
A note from the typesetter

Care has been taken to preserve the original intent as much as possible but
this document is not intended to be historical- rather only a more convenient
setting to read Scott and de Bakker’s unpublished work at IBM Vienna 1969.
The original scan can be found at

https://ir.cwi.nl/pub/20373

de Bakker, J.W, & Scott, D. (1989). A theory of programs : an outline of
joint work : IBM seminar Vienna, August 1969. In J.W Klop, J.J.C Meijer, &
J.J.M.M Rutten (Eds.), J.W. de Bakker, 25 jaar semantiek (pp. 1–30). CWI.

1

A Theory of Programs
An Outline of Joint Work by

J.W. De Bakker and Dana Scott

IBM Seminar, Vienna, August 1969

1 Machines

A machine is a structure

M = (I,O, F0, p0, F1, p1, . . .)

of partial functions for which there exist (uniquely determined) sets X , M ,
Y , such that

I : X → M (the input function)
O : M → Y (the output function)
Fi : M → M (the operations)
pj : M → {0, 1} (the tests).

As a diagram, we can write

2 Computations

A computation (from x ∈ X to y ∈ Y) is a finite sequence

ξ0, Fi0 , ξ1, Fi1 , ξ2, . . . , ξk−1, Fik−1
, ξk

whete each ξℓ ∈ M and ξℓ+1 = Fil(ξℓ) for ℓ < k (and where I(x) = ξ0 and
O(ξk) = y).

2

3 Programs

Informally, a program is a “method” of selecting at most one computation start-
ing from each x ∈ X . Thus, a program P associates to the machine M a partial
function

P(M) : X → Y.

Programs must be defined “independently” of particular machines, and in-
deed we can identify the program with this mapping from machines to func-
tions. A program as a mapping must satisfy some general conditions to be
mentioned later. First we give some examples.

4 Flow Diagrams

It is intuitively clear that, given an arbitrary machine M , this diagram allows
us to generate for each x ∈ X at most one computation, offered by following
the “flow” of the diagram. We say that the diagram (a “syntactical” object)
defines a program (a mathematical object).

5 Procedures

P :

{
P0 ⇒ (p0 → F0;P1, F2)

P1 ⇒ (p1 → F1;P0, E)

Here we have a system of procedure declarations (where by convention
P0 is the “principal” one). (p → P, P ′) is the conditional expression; P ;P ′ is
composition (P followed by P ′); and E is the symbol for the identity function.
The above system defines the same program as the flow diagram [in section 4].

6 While Statements

P ′ : (p0 ∗ (p1 ∗ F1);F0); (p2 ∗ F2)

3

Read “(p ∗ P)” as “while p do P”. The same program can be defined by flow
diagrams or by procedures

P ′ :

P0 ⇒ (p0 → P1;P0, P2)

P1 ⇒ (p1 → F1;P1, F0)

P2 ⇒ (p2 → F2;P2, E)

7 Equivalences

Two programs P and P ′ are equivalent on a machine M iff P(M) = P ′(M).
They are (strongly) equivalent iff they are equivalent on all machines; that is iff
P = P ′. Two flow diagrams (systems of procedures, while systements) are
equivalent iff they define equivalent programs.

Theorem 1. Every program defined by a while statement is (effectively) equivalent to
one defined by a flow diagram, but there is a flow diagram that defines a program not
defined by any while statement.

Theorem 2. (the same for flow diagrams and procedures)

Theorem 3. It is (effectively) decidable whether two flow diagrams are equivalent

Theorem 4. It is (effectively) decidable whether a system of procedures defines the
null program Ω.

Problems: Is it (effectively) decidable whether two procedures are equivalent?
Is it decidable whether a procedure is equivalent to some flow diagram? A
flow diagram to a while statement?

8 General Properties

We write M ⊆ M ′ iff M and M ′ have the same sets X , M , Y and have opera-
tions and tests Fi ⊆ F ′

i and pi ⊆ p′i for all i, j (that is, F ′
i is consistent with, but

more defined than Fi).

