allowed and must be understood as restrictions on the number of substitutions that
are required. Thus with A = {al, a2,., ak}andN = {p1, p2,..} axioms should be read as
follows:
a | 6 = 5 stands for:
i_ap_pn(a) | i_ap—pn(8) = i_ap_pn(s)
a0 | b0 = (a0, b0) if G(a0, b0) is defined stands for
{i_ap_pn(an) | i_ap—pn(am) = i_ap_pn(y(an, am) |
1 <ng<k, 1 ¢<mgk, y(an, bm) is defined}
Z(r(P, Q)) = P + Q stands for
=(r(pn, pm)) = i_pn_sig(pn) + i_pn_sig(pm)

99

[-IE] r(PO, Q0) - RO = RO if RO = PO and RO = QO stands for
{[-IE)r(pn, pm) -pt =pt| 1 <n, 1 <m,n=t=m}

5 BMACP(A, Y,N), THE AXIOMS

5.1. The first two axioms determine the effect of the communication function on atoms.
[0] a0 | b0 = y(a0, b0) if Y(a0, bO) is defined
(1] a0 | b0 =5 if Y(a0, b0) is undefined

5.2. The axioms of ACP from [BK 84] minus the axiom that says that 5 is a left zero for
multiplication, which is modified into [8].

(2] X+Y=Y+X

(3] (X+Y)+Z=X+(Y+2)
(4] X+ X=X

(5] (X+Y)-Z=X-2+Y"-1Z
(6] (X-Y)-2=X-(Y-2)
(71 B+ X=X

(8] 8- X = a(X)

[9] alb=b|a

[10] (alb)lc=alblo
(1l §la=8

[12] XNY=XLY+YLLX*+X]|Y
[13] (@-X)LY=a-&X[|IY)
[14] alLy=a-Y

[15] (X+Y)LZ=XILZ+Y|LZ
[16] (a-X)|b=(a|b)-X

[17] al-X)=(a|b) X
[18] (a-X) | (b-Y=@|b) (XY
[19] X|I(Y+2D)=X|Y+X]|Z
[20] (X+Y)|Z=X%X12+Y|Z
[21] 3,(8) =8

(22] 3,(a0) = a0 ifa0 ¢ H
(23] 3,a0) =8 ifa0 €H
[24] A (X +Y) = 3,(X) + 3,(Y)
[25] A(X - Y) = 3,(X) - 3,(Y)

In view of equation 8 we need additional axioms for process removal in connection with ACP. (In

100

the present context the identity 3(X) = dA(X) holds. The introduction of process removal,
suggested to us by F.Vaandrager, is more systematic however because it allows extensions of the
calculus where encapsulation and process removal will diverge.)

(26] a(a)=5

(27] X +Y) = a(X) + aY)

[28] X+ Y) = a(X) + a(Y)

[29] AHX Y)Y = a(X) + aY)

[30] XL Y) = a(X) + a(Y)

(311 A(X | Y) =a(X) + a(Y)

[32] 2(3,(X)) = a(X)

[33] a(P) = T(P)

(34] AT(V)) = T(V)

[35] AP =X>) = <P =X>

[36] v oX)=Vaooax)

5.3. Axioms concerning the boolean algebra SIG.
[37] g+uU=U

(38] U+v=v+u

[39] U+V)+W=U+(V+W)
[40] Uu+u=uU

[41] gnUu=0

[42] unv=vnu

[43] unvnw=Uunvnw
[44] unu=uU

[45] PONQO=@ if PO=Q0
[46) W+Vnw=UnwW)+(vVvnw

5.4. General axioms on renamings and their effects.

[47] r(P, Q) =r(Q, P)

(48] r(P, P)=1d

[49] [—IE] r(P,Q)-(P)=Q

[S0] [-IE] r(PO, Q0) - (RO) = RO if PO = RO and Q0 # RO
51] Z(r(P, Q) =P +Q

[52] r-i_pn_sig(P) = i_pn_sig(r - P)

(53] r-o=9

(54] r-U+Vv)=@-U+ -V

101

Renaming commutes with embedding in PM:
[55] r-i_pn_pm(P) = i_pn_pm(r - P)

5.5. The axioms of module algebra from [BHK 86] with some simplifications allowed by the fact
that the present concepts of both a signature and an atomic module are simpler than the general
ones in [BHK 86] and with some additions due to the presence of process algebra operators.

