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This is a survey of solution methods for routing problems with time window con
straints. Among the problems considered are the traveling salesman problem, the 
vehicle routing problem, the pickup and delivery problem, and the dial-a-ride 
problem. We present optimization algorithms that use branch and bound, dynamic 
programming and set partitioning, and approximation algorithms based on con
struction, iterative improvement and incomplete optimization. 

1. INTRODUCTION 
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Over the past ten years, operations researchers interested in vehicle routing and 
scheduling have emphasized the development of algorithms for real-life problems. 
The size of the problems solved has increased and practical side constraints are no 
longer ignored. 

Most of the existing algorithms have been designed to solve pure routing prob
lems and hence only deal with spatial aspects. They are not capable of handling 
all kinds of constraints that frequently occur in practice. One such constraint is 
the specification of time windows at customers, i.e., time intervals during which 
they must be served. These lead to mixed routing and scheduling problems and 
ask for algorithms that also take temporal aspects into account. 

In this survey, we consider two types of problems. One is the vehicle routing 
problem with time windows (VRPTW), which is defined as follows. A number of 
vehicles is located at a single depot and must serve a number of geographically 
dispersed customers. Each vehicle has a given capacity. Each customer has a given 
demand and must be served within a specified time window. The objective is to 
minimize the total cost of travel. 

The special case in which the vehicle capacities are infinite is called the multiple 
trave/ing salesman problem with time windows (m-TSPTW). It arises in school bus 
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routing problems. The problem here is to determine routes that start at a single 
depot and cover a set of trips, each of which starts within a time window. Trips 
are considered as customers. There are no capacity constraints, since each trip 
satisfies those by definition and vehicles moving between trips are empty. 

The second problem type is the pickup and delivery problem with time windows 
(PDPTW). Again, there is a single depot, a number of vehicles with given capaci
ties, and a number of customers with given demands. Each customer must now be 
picked up at his origin during a specified time window, and delivered to his desti
nation during another specified time window. The objective is to minimize total 
travel cost. 

The special case in which all customer demands are equal is called the dial-a
ride problem (DARP). It arises in transportation systems for the handicapped and 
the elderly. In these situations, the temporal constraints imposed by the custo
mers strongly restrict the total vehicle load at any point in time, and the capacity 
constraints are of secondary importance. The cost of a route is a combination of 
travel time and customer dissatisfaction. 

We will denote the time window of an address i (whether it be a customer in the 
VRPTW or an origin or destination in the PDPTW) by [ei>l;], the time of arrival at 
i by A;, and the time of departure at i by D;. It is assumed throughout this paper 
that the service time at i is included in the travel time t;j from address i to address 
j. Since service must take place within the time windows, we require that 
e; ~ D; :,..; l; for all i. If A; < e;, then a waiting time WI = e; -A; occurs before the 
opening of the window at i. 

There are several ways to define the tightness of the time windows. One could 
say that the windows are tight when the underlying network with addresses as ver
tices contains no time-feasible cycles. This guarantees that all feasible routes are 
elementary paths. However, this condition is difficult to verify, and we do not get 
much information if it does not hold. The following two definitions may be more 
useful: 

v;=;J (4-=e;) 
T1 = - , T2 = {l} . { } tu max; i - Dllll; e; 

T 1 is the ratio between the average window width and the average travel time. 
If T 1 is at its minimum value 0, we have a pure scheduling problem. If T 1 is 
inbetween 0 and 2, we can expect that there are not many time-feasible cycles, and 
the temporal aspects are likely to dominate the spatial aspects. If T 1 is large, we 
have almost a pure routing problem. These are, of course, only rough indications. 

T 2 is the ratio between the average window width and the time horizon. The 
value of T 2 is between 0 and 1, with 0 indicating a pure scheduling problem and 1 
a problem with identical time windows. 

In the following, VRP denotes the VRPTW without time windows. TSPTW is 
the m-TSPIW with a single salesman, and TSP is the TSPTW without time win
dows. Since the TSP is already NP-hard, one has to obtain solutions to the 
VRP1W and PDP1W by fast approximation or enumerative optimization. In 



Vehicle Routing with Time Windows 67 

Section 2, we present mathematical programming formulations for these 
problems and some of their extensions. In Section 3, we survey optimization algo
rithms based on dynamic programming and set partitioning. In Section 4, we 
review various types of approximation algorithms. 

There are more time-constrained routing problems and more solution 
approaches than we can cover in this survey. The interested reader is referred to a 
recent collection of papers on this topic [Golden and Assad 1986]. 

2. FORMULATION 

In this section, the VRPTW and the PDPJW are defined and formulated as 
mathematical programs. We concentrate on the basic problems, with a single 
depot and a single vehicle type. We indicate generalizations involving multiple 
depots, multiple vehicle types, and constraints on the travel time of the vehicles. 

2.1. The vehicle routing problem with time windows 
Given is a graph G = ( V,A) with a set V of vertices and a set A of arcs. We have 
V = (O} UN, where 0 indicates the depot and N = (l, ... ,n} is the set of custo
mers, andA = ((O} XN}UJU(NX {O}}, where I c NXN is the set of arcs con
necting the customers, {O} XN contains the arcs from the depot to the customers, 
and N X {O} contains the arcs from the customers back to the depot. For each cus
tomer i EN, there is a demand q; and a time window [e;,H For each arc (i,j) EA, 
there is a cost cij and a travel time tij. Finally, the vehicle capacity is given by Q; 
we note that the number of vehicles is unbounded in the present formulation. We 
also note that an arc (i,j) EI may be eliminated by temporal constraints 
(e; +tij > lj), by capacity constraints (q; +qj > Q), or by other considerations. 
The objective is to minimize total travel cost. 