4

(I). M ⊆ M ′ implies P(M) ⊆ P(M ′)
(Property (I) can be generalized by defining morphisms φ : M → M ′

between machines. See below.)

(II). If for Mn ⊆ Mn+1 for n = 0, 1, 2, . . . then

P

(∞⋃
n=0

Mn

)
=

∞⋃
n=0

P(Mn)

(Property (II) can be generalized to directed unions (and, no doubt, to di-
rect limits)).

Write M (n,m) for the result of modifying M by replacing Fi and pj by the
totally undefined functions for i ≥ n and j ≥ m.

(III). For every program P there exists n, m such that for all machines M

P(M) = P(M (n,m))

The above are defined for procedures, and (suitably generalized) ought to
be taken as “axiomatic” for the notion of program.

9 Categories

Let F be the caregory whose objects are partial functions F : X → Y and whose
morphisms φ : F → F ′ are pairs φ = (φ↓, φ↑) where

φ↓ : X → X ′

φ↑ : Y ′ → Y

F ⊆ φ↓;F ′;φ↑

(Here, “;” denotes composition of relations so that (F ;G)(x) = G(F (x)) in
the case of functions).

5

Let M be the category whoste objects are machines and whose morphisms
φ : M → M ′ are triples φ = (φ↓, φ□, φ↑) where φ↓ : X → X ′ and φ□ : M →
M ′ and φ↑ : Y ′ → Y and where for all i, j:

I ⊆ φ↓; I ′; (φ□)−1

O ⊆ φ□;O′; (φ↑)−1

Fi ⊆ φ□;F ′
i ; (φ

□)−1

pj ⊆ φ□; p′j

(Here, “−1” denotes converse of a relation)

Let P be a program and let φ : M → M ′. Define P(φ) = (φ↓, φ↑) where
φ = (φ↑, φ□, φ↓).

Theorem 5. If φ : M → M ′ in the category M, then P(φ) : P(M) → P(M ′)
in the category F.

This is at least clear for programs defined by procedures; it should be taken
as “axiomatic” in general. Thus it follows that P : M → F is a functor between
categories. This is the proper generalization of property (I) above as a function
P ought to be rather “continuous” in some suitable sense.

If M : X
I−→ M

O−→ Y , define [M] : M
E−→ M

E−→ M to be the machine
with the same operations and tests but with I, O, X , Y replaced with E, E, M ,
M where E is the identity on M . Then we have the result

(I, E,O) : M → [M] in M.

It was the “obvious correctness” of this relationship that motivated the
above definitions. The categories M and F require much more study, however,
before their usefulness can be determined.

10 Control Devices

By control device we shall understand a “Boolean” machine:

6

11 “Abstract” programs

Let N = {0, 1, 2, . . .} and let {0, 1}∞ be the set of all partially defined infinite
sequences of 0’s and 1’s. If M is a machine and ξ ∈ M , define

p(ξ) = (p0(ξ), p1(ξ), . . . , pn(ξ), . . .) ∈ {0, 1}∞

An “abstract” program PΓ
f,g is defined by giving a control device Γ (gener-

ally fixed so that a definite class of programs is considered) and two functions

f, g : {0, 1}∞ × {0, 1}∞ → N

such that the selected computations of PΓ
f,g on a machine M (in the nota-

tion of page 1) are those for which there exist (uniquely determined) computa-
tions

γ0, Gj0 , γ1, Gj1 , . . . , γk−1, Gjk−1
, γk

on the machine Γ where for ℓ ≤ k

iℓ = f(p(ξℓ), q(γell))

jℓ = g(p(ξℓ), q(γell))

γ0 = S(0),H(γℓ) = 0, for ℓ < k

H(γk) = 1

Thus S and H control the start and halt and f and g tell where to look for the
next operation to execute. We need Γ as a “memory” to keep track of where
we are in the intermediate stages of “reading” the text of the program def-
inition. Assuming that f and g are “finitely given” (i.e. depend on a fixed
bounded number of coordinates of p(ξ) and q(ξ)), we can then prove that PΓ

f,g

is a functor with basic properties (I), (II), (III), (we need some slight consistency
conditions on f and g).