[56] Z(X) = 2(a(X))

(57] (<P = X>) =P + Z(X)

(58] Z(P)=P

[59] (TN =U

[(60] X+ Y) = X)) + Z(Y)

61] U oX)=UnZIX

[(62] 2(r-X)=r - Z(X)

(63] r-<P=X>=<r-P=r-%
[64] r-T) =T -U)

[65] reX+yY)=@-X)+({r-Y)
[66] r-oxX)=-vor-X)
[67] re(r-X)=Xx

[68] AMMYNIX)=@Q-»r- X=X
(2] X+Y=Y+X

(3] (X+Y)+Z=X+(Y+2)

[69] T(U+ V) =TWU) + T(V)

[70] X + T(Z(X)) = X

(711 X+aUoX)=X

[72] S(X) o X =X

(73] uo(vax)=Wnv)oxX

[74] Uo (MW +X)=TWNV)+UaoX)

[751] (T NSYN=U-UagX+Y)=UoX)+WUBY)

5.6. Additional axioms for renamings.

(76] r-a=a

(771 reX-Y)=(r-X)-(r-y)
(78] r-XIy)=e¢-X0r-Y)
[79] r-XLY)=r-XLr" Y
[801] reXlY)=e-X)|-Y)
(81] re3,(X) = g(r - X)

102

5.7. Axioms that determine the effect of process algebra constructors on expressions involving
declarations:

[82] (3(2)) = a(2)

[83] (X+a(ZN Y=X-Y+dD
(84] (X+aZN Y =X|Y+a2)
[85] (X+aZNLY=X[LY+a2)
[86] (X+aZN | Y=X]|Y+a2D)
(87] X-(Y+2(Z2))=X"-Y + o)
(88] XY +a2))=X|Y+ a2)
[89] XLCY+2a@ZN=XLY+aD)
[90] XY +2@ZN=X]|Y+a2)

5.8. Axioms that allow to remove declarations and exports from declaration bodies:
91] P =X+aZ» =P =X +232)

[92] PNZX)=@~<P=UDX>=(U+P)p<P=X)

(93] PAU=P-<PP=UDX>=UD<P=X>

5.9. Axioms that allow to commute export operators and process algebra operators. There are 4
conditional axioms with the same precondition.

[94] SX)NZSY)=V-VoX-¥Y)=(vaoX)- (VoY)

[95] XN =V-aVoX]IY)=(oX)IvoY)

[96] SX)NZ(Y)=V-VoXLY)Y=(VoX)L(VoY)

[97] SX)NZ(Y)=v-VoX|Y)=(VoX)| (VoY)

(98] 3,(V o X)=VaoyX

5.10. The redundant definition removal axiom.
[99] PANWU+S(X)+3(YN=0-UpX+<P=Y)=UnX=+TP)+ aY))

5.11. The body replacement axiom.
[100] P +<P=X>=X+<P=X>

This completes the description of the axioms of BMACP. If a full specification is to be made in,
for instance, ASF [BHK 89] the parameter sets A and N with equality function as well as the
power set of A with uniform characteristic function (€) must be specified in advance. This will not

103

generate serious difficulties. It is currently not clear to us how BMACP can be translated into a
term rewiting system complete modulo some permutative reductions. That step is needed if it is to
be specified in ASF as an executable algebraic specification. Moreover our description of the
specification is rather unmodularised itself, and a coding of it in ASF should address that aspect as
well.