The mathematical programming formulation has three types of variables: 
xij ((i,j} EA), equal to 1 if arc (i,j} is used by a vehicle and 0 otherwise; 
D; (i EN), specifying the departure time at customer i; and y; (i EN}, specifying 
the load of the vehicle arriving at i. The problem is now to minimize 

~(" ") AC;jXij I,) E 
(l) 

subject to 

~ X·· =l 'jeN I) 
fori eN, (2) 

~jENXij - ~jENXji = Q fori EN, (3) 

xij = 1 ~ D; + t;j ~ Dj for (i,j) E /, (4) 

e; ~D;~l; fori EN, (5) 

xij = 1 ~ y; + q; ~ Yj for (i,j) E /, (6) 

Oo;;;;;y;:E;;;Q fori eN, (7) 

Xij E {0, 1} for (i,j) EA. (8) 

The objective function (1) represents total travel cost; it is possible to include the 
fixed charge of using a vehicle by adding it to all c OJ. Minimizing ( 1) subject to (2), 
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(3) and (8) is a minimum cost flow problem, which has an integral solution. 
Constraints (4) and (5) ensure feasibility of the schedule, and constraints (6) and 
(7) guarantee feasibility of the loads. 

This VRPTW formulation is more compact than the VRP formulation due to 
Bodin and Golden [1981]. The latter formulation has O(n 3) variables and an 
exponential number of subtour elimination constraints. The above formulation 
has O(n 2) variables, while the subtours are eliminated by (4), as well as by (6). 
These constraints can be rewritten as follows, where Mis a large constant: 

D; + tij - D1 ~(I -xu)M 

y; + q; -y1 ~(I-xu)M 

for (i,j) E /, 

for(i,j) E f. 

(4a) 

(6a) 

In their TSP formulation, Miller, Tucker and Zemlin [1960] propose the following 
subtour elimination constraints: 

Di - D1 + nxu ~ n - l for (i,j) E I. 

These appear as a special case of ( 4a) when all tu = I and M = n, and as a special 
case of ( 6a) when all qi = l and M = n. 

The above single-depot formulation is based on a single-commodity flow. 
There is no explicit flow conservation constraint for the depot, as this is implied 
by the flow conservation constraints (3) for the customers. Let us now consider 
the multi-depot case. The single depot 0 is replaced by a set M of depots. In the 
graph G = (V,A), we now have V =MUN and A= (MXN)U/U(NXM), 
where N and I are as before. There are two variants. In case each vehicle must 
return to its home depot, we need a multi-commodity flow formulation with a 
separate commodity for each depot. Each variable xiJ is replaced by variables 

~ xt (k EM), wherext = 1 if arc (i,j) is used by a vehicle from depot k, and 0 oth-
1 erwise. In case vehicles do not have to return to their points of origin, all we have 
I to do is to add a flow conservation constraint for each depot. 

The case of multiple vehicle types is modeled with fictitious depots. For each 
type of vehicle at a given depot, we create a fictitious depot with a separate com-
modity to ensure that the number of vehicles of each type at each depot is bal
anced. The case that the vehicles have upper bounds on their total travel time is 
handled by the specification of a time window for the depot. The case that the 
vehicles have different periods of availability is obviously dealt with by the intro
duction of fictitious depots with time windows. 

2.2. The pickup and delivery problem with time windows 
As in the previous section, there is a set N of customers. In the current situation, 
however, each customer i EN requests the transportation from an origin i + to a 
destination i - . We write N + = {i + I i E N} for the set of origins and 
N- = { i - I i E N} for the set of destinations. The graph G = ( V,A) is now 
defined as follows. The vertex set is given by V = {O} UN+ uN-, where 0 
denotes the depot. The arc set is given by A =({O}XN+)U/U(N-X{O}), 
where I c (N+ UN-)X(N+ UN-) is the set of arcs corresponding to feasible 
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trips between origins and destinations. For each customer i EN, there are a 
demru:id q; and two time windows [e;• ,I;•] and [e;- ,/;-]. For each arc (i,j) EA, 
t~ere 1s a ~st ciJ and a travel time tiJ. Finally, there is a set M of vehicles, each 
with capacity Q. The objective is to minimize total travel cost. 

The mathematical programming formulation has the same three types of vari
ables as in the case of the VRPTW: xt ((i,j) EA, k EM), equal to I if arc (i,j) is 
~sed by vehicle k and 0 otherwise; D; (i E N + UN - ), specifying the departure 
trme at vertex i; and y; (i EN+ UN-), specifying the load of the vehicle arriving 
at i. We note that the flow variables have now a third index in order to ensure that 
the pickup at i + and delivery to i - are done by the same vehicle. The problem is 
to minimize 

~c ) A k MciJxt l,j E , E 
(9) 

subject to 

~ ~ 0k=l kEM :jE lj 
for i EN+, (10) 

~ 0k·-~ 01>=0 j E I) :_iE JI 
for i E N + UN-, k EM, (11) 

~ 0!< •. - ~ 0k·_ =O 
:_iE I j jE JI for i E N, k E M, (12) 

D;• + t;•;- ~Dr for i EN, (13) 

xt = I =? D; + tiJ ~ D1 for (i,j) E /, k E M, (14) 

e; ~D; ~I; for i E N + UN- , (15) 

xt = 1 =? y; + q; ~ YJ for (i,j) E /, k E M, (16) 

O~y; ~ Q for i EN+, (17) 

xt E {0,l} for (i,j) EA, k EM. (18) 

Minimizing (9) subject to (10), (11) and (18) is a multi-commodity minimum cost 
flow problem of a more complex structure than in the case of the VRPTW. Con
straints (12) ensure that each i + and i- are visited by the same vehicle. Con
straints (13) represent the precedence relation between pickup and delivery 
points. Constraints (14) and (15) ensure feasibility of the schedule, and con
straints (16) and (17) guarantee feasibility of the loads; we note that capacity con
straints are only specified for origins because a vehicle reaches its maximum load 
after a pickup. We also note that all model extensions presented for the VRPTW 
can be applied to the PDPTW. 