Conjecture: There are a few more “nice” properties (like (I), (II), (III)) such that
any functor P : M → F having these properties is of the form PΓ

f,g .

Note: in this abstract setting is is convenient to make the harmless conven-
tion that on all machines M we have F0 = E, the identity on M .

7

12 Examples

The “abstract” version of the flow diagram uses the control device where

C = {−1, 0, 1, 2, . . .}
S(0) = 0

Gj(γ) = j − 1

qj(γ) =

{
1 γ = j

0 otherwise

H(γ) =

{
1 γ = −1

0 otherwise

The “abstract” version of the procedure uses the more general control de-
vice where

C = {0, 1, 2, . . .}∗ = {σ0, σ1, σ2, . . .}
S(0) = 0

Gj(nγ) = σjγ

qj(nγ) =

{
1 n = j

0 otherwise

H(γ) =

{
1 γ = Λ

0 otherwise

where Λ is the null sequence and the σn represent some (recursive!) enu-
meration of the finite sequences of integers. (In other words, the control of a
procedure computation is in general a push-down store).

13 Deductions

For the time being we restrict attention to procedures and ask how it can be
established where two of them are equivalent. In one sense the question is an-
swered because we have given a completely precise definition of the program
defined by a procedure with the aid of a certin control device. That answer is
not too helpful, because no simple “methods” of proof for proving equivalence
are provided by the bare definition. Two different (though related) deductive
systems are presented below which might be called the “algebraic” and the
“second-order relational” theories. The algebraic method is more efficient for

8

proving equivalences; while the relational method is better for problems of
correctness. It is not known whether an algebraic theory can be complete- be-
cause if it is, and if it’s theorems are recursively enumerable, then we would
have a recursive decision method for equivalence. The relational theory is
complete- because we use second-order logic, but the theorems are not enu-
merable.

14 The Algebraic Theory

14.1 Language

Lower-case letters are Boolean variables (mostly we use p, q, r). Upper-case
letters are predicate variables, except we use E and Γ as constants. Compound
terms are constructed from upper-case letters by these three operations

(p → τ, σ) τ ;σ µX[τ]

where in place of p we can have any Boolean and in place of X any procedure
variable. The first is the conditional expression, the second, a composition;
and the third a variable binding operator µ whose meaning is explained be-
low. Atomic formulas are either equations τ = σ or inclusions τ ⊆ σ. Lists
Φ0,Φ1, . . . ,Φn−1 of atomic forumulas are used as short-hand for the conjuga-
tion [Φ0,Φ1, . . . ,Φn−1]. Theorems are of the form of implications Φ ⊢ Ψ be-
tween lists. We use for simplicity in these notes the usual notation τ(X,Y),
Φ(X,Z), Ψ(X, τ(X)) to indicate (roughly!) free variables and results of substi-
tutions.

14.2 Validity

Consider an implication Φ ⊢ Ψ. Suppose the free variables are p0, p1, p2, . . .
and F0, F1, F2, The implication is valid just in case for all sets M and all
systems Fi : M → M and pj : M → {0, 1} of partial functions and predicates
on M , if Φ is true for these then so is Ψ. Now a list is true iff all it’s terms are.
An atomic τ = σ is true iff τ and σ denote the same function on M into M .
An atomic τ ⊆ σ is true iff τ denotes a function included in that denoted by
σ. Thus, given the value of the free variables we need still only define what is
the function denoted by a term. E denotes the identity function. Ω denotes the
empty (“undefined”) function. Conditionals and compositions denote func-
tions obtained from the denotations of the parts in the usual way. The special
term µX[τ(X)] denotes the least function G such that τ(G) ⊆ G (“least” in the
sense of the partial ordering ⊆). We shall see below why it always exists, and
why it is of interest in connection with procedures.