6. NORMAL FORMS

6.1. Normal form theorem
NORMAL FORM THEOREM. Let M be a closed module expression, i.e. a closed expression of sort
PM over Zgmacp(A, N). Then there exists a closed module expression M' which is provably
equal to M in BMACP(A, Y, N) with the following form:

M=Uno (MO +CPyEMp L <Pn =My + T(Pn+ 1t Pn+m))
where the M; are process expressions over Z pcp(A, N) and the names in T(Ppoq +..* Prem)
occur in U but not in the other summands. (Notice thatfor i, j < n Pyand P j may coincide.)

PROOF. We provide a sketch only. Let us call a name occurrence of P hidden if it occurs within the
scope of an operator U D (.) in such a way that P is not contained in U. Further two occurrences
P' and P of the name P have equal scope if every subterm M* of M in which P’ occursin a
hidden way also contains P"'. Starting from M the first step is to rename all hidden occurrences of
names in such a way that whenever a name has two occurrences these have equal scope. As an
example of this procedure consider:
Pod+<«Q=a-P+p>)+c-Q
In this expression both occurrences of the name Q fail to have equal scope. Then choose an entirely
new name, say R. Now P N Z(r(Q, R)) = & hence:
Po(d+<«@=a"P+b>)=r(Q,R)-(PO(d+<«Q=2a-P+b>))=
(r(@Q,R)-P)O(r(Q,R)-(d+<«Q=a-P+b>)=Po(d+<R=2a-P+b)
It follows that
Po(d+<«@=a-P+b)+c-Q=Pp(d+<R=a-P+b>)+c-Q
which satisfies the requirements.
Once a term has been obtained in which all occurrences of process names have equal scope it
follows that all export operators can be moved to an outermost position and then combined into a
single application of the export operator. Thereafter the declarations have to be moved towards the
roots of expressions. This is done as follows: on basis of the equations of BMACP it is allowed to
replace C[<P = K>] by C[8] + <P = K>. Of course this step presupposes the absence of export
operators in the context C[]. After finitely many of such steps a normal form is obtained.

104

6.2. A meaning for closed module expressions
Let K = K(Z4cp(A)) be a process algebra that has atomic actions A and a communication
mechanism corresponding to Y. Suppose that K satisfies the axioms of ACP. Let 1 be a name not
in N. The meaning of a closed module expression in normal form M will be given as a pair
SEM(K, M) = (S(M), F) of (M) and an element of P(S(M) U {11} - K). This is the
powerset of the class of valuations from Z(M) U {17} to K. In other words F is a relation with
attributes in £(M) U {17} and with for each attribute the domain equal to Dom(K). LetM =U 0
(Mg *+ <P =M +..+ <Py =M + T(Ppay +..* Pnem)). The first component of SEM(K, M)
is just the visible signature of M. For the second component we first consider M* = Mg + <P =
Mp> *+..+ <Py =My * T(Ppay *..+ Pp.om). The meaning of M* is the pair (2(M*), F*) with
F* the collection of all valuations 0 from Z(M*) U {17} to K such that

K, Ok <Py=Mp> +...+ <P, = M and (K, 0k Mg) = a(m).
F is then obtained from F * by projection to (M) U {11} =U N Z(M*) U {17}. We say thatM
has a well-defined semantics (in the terminology of 1.2: M € NMF *) if in F the attribute 17 is
functionally dependent on the other atributes in Z(M). In this case we say that SEM(K, M) is
functional (of course with respect to K).

(This meaning function has its drawbacks. Another possibility is: SEM*(K, M) =
U{SEM(K, M)| M" a normal form congruent with M}.)