3. OPTIMIZATION 

Optimization algorithms for routing problems with time windows employ the two 
standard principles of implicit enumeration: dynamic programming and branch 
and bound. Among the branch and bound methods, two approaches stand out. 
One is the set partitioning approach, which uses column generation to solve a 
continuous relaxation of the problem and branch and bound to obtain integrality. 
The other approach uses state space relaxation to compute lower bounds. 
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Dynamic programming is mainly applied to solve single-vehicle problems. Those 
problems arise in the context of column generation and state space relaxation, so 
that dynamic programming algorithms appear as subroutines in branch and 
bound methods. 

In Section 3.1, we collect the applications of dynamic programming, including 
state space relaxation. In Section 3.2, we discuss the set partitioning approach. A 
variety of other branch and bound methods is reviewed below. 

Baker [1983] presents a branch and bound method for the TSPIW, in which 
bounds are derived from longest path problems. He solves small problems with 
this method. 

The most widely studied routing problem with time windows is the school bus 
routing problem [Orloff 1976], which is essentially an m-TSPIW. Two objectives 
are distinguished: minimizing fleet size and minimizing a weighted combination 
of fleet size and total travel time. 

As to the first objective, Swersey and Ballard [1984] discretize the time windows 
and solve the linear programming relaxation of the resulting integer programming 
problem. For most instances, the solution is integral; otherwise, they are able to 
modify the solution so as to obtain integrality without increasing the fleet size. 
Desrosiers, Sauve and Soumis [1985] study the Lagrangean relaxation which is 
obtained by relaxing constraints (2). As one visit to each customer is no longer 
required, the Lagrangean problem is a shortest path problem with time windows. 
Although the lower bound is often equal to the optimal fleet size, this dual 
method does not necessarily produce a feasible solution, in which case branch and 
bound has to be applied. 

For the m-TSPfW with the second objective function, Desrosiers, Somnis, 
Desrochers and Sauve [1985) study the network relaxation which is obtained by 
removing the scheduling constraints (4) and (5). If e; =I; for all i EN, then this 
relaxation produces an optimal solution in view of the definition of I. The quality 
of the bounds deteriorates with an increasing number of customers and an 
increasing width of the time windows. Two branching rules are proposed: branch
ing on the flow variables and branching by splitting time windows. In the case of 
very tight time windows, Soumis, Desrosiers and Desrochers [ 1985] apply the first 
rule to solve problems with up to 150 customers; as the time windows become 
wider, the tree grows rapidly in size. The second branching rule can handle wider 
time windows, but it is concluded that the network relaxation is inferior to the set 
partitioning relaxation considered in Section 3.2. 

SOrensen [1986) suggests the use of Lagrangean decomposition [Guignard 
1984; Jomsten, Nasberg and Smeds 1985] for the VRPTW. The two resulting sub
problems are the shortest path problem with time windows and the generalized 
assignment problem. No computational results have been reported. 

3.1. Dynamic programming 
Dynamic programming is a traditional solution method for constrained shortest 
path problems. The constituents of a dynamic programming algorithm are states, 
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transitions between states, and recurrence equations that determine the value of 
the objective function at each state. Let us consider the standard shortest path 
problem on a graph G = (V,A) with vertex set V, arc set A, a source 0 E V, and a 
travel time tiJ for each (i,j) EA. Each vertex represents a state, each arc represents 
a transition between two states, and the value d(j) associated with state j is the 
shortest path duration from the source 0 to vertex j. The recurrence equations to 
compute these values are: 

d(O) = 0, 

d(j) = ~i,j)eA { d(i)+ tij} for j E V \ {0}. 

This algorithm has a running time that is polynomially bounded in the size of G. 
Constraints are treated by expansion of the state space and modification of the 

recurrence equations. Such a dynamic programming approach can be useful for 
several NP-hard routing problems. However, the cardinality of the state space is 
usually exponential in the problem size. The practical use of dynamic program
ming in this context is restriced to state spaces of at most pseudopolynornial size 
3:Dd relatively small problem instances. 

3.1. l. Single-vehicle problems with time windows 
We will consider four problems in this section: the traveling salesman problem 
with time windows, the single-vehicle dial-a-ride problem, and two constrained 
shortest path problems. 

The TSPTW can be viewed as the problem of finding a shortest path from an 
origin 0 to a destination n + l that visits all vertices in the set N and respects the 
time window of each vertex. Christofides, Mingozzi and Toth [1981c] propose the 
following dynamic programming algorithm. There are states of the form (S,j) 
with S c N and j E S, and d (S,j) denotes the shortest duration of a feasible path 
starting at 0, visiting all vertices in S, and finishing at j. The optimal solution 
value d(N U { n + l },n + l) is determined by the following recurrence equations: 

d({O},O) = eo, 

d(S,j) = minieS-U),(i,J)eA { d (S - ij},i)+ tij} for j EN U { n + l }, 

where we redefine d(S,j) = e1 in case d(S,j) < e1 and d(S,j) = oo in case 
d(S,j) > 11. 

