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We define for a simple concurrent imperative language both operational and denotational semantic 
models as fixed points of contractions on complete metric spaces. Next, we develop a general 
method for comparing different semantic models by relating their defining contractions and exploit
ing the fact that contractions have a unique fixed point. 

0. INTRODUCTION 

We present a study of a simple concurrent imperative language, called L 0 . We shall define an 
operational semantics Bo and a denotational semantics 0D0 for it and give a comparison of the two 
models. (We shall use the terms semantics and semantic model as synonyms.) This comparison 
is the main subject of our paper, rather than the specific nature of the language itself or the 
particular properties of its semantics. 

The language L 0 has been defined and studied already in much detail in [BMOZI,2] and 
[BKMOZ], on which we rely heavily. It belongs to the wide class of concurrent (parallel) 
imperative programming languages. We shall discuss parallel execution through interleaving 
(shuffie) of elementary actions. Further, L 0 contains constructs for sequential composition, local 
nondeterrninacy, and recursion. 

For our semantic definitions we shall use metric structures, rather than order-theoretic 
domains. The metric approach is particularly felicitous for problems where histories, computa
tional traces and tree-like structures of some kind are essential. Moreover, it allows for the 
definition of the notion of contraction, which we discuss in more detail in a moment. Our 
operational model (90 is based on the transition system technique of Hennessy and Plotkin [HP] 
and Plotkin [Pl2, Pl3]. It is closely related to the one defined in [BKMOZ], but there are some 
differences. Our denotational model Do is almost exactly the same as in [BKMOZ]. It is 
defined compositionally, giving the meaning of a compound statement in terms of the meaning 
of its components, and tackling recursion with the help of fixed points. 

Although the semantic models presented here are (roughly) the same as in [BKMOZ], there 
is one major difference, being the way in which they are defined. In this paper we define both 
the operational and denotational models as fixed points of contractions. 

A contraction j :M ~M on a complete metric space M has the useful property that there 
exists one and only one element xEM satisfying j(x)=x. This elementary fact is known as 
Banach's fixed point theorem. Such a fixed point x is entirely determined by the definition off: 
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any other elementyEM satisfying the same properties as x, that is, satisfyingf(Y)=y, is equal 
to x. The contractions <P we use in this paper are always of type <P:(M1--M2)~(Af1_,M2), 
that is, they are defined on a complete metric function space M 1 ~M2 • Then the fixed point of 
<l> is a function from M 1 to M 2• 

The fact that our denotational model can be obtained as fixed point of suitable contraction is 
not very surprising, fixed points playing traditionally an important role in denotational seman
tics. It is interesting, however, to observe that the same method applies to the definition of the 
operational model. One might wonder whether a model thus obtained still deserves to be called 
operational. That this is the case follows from the fact (not proved here) that it equals the 
operational model defined in the usual manner, without the use of a contraction. 

The main advantage of this style of defining semantic models as fixed points is that it 
enables us to compare them more easily. This brings us to the discussion of what has been 
announced above to be the main subject of this paper: the comparison of operational and deno
tational semantic models, which we shall also call the study of their semantic equivalence. About 
the question why this would be an interesting problem we want to be brief. Different semantic 
models of a given language can be regarded as different views of the same object. So they are 
in some way related. Their precise relationship we want to capture in some formal statement. 

Let us now sketch the way we use contractions in our study of semantic equivalence. Let L 
be a language. Suppose an operational model 0 for L is given as the fixed point of a contrac
tion 

<l>:(L--M)~(L_.M), 

where M is a complete metric space. Suppose furthermore that we have a denotational model 6D 
for L of the same type as 19, that is, with GD:L~M, for which we can prove <l>(6D) = 6D. Then it 
follows from the uniqueness of the fixed point of <I> that 0 =GD. 