6.3. Nice normal forms
It appears that the kind of ‘nicety’ one may define depends on the process algebra K. We consider
the simplest case: K = A, the finite projection algebra with depth n. At this point we need the
projection operators 1T, for natural numbers N > 0. Defining equations for the projection operators
are as follows (the projection axioms PR):
Mo(X) = 8, TR(X +Y) = m(X) + ma(Y)
M 1(8) = a, Mhe1(@ - X) = a - mp(X)
We call the normal form ™M = U 0 (Mg + <P = M> +..+ <Py =My + T(Ppay +.* Prup))
Ay.nice if for every valuation 0 in SEM(A, M) and for all finite terms Hy,..Hp.m, H over
BPAg(A) such that forall i: | <1 < n+m, Ay, 0k Py = Hy, and Ay, 0F 1T = H the following
formal proof exists:
ACP(A,Y) + PR+ {TM(X) = X} + {Py =Hj| 1 <1<n+*m}
F Mo = H.
Concerning the model A ., the following definition is plausible: a normal form A oo-nice if it is Ay
-nice for everykK > 1.

105

Notice that an A, -nice specification may contain many redundant equations for instance:
<P=3a-P>=<P=a-P>+ <P =a-a- P> That'niceness' of a normal form is a non-trivial
property related to guardedness of specifications can be understood from the following example.
letA={a,b,cl.Thendpoa-P=(@oa-P)+(@oa-P)=
(oa-P)+(@oa-Q)=0o(a P +a-Q). Now SEM(A,, d0(a P +a-Q))=
SEM(A,, @ 0 a - P) because @ - b *+ @ - C is in the one and not in the other.

6.4. Soundness theorem

SOUNDNESS THEOREM. Let M1 and M2 be two normal forms. Moreover assume that
BMACP(A, Y, N) F M1 = M2. Then M| is Ay-nice if and only M2 is Ay-nice and if both are
Ap-nice then SEM(Ap, M1) = SEM(AR, M2).

PROOF. Omitted.

REMARKS: (i) One really needs a mechanically verified proof of soundness because when put in
use in practice it should be reproved for many extended calculi. Notice that from a methodological
point of view one has to consider the possibility that the soundness theorem is wrong or a
soundness theorem of useful form cannot be found. If so, what must be done? There are several
possibilities.

(i) Correct minor mistakes in the axiom system of BMACP or an extension.

(ii) Restrict the notion of a nice normal form.

(iii) Work relative to another model of process algebra.

(iv) Uncouple module algebra combination and process algebra's alternative composition.
It is not clear to us how long these remedies will work. Indeed more general forms of BMACP
result if one or more of the following features are taken into account as well: declarations of atomic
actions, declarations of local data types, state operators, process creation, interrupts, signals,
T-abstraction, €, generalised sums, generalised merges, specific scope rules for input data and
temporal logic specifications. The real test for our proposal is that it survives these extensions.

(ii) This version of soundness is based on the interpretation of normal forms in the projective limit
model. It would be nicer to have an interpretation based on an arbitrary process algebra. We
expect, however, that a variety of different interpretations of BMACP can be found.

(iii) A typical example of the problems with the soundness theorem for BMACP is the following:
do(a-P)=Qo(a-P)+@do(a-P)=@0(a-P+ a-Q) The first and third of
expressions have different semantics in the sense of 6.2. The difficulty can be remedied in at least

106

three ways:

(1) restrict attention to cases where all hidden process names are defined by means of
guarded recursion equations and use the fact that these have unique solutions to ensure the validity
of expressions of the form SEM(X) = SEM(Y),

(2) use a mechanism of origin tracing like the origin consistency rule of ASF [BHK 89] and
COLD [FJKR 87] in order to force renamed versions of the same hidden name to have the same
meaning after normalisation,

(3) remove axioms that may introduce duplication of process expressions containing export
operators (this motivates the modified axiom system BMACP* below).

7. A WEAKER SYSTEM BMACP*

We describe an axiom system BMACP* that is obtained from BMACP by applying three
modifications. The relevant properties of this system are mentioned below.

(i) Restrict all axioms that introduce the multiplication of a PM-variable by replacing that variable
by a variable over process names.