Psaraftis [1983a] uses dynamic programming to solve the single-vehicle DARP. 
The states are of the form (j,k 1, ••• ,kn), where j is the vertex presently visited and 
each k; can assume three values that denote the status of customer i: not yet 
picked up, picked up but not yet delivered, and delivered. It is now straightfor
ward to define the feasible transitions between states. The algorithm has 2n 
stages, each of which extends the paths constructed so far with one arc. The total 
time requirement is O(n 23n). Psaraftis estimates that this approach is able to 
solve problems with up to ten customers. 

Desrosiers, Dumas and Soumis [1986b] give a similar 2n-stage algorithm for the 
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capacitated single-vehicle PDP'IW. They propose a number of state elimination 
rules to reduce the computational effort. In addition to Psaraftis' feasibility tests 
which eliminate states on the basis of information about customers picked up so 
far, they also have feasibility tests which use information about customers not yet 
delivered. The algorithm can solve real-life problems with up to 40 customers. 

Two types of constrained shortest path problems have been considered: the 
shortest path problem with time windows (SPPTW) and the capacitated shortest 
path problem with pickups, deliveries and time windows (SPPPDTW). The main 
difference between these problems and the single-vehicle DARP is that the path is 
no longer required to visit all customers. For the SPP'IW, which is defined by ( 1 ), 
(3)-(5) and (8), Desrosiers, Pelletier and Soumis [1984] propose a label correcting 
method. Desrochers and Soumis [1985a, 1985b] give two pseudopolynomial algo
rithms. One is a label setting method, the other a primal-dual method. Desrochers 
[1986] generalizes the latter algorithm to the case of multidimensional time win
dows. For the SPPPDTW ((9) and (11)-(18)), Dumas [1985] and Dumas and Des
rosiers [1986] present an algorithm which is similar to the one for the capacitated 
single-vehicle PDPTW. 

As we have mentioned before, dynamic programming algorithms are mostly 
used as subroutines in other solution methods. This is because the problems con
sidered in this section occur as subproblems in multi-vehicle problems. The 
TSPTW and the single-vehicle DARP arise in the second phase of cluster-first 
route-second approaches, where the first phase allocates customers to vehicles 
and the second phase asks for single-vehicle routes. The SPP'IW occurs as a sub
problem in the set partitioning algorithm for the m-TSP'IW due to Desrosiers, 
Soumis and Desrochers [1984], in the Lagrangean relaxation algorithm for the 
fleet size problem due to Desrosiers, Sauve and Soumis [1985], and in the 
Lagrangean decomposition algorithm for the VRPlW due to Sorensen [ 1986]. 
The SPPPDTW is a subproblem in the set partitioning algorithm for the PDPIW 
due to Desrosiers, Dumas and Soumis [1987]. 

3.1.2. State space relaxation 
For a number of problems, Christofides, Mingozzi and Toth [198la, 198lb, 
1981c] have developed branch and bound algorithms that obtain lower bounds by 
dynamic programming on a relaxed state space. They take a dynamic program
ming algorithm for the problem under consideration as a starting point and 
replace its state space by a smaller space in such a way that the recursion over the 
new state space requires only polynomial time and yields a lower bound on the 
optimal solution value of the original problem. 

State space relaxation is based on a mapping g from the original state space to a 
space of smaller cardinality. If there is a transition from S 1 to S 2 in the original 
state space, then there must be a transition from g(S 1) to g(S2 ) in the new state 
space. We illustrate this idea on the TSPIW [Christofides, Mingozzi and Toth 
1981c]. 

With each vertex i, an arbitrary integer /Ji is associated, with /Jo = /Jn + 1 = 0. 



Vehicle Routing with Time Windows 73 

The mapping is defined by g(S,j) = (k,{3,j), where k = IS I and f3 = '2.iES/3;. 
The new recurrence equations are: 

{o if /3 = o, 
d(0,{3,0) = 00 if /3=1=0, 

d(k,/3,j) = mi.n;,.=J,(i,J)eA{d(k-l,{J-/31,i)+tiJ} for) eNU{n +l}, 

where we redefine d (k, /3,j) = e1 in case d (k, /J,j) < e1 and d (k, {3,j) = oo in case 
d (k, /3,j) > ~. The lower bound is now given by 

minjEN,(j,n +!)EA {d(n, '2.ieN/3;,j)+tj,n +I}. 

This lower bound can be improved by the use of vertex penalties and state 
space modifications. Vertex penalties serve to decrease the travel times of arcs 
incident to undercovered vertices and to increase the travel times of arcs incident 
to overcovered vertices; these penalties are adjusted by subgradient optimization. 
Similarly, the weights /3; can be modified by subgradient optimization. The result
ing branch and bound method is able to solve problems with up to 50 vertices. 

Kolen, Rinnooy Kan and Trienekens [ 1987] extend this approach to the 
VRPTW. They use a two-level state space relaxation. At the first level, a lower 
bound on the costs of a time-constrained path from the depot to vertex j with load 
q is computed. This is done with an adaptation of the above method for the 
TSPlW. The states are of the form (t,q,j), where q is the load of a shortest path 
arriving at vertex j no later than time t. We have 0 ~ t ,,.;;; Twhere T is the schedul
ing horizon, 0 ~ q ~ Q where Q is the vehicle capacity, and j EN. At the second 
level, a lower bound on the costs of m routes with total load ~; e Nq; and different 
destination vertices is computed. The states are now of the form (k,q,j), where q is 
the total load of the first k routes and j is the destination vertex of route k. Vertex 
penalties are used to improve the lower bounds. Problems with up to fifteen cus
tomers are solved. 