In the context of complete partial ordering structures similar approaches exist (see, e.g., [HP] 
and [AP]). There, the operational semantics 19 can be characterised as the (with respect to the 
pointwise ordering) smallest function §"satisfying <l>('!l)='!f, for some continuous function <I>. 
Then it follows from 4>(6D)=6D that 19 is smaller than 60. In order to establish (9=6D it is proved 
that 0 satisfies the defining equations for 6D, from which it follows that 6D is smaller than 19. 
Please note that within the metric setting we can omit the second part of the proof. 

In general 19 and 0]) have different types, that is, they are mappings from L to different 
mathematical domains. In the language we consider, this difference is caused by the fact that 
recursion is treated in the denotational and operational semantics with and without the use of 
so-called environments, respectively. Therefore, (9 and 6D cannot be fixed points of the same 
contraction. Now suppose 19 and 6D are defined as fixed points of <l>:(L_.M 1 )~(L~M 1 ) and 
'1':(L_.M 2)~(L~M 2), respectively, where M 1 and M 2 are different complete metric spaces. 
Then we can relate 0 and 6D by defining an intermediate semantic model for L as the fixed 
point of a contraction <l>1:(L--M')_,(L_,M'), and by relating <I> , <[>' and '1' as follows. If we 
define 

f1 :(L-'>M i )_.(L-'>M'), and Ji :(L_.M 2 )~(L_,Af'), 

and we next succeed in proving the commutativity (indicated by *) of the next diagram: 
<I> 

L~M 1 ~ L_.M1 

fit * 1 U1 
<!>' 

L_.M' ~ L_.M' 

ht *2 th ,., 
L--M 2 ~ L_.M 2 
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then we will be able to deduce the following relation between (C) and oD: 

/2("D) = j, (0). 

It is straightforward from * 1 and * 2, and the fact that <I>, <l>', and'¥ are contractions. 
This will be the procedure we follow for the models fl0 and "D0 of Lo in section I. There j 1 and fz are such that for closed statements (i.e., containing no free statement variables) s E L 0 , 

we have: fl0 (s)=GD0(s). This result is not new: It was already proved in [BMOZl,2] and 
[BKMOZ]. However, the proofs given there are quite complicated and not so easy to under
stand. Furthermore, it seems to be difficult to extend and generalise them. 

Given the definitions of '90 and 6Do, it is intuitively obvious that they yield the same values 
for closed statements. In other words, the result that '90 ="Do is not very surprising, neither. In 
that respect, the method applied in this paper for deriving it might seem disproportionally com
plex. Therefore, we would like to stress what we consider to be the main contribution of this 
paper: We have developed a method which can be easily generalised for proving the semantic 
equivalence of operational and denotational semantics for languages much more complicated 
than Lo. In section 2, we shall illustrate this by briefly describing some languages for which we 
have proved semantic equivalence in this manner (references to some corresponding papers will 
be given there). 

In section 3, some conclusions and remarks about future research are formulated. Section 4 
gives the references. For the basic definitions of metric topology we refer to [Du] and [En]. 
Most of what we need is repeated in [BKMOZ]. 

This paper is in fact an extended abstract of [KR], to which the reader is referred for a more 
detailed description of our ideas. (In [KR] all the proofs can be found that are omitted here.) 

ACKNOWLEDGEMENTS: We are much indebted to Jaco de Bakker, John-Jules Meijer, Ernst
Rudiger Olderog, and Jeffrey Zucker, authors and co-authors of the papers [BMOZl,2] and 
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sions on our work in the Amsterdam concurrency group, including Jaco de Bakker, Frank de 
Boer, Arie de Bruin, John-Jules Meijer, and Erik de Vink. Finally, we express our thanks to 
Dini Verloop, who has expertly typed this document. 

1. A SIMPLE LANGUAGE (Lo) 

I.I Syntax 
For the definition of the language studied in this paper we need two sets of basic elements. Let 
A, with typical elements a,b, ... , be the set of elementary actions. For A we take an arbitrary, 
possibly infinite, set. Further, let Stmv, with typical elements x,y, ... , be the set of statement 
variables. For Stmv we take some infinite set of symbols. 