Theorem 6. The set of valid implications is not recursively enumerable (sorry!)

Problem: Is the set of ⊢ Ψ recursively enumerable (and hence recursive)?

9

14.3 Axioms and Rules

The axioms and rules for conjugations and rules are well known. As for ;, ⊆,
E, Ω we give the axioms of a partially ordered semigroup with unit and zero.

⊢ (p → X,Y);Z = (p → X;Z, Y ;Z)

⊢ (p → X,X) ⊆ X

X ⊆ X ′, Y ⊆ Y ′ ⊢ (p → X,Y) ⊆ (p → X ′, Y ′)

(p → X,Ω) ⊆ Z, (p → Ω, Y) ⊆ Z ⊢ (p → X,Y) ⊆ Z

(Maybe some others are required?? This point about conditionals is not too
clean and needs more study.) For µ we have

Y = µX[τ(X)] ⊢ τ(Y) ⊆ Y (µ− Axiom)

Φ ⊢ Ψ(µX[τ(X)])

Φ ⊢ Ψ(Ω) Φ,Ψ(X) ⊢ Ψ(τ(X))
(µ− Rule)

(in the rule X is not free in Φ).

14.4 Application

Consider the following system of procedures

P ′′ =

P0 ⇒ τ0(P0, P1)

P1 ⇒ τ1(P1, P2)

P2 ⇒ τ2(P2, P0)

where the τi are terms with the Pi and possibly other free variables. The Pi

variables, of course, play a special role, and the above “rewrite” rules mean that
the Pi should be computed as the “least” functions that result from replacing
procedure “call” by the corresponding “body”. Hence,

P2 = µZ[τ2(Z,P0)],

and then
P1 = µY [τ1(Y, µZ[τ2(Z,P0)])],

and finally
P0 = µX[τ0(X,µY [τ1(Y, µZ[τ2(Z,P0)])])].

Thus the whole program can be defined by the algebraic expression on the right
hand side. Proving equations between expressions, then, is proving equiva-
lence of programs.

10

14.5 Justification

With a combination of results proved within the system and semantics outside
the theory, we will see that the axioms are valid and that the rules preserve
validity. Later we give some examples of particular equivalence proofs.

1. X ⊆ X ′ ⊢ τ(X) ⊂ τ(X ′)
Proof: The theorem must first be generalized to any number of variables
and then proved by induction on the complexity of the term τ . The
cases of conditionals and composition are already assumed as (obviously
valid) axioms. For the µ-operator we do a representative special case.
Thus assume σ(X,Y) monotone in both variables, and consider τ(X) to
be µX[σ(X,Y)]. By the first µ-axiom

⊢ σ(X ′, τ(X ′)) ⊆ τ(X ′)

hence by assumption of σ

X ⊆ X ′ ⊢ σ(X ′, τ(X ′)) ⊆ τ(X ′) ⊆ τ(X ′).

We can again apply the monotonicity of the term σ to derive:

X ⊆ X ′, Y ⊆ τ(X ′) ⊢ σ(X,Y) ⊆ τ(X ′).

Note that X ⊆ X ′ ⊢ Ω ⊆ τ(X ′) is trivial; thus by the rule for the µ-
operator we have

X ⊆ X ′ ⊢ µY [σ(X,Y)] ⊆ τ(X ′),

which is the desired result for τ .

Discussion. We proved monotonicity by the axioms and rules for µ, but
this proof also helps (in part) to establish the validity of these principles.
In our calculus the expressions repsresent monotonic operations on par-
tial functions. It is well-known that such operations have minimal fixed points.
Speaking informally:

µX[τ(X)] =
⋂

{X : τ(X) ⊆ X}

=
∞⋃

n=0

τn(Ω)

where τn(Ω) =

n times︷ ︸︸ ︷
τ(τ(. . . τ(Ω) . . .)). The second equation, which justifies

the special case of the rule used in the proof of (1), is correct because the
operation is also continuous in this sense (speaking outside the theory)

τ

(∞⋃
n=0

Xn

)
=

∞⋃
n=0

τ(Xn)

11

whenever X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · . This is clear for conditionals
and compositions, but again must be established for µ’s. Once conitnuity
is understood, the validity of the full rule for µ (which we may call the
induction rule) follows easily.