3.2. Set partitioning 
Vehicle routing problems and in particular the VRPTW and the PDPTW can be 
reformulated as set partitioning problems, with variables (columns) correspond
ing to feasible routes. 

Let R be the set of feasible routes of the problem under consideration. For each 
router ER, we define y, as the sum of the costs of its arcs and 8,; (i EN) as a 
binary constant, equal to 1 if route r visits customer i and 0 otherwise. If 
Xr (r E R) is equal to 1 if router is used and 0 otherwise, the set partitioning prob
lem is to minimize 

'2.reR YrXr (19) 
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subject to 

~ RS,;x, = l 
TE 

x, E {0,1} 

M. Desrochers et al. 

for i EN, 

for r ER. 

(20) 

(21) 

Although problems (9)-(18) and (19)-(21) are equivalent, their continuous relaxa
tions are not. This is because the variables in the latter problem are restricted to 
feasible paths in which each customer is included or not. Any solution to the 
relaxed version of (19)-(21) is a feasible solution to the relaxation of (9)-(18), but 
not vice versa. We can therefore expect to obtain better lower bounds on the basis 
of the set partitioning formulation. 

Because of the cardinality of R, the relaxed set partitioning problem cannot be 
solved directly and column generation is used. That is, a new column of minimum 
marginal cost is generated by solving an appropriate subproblem. If its marginal 
cost is negative, then it is added to the linear program, the problem is reoptimized 
and column generation is applied again; otherwise, the current solution to the 
linear program is optimal. Before discussing results for specific vehicle routing 
problems, we first describe some general aspects of this approach. 

3.2. l. The subproblem 
The objective function of the subproblem has coefficients that depend on the 
values of the dual variables 'lf; (i E N) of the continuous relaxation of the set parti
tioning problem. The constraints define a path subject to side constraints but not 
necessarily visiting all customers. They include (3)-(8) for the VRPTW, (3)-(5) and 
(8) for the m-TSP1W, and (11)-(18) for the PDP1W. 

As we have seen in Section 3.1.1, dynamic programming is a suitable method to 
solve these subproblems to optimality, because the state spaces are relatively 
small. 

3.2.2. The master problem 
The continuous relaxation of the set partitioning problem is solved by the simplex 
algorithm. This method produces the dual values 'lf; that are needed for column 
generation and enables easy reoptimization each time new columns are generated. 

To obtain an integral solution to the master problem, we add cutting planes or 
we use branch and bound. Each time a new constraint is added, another round of 
column generation is applied in order to solve the modified. master problem. We 
must restrict ourselves to types of constraints that are compatible with the column 
generation method. For any cutting plane, the method must be able to compute 
its coefficients in order to evaluate the marginal cost of new columns. For any 
branching rule, the method must be able to exclude the columns that have become 
infeasible by branching 

In case the ciJ are integral, a compatible type of cut is the one that rounds the 
objective up to the next integer. In the particular case that we minimize fleet size, 
this cut has the same coefficient l in each column; if it has a dual value 'lf, a new 
column is generated by minimizing the reduced cost 
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~( .. ) A(cij-'11;)X;j - '11. 
1,j E 

However, we cannot use Gomory cuts or other types of cuts whose coefficients are 
not known before the new column is generated. 

As to branching, the usual rule to fix a fractional variable x, to 0 or 1 is not 
compatible. We can fix x, = 1 by simply deleting the customers on route r from 
the subproblem. But we cannot fix x, = 0: there is no way to prevent route r from 
being generated again. Four types of compatible branching rules have been pro
posed: branching on the flow variables of route r; branching on the position of a 
customer in route r; branching by splitting time windows; and branching on the 
number of vehicles of a given type in problems with multiple vehicle types. These 
rules have been listed here in order of increasing effectiveness. 

3.2.3.Acceleration techniques 
There are various ways to improve the performance of the set partitioning 
approach. 

First of all, the set partitioning problems that arise in the context of vehicle 
routing are highly degenerate. It is an obvious idea to improve the convergence of 
the simplex method by a perturbation strategy. 

Secondly, the solution of the relaxed master problem can be accelerated by the 
simultaneous generation of columns. The solution of a subproblem by dynamic 
programming produces not only a column of minimum reduced cost, but also 
many other columns of negative reduced cost. Several of these can be added. 

In the third place, the solution of most of the subproblems can be greatly sped 
up by the heuristic elimination of vertices, arcs, and states. The first columns are 
generated in subnetworks, which only consist of customers with large dual values 
and inexpensive arcs; in addition, less promising states are ruled out during the 
recursion. At later stages, the elimination rules are gradually relaxed, until at the 
final stage the full network and state space are used in order to prove optimality. 

3.2.4. The multi-salesman and vehicle routing problem with time windows 
Desrosiers, Soumis and Desrochers (1984] propose a set partitioning approach to 
the m-TSPIW. The column generation problem is the SPPfW, which was 
reviewed in Section 3.1.1. In their algorithm, two cuts are added to the master 
problem: one to round up the number of vehicles and one to round up the total 
costs. After that, branching on flow variables is applied. With this rule, it is time 
consuming to achieve optimality, even if the integrality gap is small. They solve 
problems with up to 1S1 customers; the solution time on a CDC Cyber 173 ranges 
from 100 to 1000 seconds, depending on the width of the time windows. A recent 
improvement of the algorithm is able to solve problems with 223 customers within 
600 seconds. A branching rule based on time window splitting is under develop
ment. 