DEFINITION I.I (Syntax for L 0 ): We define the set of statements Lo, with typical elements 
s,t, ... , by the following syntax: 

s::= al s1;s2I s1Us2l s1llsil xl µ.x[t] 
where t E L6, the set of statements which are guarded for x, to be defined below. 

A statements is of one of the following six forms: (I) an elementary action a; (2) the sequen
tial composition s 1; s2 of statements s 1 and s2 ; (3) the nondeterministic choice s 1 Us2, also 
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known as local nondeterminism [FHLRJ: s 1 Us 2 is executed by executing either s 1 or s2 chosen 

nondeterministically; (4) the concurrent execution s1 l\s 2 , rnodeled by the arbitrary interleaving 

(shujjle) of the elementary actions of s 1 and s 2 ; (5) a statement variable x, which is (normally) 

used in: (6) the recursive construct µx[t ]: its execution amounts to execution of t where 

occurrences of x in t are executed by (recursively) executing µx[t]. For example, with the 

definition to be proposed presently, the intended meaning of µ.x[(a ;x) U b] is the set 

a*·bU{aw}. 
An important restriction of our language is that we consider only recursive constructs µx[t] 

for which t is guarded for x: t EL5. Intuitively, a statement t is guarded for x when all 

occurrences of x in t are preceded by some statement. More formally: 

DEFINITION 1.2 (Syntax for L5): The set La of statements which are guarded for x is given by 

t::= a\ t;sl t 1 Ut2 \ til\t2\ yl µx[t]\ µy[t'] 

where s EL0 , y:;rf=x, and t' EL6 nL/.). 

It appears to be useful to have the languages under consideration contain a special element, 

denoted by E, which can be regarded as the empty statement. From now on E is considered to 

be an element of L 0 , and L6. We shall still write L 0 for Lo U {E} and L6 for L6 U {£}. 

Please note that syntactic constructs like s ;E or Ells are not in Lo. 
Now that we have formulated the notion of guardedness for x, we can easily generalise this: 

DEFINITION 1.3 (Guarded statements): The set Le of guarded statements (guarded for all x) is 

defined as L6 = nxeStmv Lfi. 

As L 0 and L6, also Le has a simple inductive structure: 

LEMMA 1.4: The set L6 can be given by the following syntax: 

t::= a\t;slt 1 Ut2lt 1 llt 2 1µ.x[t] 

where sELo. 

We have the usual notion of free variables, that is, variables that are not bound by any 

operator µ. A statement containing no free variables is called closed. We define for L =L0 , 

Lfi, and L81: U 1={s\sEL\ closed (s)}. We have: (Lo)c/ = (L6Y' = (LU1. 

We expect that the reader may benefit from a few examples. First, we observe that 

L6 ~L6 <;;;;,L 0 • Further, we have that 

xELo, xft'.Lfi,y;xELfi,y;xft'.L/.l 

µx(Y;x]ELo, µy(Y;x]tlLo, a;µx[y;x]ELB nl.{), µy[a;µx[y;x)]ELo. 

1.2 Operational semantics 
We first introduce a semantic universe for both the operational and the denotational semantics 
for L 0 . 

DEFINITION 1.5 (Semantic universe P 0): Let A 00 , the set of finite and infinite words over A, be 

given by A 00 = A* UA "'. For the empty word we use the special symbol!. Let dA~ denote the 

usual metric on A 00 • We define P0 = 0'nc(A 00 ), with typical elements p,q, ... , the set of all 

non-empty, compact subsets of A 00 • As a metric on P 0 we take dp0 = (dA ~ )H, the Hausdorff dis

tance induced by dA ~ . We have that Po together with the metric dp 0 is a complete metric space. 
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The operational semantics for Lo is based on the notion of a transition relation: 