2. Fixed Point Properties

Y = µX[τ(X)] ⊢ τ(Y) = Y and
τ(Y) ⊆ Y ⊢ µX[τ(X)] ⊆ Y

The proof uses monotonicity and induction as in the proof of (1).

3. Systems of Fixed Points

X = µX[τ(X,µY [σ(X,Y)])],

Y = µY [σ(X,Y)],

τ(X ′, Y ′) ⊆ X ′, σ(X ′, Y ′) ⊆ Y ′ ⊢
τ(X,Y) ⊆ X ⊆ X ′, σ(X,Y) ⊆ Y ⊆ Y ′

Proof: “Assume” the hypothesis. Then τ(X,µY [σ(X,Y)]) ⊆ X and so
τ(X,Y) ⊆ X . Also σ(X,Y) ⊆ Y . Let Y ′′ = µY [σ(X ′, Y)]. Then Y ′′ ⊆ Y ′

and so τ(X ′, Y ′′) ⊆ X ′. But then X ⊆ X ′ and so σ(X,Y ′) ⊆ Y ′. Finally
Y ⊆ Y ′.

Discussion. The above theorems on minimal fixed points can be extended
to systems with any number of procedure declarations.

14.6 Examples:

We define while as (p ∗ F) = µX[(p → F ;X,E)]

(a) (p ∗ F);G = µY [(p → F ;Y,G)]. Proof: By definition (p ∗ F) = (p →
F ; (p ∗ F), E). Hence (p ∗ F);G = (p → F ; (p ∗ F);G,G). Therefore,
µY [(p → F ;Y,G)] ⊆ (p ∗ F);G. To prove the opposite inclusion, first let
Y = µY [(p → F ;Y,G)]. By induction it is enough to show Ω;G ⊆ Y
(obvious!) and X;G ⊆ Y ⊢ (p → F ;X,E);G ⊆ Y . So assume X;G ⊆ Y .
But (p → F ;Y,G) ⊆ Y . Thus (p → F ;X,E);G = (p → F ;X;G,G) ⊆ Y .

(b) p ∗ (p ∗ F) = p ∗ (F ; p ∗ F) Proof: Let L be the left-hand side and R be the

12

right. Then

L = (p → (p ∗ F);L,E)

= (p → (p → F ; (p ∗ F), E);L,E)

= (p → F ; (p ∗ F);L,E)

thus R ⊆ L. Next

R = (p → F ; (p ∗ F);R,E)

= (p → (p → F ; (p ∗ F), E);R,E)

= (p → (p ∗ F);R,E)

thus L ⊆ R and L = R follows.

(c) (p ∗ F); (p → G,H) = (p ∗ F);H

(d) (p ∗ F); (p ∗G) = p ∗ F

(e) p ∗ (p ∗ F) = p ∗ F

all of these follow from (i) and the method shown for (ii).

15 The Relational Theory

Functions are, after all, relations. Thus it must be possible to axiomatize the
functions defined by program expressions, hopefully without the minute detail
of the definitions containing control devices which are closer to the ideas of the
implementation. We do this for procedures.

15.1 Language

We use a standard second-order predicate calculus with equality and notaional
conventions corresponding to our language of procedure declarations. In par-
ticular we employ the following style of variables and non-logical constants:

• Individual variables ξ, η, ζ, ξ′, η′, . . .

• 1-place predicate constants p, p̄, q, q̄, π, π̄, . . .

• Binary relation variables R, S, T , X , Y , Z

• Binary relation constants E, Ω, P0, P1, P2, . . .