Desrosiers, Dumas and Soumis [1986a] extend this algorithm to the case of 
multiple vehicle types. Several SPP'IW's are now to be solved, one for each type 
of vehicle. Branching is first done on the number of vehicles of a given type; when 
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this number is integral for each type, the usual branching on flow variables is 
applied. 

No set partitioning algorithm for the VRPTW has been proposed so far. How
ever, Desrochers [1986] presents a dynamic programming algorithm for the shor
test path problem with a variety of constraints. This method is suitable for solving 
the subproblems that occur in this context. 

3.2.5. The pickup and delivery problem with time windows 
Dumas [1985] develops a set partitioning approach for the PDP1W. He solves 
problems with 30 customers (60 vertices) within 100 seconds on a CDC Cyber 
173. These problems have tight capacity constraints (qi~ Q/3) and loose time 
window constraints. Narrowing the time windows significantly decreases the car
dinality of the state space and thereby the computation time. 

The subproblem in this case is the SPPPDTW, which was reviewed in Section 
3.1.1. The algorithm of Dumas [1985] first branches on the number of vehicles per 
type and then on flow variables. Desrosiers, Dumas and Sournis [ 1987] replace the 
latter branching rule by branching on the position of customers in routes and 
obtain improved results. 

4. APPROXIMATION 

In spite of the recent success of optimization algorithms for vehicle routing with 
time windows, it is unlikely that they will be able to solve large-scale problems. In 
many situations one has to settle for algorithms that run fast but may produce 
suboptimal solutions. In this section, we review three types of approximation 
algorithms. Construction methods try to build a feasible solution starting from the 
raw data. Iterative improvement methods start from a feasible solution and seek to 
improve it through a sequence of local modifications. Incomplete optimization 
methods use a combination of enumeration of the solution space and heuristic 
rules to truncate the search. These type~ of methods have been widely applied to 
unconstrained routing problems. Their extension to constrained problems has 
only recently become a subject of investigation. In presenting this work, we will 
concentrate on feasibility rather than optimality aspects. 

As in Section 3.1, we split the depot (vertex 0) in an 'origin' (vertex 0) and a 
'destination' (vertex n + 1 ). In the sequel, when we refer to a route, we assume that 
it is given by (0, l, ... ,i, ... ,n,n + 1), where i is the ith customer visited by the vehicle. 
There are two quantities associated with a subpath (h, ... ,k) that play a dominant 
role in the algorithms below. The possible forward shift Site is the largest increase 
in the departure time Dh at h which causes no violation of the time windows along 
thepath(h, ... ,k): 

Site= minh.;;J.;;k{l1 - (Dh + ~h<;;;i</i,;+1)}. 
The possible backward shift Sii is the largest decrease in the departure time Dh at 
h which causes no waiting time along the path (h, ... ,k): 

Sii = minh "i o;;;k{ D1 -ei }. 
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These quantities express the flexibility we have when we want to push customers 
forward or backward in time. It is not hard to see that all values sjt and Sjlc for 
j == h, ... ,kcan be computed in O(n) time[Savelsbergh 1985]. 

4.1. Construction 
In the design of construction methods, there are two key questions: 
(1) Selection criterion: which customer is selected next to be inserted into the 

current solution? 
(2) Insertion criterion: where will it be inserted? 
While such decisions may be made at the same time, several of the algorithms in 
this section employ different criteria for selection and insertion. 

4.1.1. The vehicle routing problem with time windows 
Solomon [1983] was one of the first who attempted to adapt the existing 
approximation algorithms for the VRP to the VRPIW. Much of the material in 
this section is based on his work. 

Savings. The savings method of Clarke and Wright [ 1964] is probably the first and 
certainly the best known heuristic proposed to solve the VRP. It is a sequential 
procedure. Initially, each customer has its own route. At each iteration, an arc is 
selected so as to combine two routes into one, on the basis of some measure of 
cost savings and subject to vehicle capacity constraints. Note that in this case the 
selection criterion applies to arcs rather than customers and that the insertion 
question does not occur. 

In order to adapt this procedure for the VRPTW, we must be able to test the 
time feasibility of an arc. While in pure routing problems the direction in which a 
route is traversed is usually immaterial, this is not the case anymore in the pres
ence of time windows. Hence, we only consider arcs from the last customer on oneJ/ 
route to the first customer on another. 

If two routes are combined, the departure times on the first route do not 
change. As to the second route, one necessary condition for feasibility is that the 
departure time at the first customer is no more than his latest service time, but 
that is not all. The other departure times on the route could be pushed forward, 
and one of them could become infeasible. This is where the possible forward shift 
enters the picture. For any path (l, ... ,n +I), a change in the departure time at I is 
feasible if and only if it is no more than S tn + 1 • 

By selecting of a cost effective and time feasible arc, the modified heuristic 
could link two customers whose windows are far apart in time. This suggests a 
further modification which selects arcs on the basis of both spatial and temporal 
closeness of customers, e.g., by adding a waiting time penalty to the cost savings. 

Nearest neighbor. Initially, a route consists of the depot only. At each iteration, an 
unvisited customer who is closest to the current end point of the route is selected 
and added to the route to become its new end point. The selection is restricted to 
those customers whose addition is feasible with respect to capacity and time win-
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dow constraints. A new route is started any time the search fails, unless there are 
no more customers to schedule. 