DEFINITION 1.6 (Transition relation for L6): We define a transition relation """' <;;; L6 XA XLo a 
(writing s"""'s' for (s,a,s') E __,,) as the smallest relation satisfying a 
(i) a__,,E (for all a EA) 
(ii) for all a EA, s,tEL6, s',sEL0 : if s'=FE, then: 

a a a a 
s"""'s' =<> (s;s__,,s';s /\ sUt__,,s' I\ tUs"""'s' 

a a a 
I\ silt __,,s'llt /\ tlls _,,tits' /\ µx[s]__,,s'[µx[s]/x]), 

where the latter statement is obtained by replacing all free occurrences of x in s by µx[s ]; 
and if s'=E, then: 

a a a a 
s """' E =;. (s ;s __,, s /\ s u t __,, E (\ t us __,, E 

a a a 
I\ sllt"""'t /\ tlls__,,t I\ µx[s]__,,£). 

a 
Intuitively, s__,,s' tells us that s can do the elementary action a as a first step, resulting in the 

statements'. We now give the definition of 190 , the operational semantics for Lf}. (It is defined 
on closed statements only, because we do not want to give an operational meaning to, e.g., a ;x: 
what should it be?) It will be the fixed point of the following contraction. 

DEFINITION 1.7 (<l>o): Let <l>o:(Lfj__,,po)__,,(L81__,,Po) be given, for FELf}~Po andsEL81, by 

{
{(} ifs = E 

<l>o(F)(s) = a 
LJ { a·F(s') Is' EL31 f\a EA /\s~s'} ifs =F E. 

It is straightforward to prove that 11>0 is contracting. (As a metric on Lfj ~p 0 we take 
d(F1>F2) = SUPs 0 L~ {dp0 (F1(s),F2(s))}.) 

DEFINITION 1.8 : 190 =Fixed Point(<l>0) 

We give yet another characterisation of 190 . It is based on the following definition and will be 
the one we use in proving semantic equivalence. 

DEFINITION 1.9 (Initial steps): We define a function I:L6~Gj'ftn(A XLo) (where 
<iP.ftn(X) = {YI Y <;;;X I\ finite (Y)}) by induction on L6: 
(i) /(£)=0,andJ(a)={(a, E)} 
(ii) Suppose I(s)={(a;, s;)}, J(t)={(b1, t;)} for s,tEL6,a;,b1EA, S;,l;ELo. (The variables i 

and j range over some finite sets of indices, which we have omitted.) Then 

I(s;S) = {(a;, s;;S)} (forsEL0 ), I(sUt) = J(s)UJ(t) 

!(slit) = {(a;, S;ilt)} U {(b1, sl!t;)}, I(µ.x[s]) = {(a;, s;[µx[s]/x])}. 

This definition is motivated by the following lemma, which can be easily proved. 

a 
LEMMA 1.10: 'rlaEA'rlsELffis'ELo [s--;;s' <:=>(a, s')EJ(s)] 
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COROLLARY 1.11: <Po(F)(s)= u {a·F(s')I (a,s')EJ(s)}, for F:L51 -'>Po, SEL81 \ {£}. 

l.3 Denotational semantics 
The second semantic function we define for L 0 will be denotational: We call a semantic func
tion F :Lo-"M (where M is some mathematical domain) denotational if it is compositionally 
defined and tackles recursion with the help of fixed points. The first condition is satisfied if for 
every syntactic operator op in L 0 we can define a corresponding semantic operator 
op:MXM-"M (assuming op to be binary) such that 

F(s1ops2) = F(s 1)0pF(s2). 

As semantic domain for the denotational semantics of Lo we take again P0 . The semantic 
operators corresponding with ; , U and II, the syntactic operators in L 0 , will be of type 
P0 XPo-"Po. 

DEFINITION 1.12 (Sei:p.antic operators) 
The operators ;, U, II: P 0 X P o-"P 0 are defined as follows. Let p, q E P 0 , then 

(i) - {q if p = { (} 
p;q = LJ{a·(pa; q)IPa*0} otherwise 

(ii) p U q = p U q (set - theoretic union) 

pLJq = 1~ 
LJ{a·(pall q)IPa*0} U LJ{a·(pll qa)I qa*0} 

(iii) 

where for every p EP0 and a EA we define: 

Pa= { w I w EA 00 !\a·w Ep }. 