13

• Relational operations (R;S), (p → R,S)

• Atomic Formulas: equations plus

R ⊆ S p(ξ) ξRη

(where in place of R and S we can have relational terms and in place of p
the other p̄, q, q̄, . . . and in place of ξ, η any individual variables.)

15.2 Validity and Deduction

This is the usual notion from second-order logic; we do, however, have a few
non-logical axioms to suit the application to procedures. Remember that the
valid formulas are not recursively enumerable in second-order logic.

15.3 General Axioms

We assume the following definitions and axioms

(1) ¬∃ξ [p(ξ) ∧ p̄(ξ)] (sim for q, π, . . .)

(2) ∀ξ, η [ξEη ↔ ξ = η]

(3) ¬∃ξ, η [ξΩη]

(4) ∀ξ, η [ξ(R;S)η ↔ ∃ζ [ξRζ ∧ ζSη]]

(5) ∀ξ, η [ξ(p → R,S)η ↔ [[p(ξ) ∧ ξRη] ∨ [p̄(ξ) ∧ ξSη]]]

(6) R ⊆ S ↔ ∀ξ, η [ξRη → ξSη]

(where R, S should be universally quantified).

The meaning of the axioms is clear except maybe for (1). Here the pair p, p̄ is
to represent a partial predicate (by convention all predicates in logic are total).
The p is the true part and the p̄ is the false part. They must be disjoint – but that
is the only requirement. We do not need any similar tricks for partial functions
since they are just relations in a straight-forward way.

15.4 Special Axioms

Consider a program P defined by a system of declarations

P =

P0 ⇒ τ0(P0, . . . , Pn)

...
Pn ⇒ τn(P0, . . . , Pn)

14

Corresponding to this system we have

(iP) [τ0(P0, . . . , Pn) ⊆ P0 ∧ τ1(P0, . . . , Pn) ⊆ P1 ∧ . . . ∧ τn(P0, . . . , Pn) ⊆ Pn]

(iiP) ∀R

[
n∧∧

i=0

[τi(R0, . . . , Rn) ⊆ Ri] →
n∧∧

i=0

[Pi ⊆ Ri]]

]

15.5 Justification

Given a system of procedures, we have mereley assumed – in second-order lan-
gauge – that Pi are the least relations where τi(P0, . . . , Pn) ⊆ Pi, i = 0, 1, . . . , n.
This was the same idea as the algebraic theory – except we do not have the
µ-operator. We could introduce it, and then all the algebraic principles could
be proved from the second-order axioms.

Remark: Given that the free variables of the procedures are F0, F1, F2, . . .
(our usual convention) we might want to assume that they are partial functions
(our usual convention). We should have them, as general axioms,

∀ξ, η, η′ [ξFiη ∧ ξFiη
′ → η = η′]

These axioms do not seem to make too much difference, however.

15.6 Applications

Suppose P and P ′ are programs defined by procedures (where, say, in the
second system we use constants P ′

0, P
′
1, . . .). The equivalence problem is to de-

duce, therefore, the statement P0 = P ′
0 from all the axioms combined. The

use of second-order deductions does not seem, however, any more convenient
than the algebraic method for such equivalence. The point of the second-order
system lies, rather, in the fact that more and different kind of problems can be
expressed within it.

15.7 While Statements

For the sake of illustration we restruct our attention to while statements. These
are special procedures, and we can introduce them by an additional operation
on our relations into the language: (p ∗ R). Our axioms (iP) and (iiP) then
become

(i∗) (p → F ; (p ∗ F), E) ⊆ (p ∗ F)

(ii∗) ∀R; [(p → F ;R,E) ⊆ R → (p ∗ F) ⊆ R]

(where F is to be taken as variable)

15

15.8 Example

Axiom (ii∗) seems to be a special case of our algebraic induction axiom – but
it is much stronger in view of the quantifier ∀R. The reason is that we may
specialize R to any relation, not just those that can be defined by terms using
the operations we have given a notation for. As an illustration we prove

(p → F ;R,G) ⊆ R → (p ∗ F);G ⊆ R

(compare example (i) in section 14).
Proof: With individual variables the conclusion requires

∀ξ, η, γ [ξ(p ∗ F)η ∧ ηGγ → ξRγ]

equivalently
∀ξ, η [ξ(p ∗ F)η → ∀γ [ηGγ → ξRγ]].