[4*] pP+P=P

(5%] (X+Y)-P=X-P+Y:P

[12%] Plla=PLQ+QLP+P|Q

[15%] X+Y)LP=X[LP+Y]P

[19%] PlY+Z2)=P|Y+P|2Z

[20%] (X+Y)|P=X|P+Y|P

(ii) Remove axiom [100] and add the inverse body replacement axiom:

[100¥] PNZEX)=0-X=ZX)D (P + <P =X>)

(iti) Add the weak body replacement axioms:

[101] P+P=a>=a+<P=a

[102] P+<P=Q+R>=Q+R+<P=Q+R>

[103] P+<P=Q-R>=Q'R+<P=Q" R

[104] P+<P=Q||R>=Q||R+*<P=Q|R>

[105] P+<P=QLR=Q|LR+<P=Q|LR>

[106] P+<P=Q|R=Q|R+<P=Q|R>

[107) P+ <P =3,/(Q)» =3,(Q) + <P = 3,(Q»

The objective of BMACP* is to find an axiom system which is weaker than BMACP and still
allows a normal form theorem of the required kind and allows to write process expressions
(occurring in a normal form) into head normal form in all cases in which this is possible in

107

BMACP. Moreover BMACP* fails to feature axioms that duplicate (or even triplicate) process
variables, in particular the axioms 4, 5, 12, 15, 19 and 20. Due to the absence of these axioms the
semantic problems mentioned in 6 (iii) will not occur in connection with BMACP*.

8. EXAMPLES AND REMARKS

8.1. Aderivation: <P =X> L (Q+ Q=) =(5 +X>) J(Q+<Q =) =
BlLQ+<Q=a)+<P=X>=8-(Q+<Q=a)+<P=X>=

dIAQ+ Q=)+ <P=X>=0p(a+<Q=a>)+<P=X>=
da(@) + A =) + <P =X>=<Q =2 + <P =X

8.2. Consider the following process X = @ - bY. It can be shown that if one intends to specify
this process using guarded recursive equations over the signature of BPA at least two equations are
needed, for instance <P = a - Q> + < Q = b - Q>. Using the |4 construct this can be done with
only one equation <P = a - (LQ. b *+ Q)>. So the style of recursive specification by means of
guarded recursion equations leads to more equations than seems necessary. In the formalism of
BMACP the following specification can be given. <P = a * (Q + <Q = b - Q>)>. Itis useful to
introduce the notation P:= X as an abbreviation for P + <P = X>. We call this the definition
construct. Examples: <P = a-(Q: =b - Q)>, a-(Q: = b - Q). The difference between the
definition construct and the usual fixed point operator fiXxp(F(P)) or {LP. (F(P)) is the large
scope in which the name P is known. In the definition construct this scope is large in the sense that
an explicit hiding (non-export) of the name is needed to restrict the scope. The fiX (|1} construct
allows O(-conversion and does not show the name of the bound variable at all. A simulation of the
W-construct in BMACP can be given as follows: a - (UWP. b-P)=2a-@ 0 (P:=b-P).

8.3 The following derivable identities are useful:

@ 8=T0

Proof. 8 = 6 + T(2(8)) = 6 + T(@) = T(Q).

@) ifp N Z(X) =@ then X = Z(X) O (P + <P =X>)

Proof. X =7, 2(X) 0 X =74and (1) above) Z(X) B (X + T(P)) =7 1(witn u = sy 2(X) O (X
+ T(P) + 3(X)) =gg Z(X) B (X + <P =X>) =150 ZX) D (P + <P =X>)

8.4. An operational semantics for BMACP is given with the following 2 rules on top of the
axioms: a+ X -3+, a-X+Y-ax+)

In order to apply these rules declarations must, when possible, be moved inside the part of a
process expression that will not be erased. ’

108

8.5. Of course the system BMACP as such is of no practical value. The semantic problem involved
in scope control of process names will not occur in isolation. A similar method may however be
applied in more complicated circumstances. Then it may be a useful simplification to remove the
axioms of process algebra that describe dynamic behavior and the axioms of module algebra that
are not essential for normalisation altogether. For instance removing axioms 4, 5, 7 to 23 but
introducing associativity and commutativity of merge yields a system BMACP" for which a more
appealing form of soundness can be proven.