The measure of closeness should include spatial as well as temporal aspects. 
Solomon (1983] proposes the following: 

a1tiJ + a1(max{e1,Di+tiJ} - D;) + a3(l1 - (D;+tu)), witha1 +a2 +a3 = L, 

This measures the travel time between customers i and j, the difference between 
their respective delivery times, and the urgency of a delivery to j. 

Insertion. Insertion methods treat the selection and insertion decisions seperately. 
We distinguish sequential and parallel insertion rules. The former construct the 
routes one by one, whereas the latter build them up simultaneously. All methods 
considered here are of the sequential type. 

The general scheme of an insertion method is simple. Let U be the set of 
unrouted customers. For each customer u E U, we first determine the best feasible 
point iu after which it could be inserted into the emerging route: 

t.(_u,iu) = mino~i~n{t(u;i)} foru EU. 

We next select the customer u* to be inserted into the route: 

a(u*,iu•) = minueu{ a(u,iu)}. 

The insertion criterion 1 and the selection criterion CJ are still to be specified; we 
refer to Solomon [1983] and Savelsbergh [1985) for a number of possible defini
tions which take both spatial and temporal aspects into account. When no more 
customers can be inserted, a new route is started, unless all customers have been 
routed. 

Insertion of u between i and i + I could change all departure times on the path 
(i + l, ... ,n + 1). Again, the insertion is feasible if and only if the change in depar
ture time at i + 1 is no more than St+ 1 n +I· 

\I Solomon [1983] concludes on the b~is of extensive computational experiments 
that insertion methods outperform other types of construction methods. 

4.1.2. The pickup and delivery problem with time windows 
Jaw, Odoni, Psaraftis and Wilson [1986] consider a variant of the DARP. Their 
approach seems to be applicable to the proper DARP as well. 

The customers that are to be picked up and delivered have the following tY.E_es 
of service constraints. Each customer i specifies either a desired pickup time Di+ 
or a desired delivery time A;-, and a maximum travel time T;; in addition, there is 
a tolerance U. If customer i has specified a des~ E!ckup_time, the actual pickup 
time D;+ should fall within the time window [D;+ ,D;• + U]; if he has specified a 
desired delivery time, the actual delivery time A;- should fall within the window 
[Ar - U,Ar ]. Moreover, his actual travel time should not exceed his maximum 
travel time: A;- - D;+ ~ T;. Note that this information suffices to determine two 
time windows [e;• ,/;+] and [e;- ,I;-] for each customer i. Finally, waiting time is la 
not allowed when the vehicle is carrying passengers. Y' 
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The selection criterion is simple: customers are selected for insertion in order of 
increasing e;+. The insertion criterion is as follows: among all feasible points of 
insertion of the customer into the vehicle schedules, choose the cheapest; if no 
feasible point exists, introduce an additional vehicle. 

For the identification of feasible insertions, the notion of an active period is 
introduced. This is a period of time a vehicle is active between two successive 
periods of slack time. For convenience, we drop the superscript indicating pickup 
or delivery. For each visit to an address i during an active period, we define the 
following variants of possible backward and forward shifts: 

~i = min{min1..,;;{A;-e;},A}, 

~t = min1.,.;{l;-A;}, 

S;- = minp;{A;-e;}, 

St = min{minp;{l;-A;},L}, 

where A and L are the durations of the slack periods immediately preceding and 
following the active period in question. ~j (~t) denotes the maximum amount 
of time by which every stop preceding but not including i can be advanced 
(delayed) without violating the time windows, and S;- (St) denotes the max
imum amount of time by which every stop following but not including i can be 
advanced (delayed). These quantities thus indicate how much each segment of an 
active period can be displaced to accommodate an additional customer. Once it is 
established that some way of inserting the pickup and delivery of customer i satis
fies the time window constraints, it must be ascertained that it satisfies the max
imum travel time constraints. 

The cost measure that is used to choose among feasible insertions is a weighted 
combination of customer dissatisfaction and resource usage. 

Sexton and Bodin (1985a, 1985b] consider a variant of the single-vehicle DARP 
in which only deadlines for the deliveries are specified. Their solution approach is 
to apply Benders decomposition to a mixed 0-1 nonlinear programming formula
tion, which separates the routing and scheduling component. 

4.2. lterative improvement 
Croes [1958] and Lin [1965] introduced the notion of k-exchanges to improve 
solutions to the TSP. Lin and Kernighan [1973] generalized the approach, and 
many authors reported on its application to related problems. In the context of 
vehicle routing, Christofides and Eilon [1969] and Russell [1977] adapted the 
approach to the basic VRP, and Psaraftis [ 1983b] used it for the DARP. 

In this section, we will show how time windows can be handled iii k-exchange 
procedures for the TSP1W [Savelsbergh 1985]. It is not hard, however, to extend 
the techniques to multi-vehicle problems with various types of side constraints 
[Savelsbergh 1987, 1988]. The issue is also addressed in another contribution to 
this volume [Solomon, Balcer and Schaffer 1988]. 
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A k-exchange is a substitution of k arcs of a route ~th k other ~cs. In the TSP, 
the processing of a single k-exchange talces constant tune for any fIXed value of k. 
One only has to test whether the exchange is profitable an~ does not have to 
bother about feasibility. In the case of the TSPTW, the processmg of a k-exchange 
may talce o (n) time. This is because a modifica~~~ at one ~oint ~y affec:t the 
departure times on the entire route, so that ~eas1b~ty questions ans~. It ~ be 
indicated below that, even in the presence of time wmdows, constant tune suffices 
for the processing of a single k-exchange. 