This sugggests we introduce the relation S such that (and we use second-order
logic to know the S exists)

∀ξ, η [ξSη → ∀γ [ηGγ → ξRγ]].

Now the problem is to show

(p ∗ F) ⊆ S.

In view of the axiom (ii∗) it is sufficient to prove:

(p → F ;S,E) ⊆ S.

This requires two cases:

(a) p(ξ) ∧ ξ(F ;S)η → ξSη

(b) p̄(ξ) → ξSξ

For (a) we assume p(ξ) and ξ(F ;S)η and γSη. We want to show that ξSη.
So assume in addition ηGγ′ and show ξRγ′. But we know by hypothesis
(p → F ;R,G) ⊆ R. Also, since ηGγ′ holds and γSη, we have γRγ′ hence
ξ(F ;S)γ′. But then ξRγ′ follows at once. Case (b) is even easier.

Remark From the work of Hoare we can find a simplification of axiom (ii∗);
namely, it can be replaced by a combination of these two axioms:

(i∗) ∀ξ, η [ξ(p ∗ F)η → p̄(η)]

(ii∗) ∀u [∀ξ, η [p(ξ) ∧ p(ξ) ∧ ξFη ∧ u(η)] → [∀ξ, η [u(ξ) ∧ ξ(p ∗ F)η → u(η)]]

In particular, (ii′′∗ reads more like an arithmetic induction axiom (here, u is
a unary predicate variable and this second-order form with ∀u is equivalent
to the earlier form with ∀R. A similar simplification of the axiom (iiP) for
procedures is not yet apparent.

16

15.9 Correctness

In order to prove programs “correct”, Floyd, and later Hoare, have been work-
ing with the idea of taking (a part of) a program (relation) P and thinking of
desirable properties u and v such that if you enter P in u, you exit P in v. Hoare
writes (more or less)

u{P}v

In our second-order logical notation we would write more fully

∀ξ, η [u(ξ) ∧ ξPη → v(η)]

This point of view has essential advantages:

1. It is part of a well-known logical system

2. u{P}v becomes an ordinary proposition that can be negated, etc, etc

3. Floyd’s “logical” rules become obvious

4. Floyd’s incorrect existential rule is avoided

16 Conclusions

Starting from an intuitively correct idea of a machine, we explained and de-
veloped a theory of programming concepts (mainly procedures). This work
could be extended by investigating more powerful control devices but that
is probably not a good idea at this level of abstraction. What is needed is a
more refined model of a machine. In the work above we have treated each
“state vector” ξ ∈ M as a whole – and it is remarkable how many sensible
things there are say even so. But in “real life” a vector ξ has components, and
these are generally modified more or less independently during computation.
This idea should be introduced into the model; then in programs we will want
to use assignment statements to modify the coordinates. This means that oper-
ations on M , the various Fi and pj , are being analyized instead of being treated
as “wholes”. Along with these problems, we will also want to treat the scope of
“variables”. One way to do this is to make the components of the state vector
into push-down stores. But there are so many problems of “reference” that we
might want to use Strachey’s method of L- and R-values and LUP’s. If we can
do this, we will then want to isolate general properties of programs (defined al-
ready the and of the machine model) in order to organize our deductions more
clearly (the so-called “axiomatic” model). At one level of abstraction this has
all been illustrated above. To really carry out the proposal for the “real life”
situation is a big, big “program”. The outlines seem clean, however, and we
should be able to do it in a way that actually refines the present theory and
keeps all the “abstract” results intact.

17