8.6. The signature of BMACP can be used as an abstract syntax for a specification language. The
axioms of BMACP allow ‘correct’ transformations of this abstract syntax. The need for such
transformations (but admittedly not for all transformations of BMACP) can be motivated as
follows. An appropriate way to design a specification language for ACP is to simultaneously
design an abstract syntax, a vertical syntax with key words etc., a graphical/object oriented syntax
and a horizontal (mathematical) syntax. '

For the abstract syntax one may use an algebraic format with prefix notation. For the
horizontal syntax one will replace many prefix operators by infix and mixfix operators, use
mathematical symbols and Greek characters, introduce priorities, implicit type conversion and so
on. The vertical syntax will allow the explicit use of type and structure information in headers and
footers of sections. The graphical syntax will remove the redundant sequential order information
that is unavoidable with both horizontal and vertical representations and allow a very flexible way
of presenting type and structure information in both a static and a dynamic way. (Notice that our
current presentation of BMACP yields a mixture of an abstract and a horizontal syntax. It can be
transformed to an abstract syntax by writing all axioms in prefix notation and removing the implicit
embedding convention. It can be turned into a horizontal syntax by adding precise information
about priorities, bracketing and implicit embeddings.)

Then it must be defined what it means for two representations, say a graphical representation
G and a vertical representation V to ‘represent the same specification’ i.e. whether or not Gand H
are ‘equivalent’. We propose that this question is to be settled via the abstract syntax. Both
representations are first transformed to an abstract representation in a uniform way to be defined in
advance. This leads to abs(G) and abs(V). Then G and H are considered equivalent if BMACP
proves abs(G) and abs(V) equal.

8.7. Acknowledgements. Frits Vaandrager and Rob van Glabbeek have contributed
substantially in the final design of the axiom system.

109

9. REFERENCES

[deBZ 82]

[(BHK 86]

[BHK 89}

[BK 82)

[BK 84]

(B 88]

[FIKR 87}

{vGV 88}

[H 78)
MYV 88]

M 80]

[SP 89]

J.W. DE BAKKER & J.I. ZUCKER, Processes and the denotational semantics of
concurrency, Information & Control 54 (1/2), (1982) 153-158

J.A. BERGSTRA, J. HEERING & P. KLINT, Module algebra, Recport CS-R8617,
Centre for Mathematics and Computer Science, Amsterdam (1986)

J.A. BERGSTRA, J. HEERING & P. KLINT, (eds.) Algebraic Specification, Addison Wesley, ACM
Press Frontier Series (1989)

J.A. BERGSTRA & J.W. KLOP, Fixed point semantics in process algebra, Mathematical
Centre Research Report, IW 206 (1982)

J.A. BERGSTRA & J.W. KLOP, Process algebra for synchronmous communication,
Information & Control 60 (1/3), (1984) 109-137

E. BRINKSMA, On the design of extended LOTOS, A specification language for distributed open
systems, Ph.D.Thesis, University of Twente (1988)

L.G.M. FEYS, H.B.M. JONKERS, C.J.P. KOYMANS & G.R. RENARDEL DE LAVALETTE,
Formal definition of the design language COLD-K, Technical Report, ESPRIT Project 432 METEOR,
Philips Research Eindhoven (1987)

RJ. VAN GLABBEEK & F.W. VAANDRAGER, Modular specifications in process
algebra—with curious queues, Centre for Mathematics and Computer Science, Report
CS-R8821 (1988).

C.AR. HOARE, Communicating sequential processes, Comm.ACM 21 (1978) 666-677

S. MAUW & GJ. VELTINK, A process specification formalism, University of Amsterdam,
Programming Research Group, Report P8814 (1988)

R. MILNER, A calculus of communicating systems, Springer LNCS, 92 (1980)

SPECS-Consortium / PTT-RNL, Definition of MR, Version 1, SPECS document D.WP5.2 (1989)