4.2.1. The traveling salesman problem with time windows 
The number of possible k-exchanges in a given route is 0 (n k). The computational 
requirement of k-exchange procedures thus increases rapidly with k, and one usu
ally only considers the cases k = 2 and k = 3. A 2-exchange replaces two arcs 
(i,i + 1) and (j,j + 1) by (i,j) and (i + 1,j + 1), thereby reversing the path 
(i + l, ... ,j). In a 3-exchange, three arcs are deleted and there are seven possibilities 
to construct a new route from the remaining segments. Or [ 197 6] proposes to res
trict attention to those 3-exchanges in which a string of one, two or three consecu
tive customers is relocated between two others. Note that no paths are reversed in 
this case and that there are only O(n2) exchanges of this kind. We will illustrate 
the combination of the k-exchange concept and time windows on those Or
exchanges in which one customer is relocated. 

The tmstc idea of me approaCli is the use of a search strategy and of a number 
of global variables such that, for each considered exchange, testing its feasibility 
and updating the global variables require no more than constant time. 

The search strategy is as follows. Suppose that customer i is relocated between j 
andj + l; this means that the arcs (i-1,i), (i,i + 1) and (j,j + 1) are substituted 
by (i -1,i + 1), (j,i) and (i,j + 1). The cases of backward relocation (j < i) and 
forward relocation (j > z) are handled separately. In the former case, j is succes
sively chosen to be equal to i -1, i-2, ... , O; note that in each exchange the path 
(j + l, ... ,i-1) of the previous exchange is expanded with the arc (j,j + 1). In the 
latter case,j assumes the values i + 1, i +2, ... , n in that order; in each exchange 
the path (i + 1, ... ,j-1) of the previous exchange is expanded with the arc 
(j-1,j). 

The global variables we need are: 
(1) the poss~ble forward shifts+, which is equal to Sf+ l,i _ 1 as defined above; 
(2) the po~sible backward.shift_s-, which is equal to S;-+ l,j-I as defined above; 
(3) the gam G made by gomg directly from i - 1 to i + 1 : 

G =A;+1 - (Di-I+ t;-1,;+1); 

( 4) the loss L incurred by going from j through i to j + 1 : 

L = max{Dj + tji• e;} + ti,j+I -Aj+I; 

(5) the waiting time Won the path (j + 1, ... ,i -1 ): 

W= Lj+l>e;k>e;i-1 wk. 
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During the backward search, an exchange is feasible if D~ew :,;;;;; /k for 
k = j + 1, ... , i - 1, and potentially profitable if Dfiw, < D; + 1 • The superscript 
'new' indicates the value if the exchange were carried out. Note that a decrease in 
the departure time at i + l does not guarantee an earlier arrival at the depot, but 
'potential profitability' is still a suitable criterion for accepting an exchange. In 
terms of global variables, feasibility and potential profitability are equivalent to 

L<min{S+,G+ W}. 

The global variables are updated by 

s+: = w1+1 + min{0+1 - n1+i, s+ }; 

W:= W + Jf}+1· 

During the forward search, an exchange feasible if Dfew :,;;;;; I; and potentially 
profitable if Dr.:1 < D1+1• This equivalent to 

L < min{S-, G}. 

The only update is 

s-: = min{D1 - e1, s-}. 

It follows that a single exchange of this type can be handled in constant time. 
The adaptation of other types of exchange procedures to time window constraints 
is conceptually similar but technically more complicated. 

4.3. Incomplete optimization 
Fast approximation algorithms can also be derived from the optimization algo
rithms presented in Section 3.2. The two principal ideas are the heuristic genera
tion of columns and the partial exploration of the branch and bound tree. 

Heuristic generation of columns is based on the third type of acceleration tech
nique mentioned in Section 3.2.3. While solving the relaxed master problem, we 
eliminate vertices, arcs and states in a heuristic fashion. The elimination rules are 
not relaxed, so that an approximate solution to the linear program is obtained. 

Partial exploration of the search tree can take place in several ways. One is to 
obtain an integral solution by depth-first search and then to explore the tree for 
the remaining available time. Another way is to use an invalid branching rule, i.e., 
to eliminate branches on heuristic grounds. 

A combination of these ideas has been used to obtain feasible integral solutions 
within two percent from the optimum with highly reduced running times. 

5. CONCLUSION 

If one conclusion emerges from the preceding survey, it is that algorithm 
designers have turned their attention to the development of efficient methods that 
are capable of solving large-scale routing problems subject to real-life constraints. 

A striking example is the set partitioning approach, which appears to be partic
ularly efficient for strongly constrained problems. The continuous relaxation of 
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the set partitioning formulation can be solved by the u~e of a column gener~tion 
scheme and provides for better bounds than the relaxation of other formulations. 
Dynamic programming turns out to be a powerful tool t~ generate c~lumns. This 
family of algorithms is well designed to produce appr~xtmate soluti?ns to prob
lems of a realistic size. Optimization algorithms of this type are bemg used for 
school bus scheduling. 

The construction and iterative improvement algorithms that have received so 
much attention in the context of the TSP and the VRP have now been adapted to 
incorporate time windows and other constraints, such as precedence constraints 
and mixed collections and deliveries. These types of algorithms are all familiar, 
but their modification to handle practical problems is nontrivial. Although the 
worst-case performance of these methods is very bad [Solomon 1986], they have 
been successfully incorporated in distribution management software [Anthonisse, 
Lenstra and Savelsbergh 1987]. 

Our survey is no more than an interim report. The developments in the area of 
constrained routing problems have just started. The practical need for effective 
routing algorithms will continue to stimulate further advances. 
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