(We often write op rather than op if no confusion is possible.) 

REMARKS 1.13 

ifq={<} 
ifp = {<} 

otherwise, 

(I) Definitions (i) and (iii) are self-referef!_tial and need some justification. We shall give it 
for ; and leave the case of II to the reader. We define a mapping: 
<l>:(P 0 X Po-"Po)-"(Po XPo-"Po) by 

{
q ifp = {<} 

<l>(F)(p,q) = U { a·F(pa,q) I Pa* 0} otherwise. 

It is not difficult to show that <I> is contracting. Then we define: ; =Fixed Point(<l>), which 
satisfies the equation of definition 1.16 above. 

(2) If we define the left-merge operator lL by 

{
0 ifp = {t:} 

pllq = U {a·(pall q)IPa*0} otherwise, 

then we will have thatpllq= pll_qU qLi_p (using the fact thatp'llq'=q'llp', for allp' and 
q'). This abbreviation will be helpful in some future proofs. 

We shall treat recursion with the help of environments, which are used to store and retrieve 
meanings of statement variables. They are defined in 
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DEFINITION 1.14 (Semantic environments) 
The set f of semantic environments, with typical elements y, is given by r = Stmv_.fi11 P0 . We 
write y{plx} for a variant of y which is like y but with y{plx}(x)=p. 

Now we have defined everything we need to introduce the denotational semantics for L 0 . 

DEFINITION 1.15 ('Yo. Do) 
We shall define D 0 as the fixed point of 'l'o:(L 0 ->f-> 1P 0)-; (Lo->f-; 1P 0 ), which is given by 
induction on L 0 . (Here f -; 1 P0 denotes the set of non-distance-increasing functions from r to 
Po.) Let FEL0->f -> 1 P 0 , then: 

(i) 'l'o(F)(a)(y)={a}, 'l'o(F)(x)(y)=y(x), 'lro(F)(E)(y)= {€} 

(ii) 'lro(F)(s op t)(y) = 'lro(F)(s)(y) op '¥0 (F)(t)(y) 

(iii) '¥0 (F)(µ.x[s])(y) = '¥0 (F)(s)(y{F(µ.x[s])(y)!x)) for sEL(j, 

for op=;, U, II, and op as in definition 1.12. (We define '¥0(F) only for those s and y, such 
that FV(s)c;;,dom(y).) Now we set D 0 = Fixed Point(%). 

We have: D 0[µ.x[s j](y) = Do[s ](y{ D 0 [µ.x[s j](y)/ x} ). 
The fact that we consider only guarded recursion is essential for the proof (omitted here) that 

'I' 0 is contracting. 

1.4 Semantic equivalence of 00 and 0v0 
An important difference between 6] 0 and '90 is that recursion is treated with and without 
semantic environments, respectively. We have 

6Do[µ.x[s J](y) = 6Do[s](y{6Do[µ.x[s j](y) Ix}) 

and 

l'lo[µ.x[sl] = l9o[s[µ.x[s]/ xj]. 

In the latter case the statement µ.x[s] is syntactically substituted for all free statement variables 
x in s, whereas in the first case the environment y is changed by setting x to the semantic value 
of µ.x[s]. We shall compare '90 and 6Do by relating both to an intermediate semantic function 
(90 ', which takes syntactic instead of semantic environments as arguments. It will be defined 
such that for syntactic environments 8: 

l'lo'[µ.x[sl](8) = '9o'[s](8{µ.x[s]lx}). 

Here 8 is changed, the new value of x is the statement µ.x[s ]. By first comparing (90 and i:v and 
next 00 ' and 6Do we are able to prove the main result of this section: 0o[s] = Do[s](y), for all 
sELfi1 and arbitrary yEf. For the definition of l'l0 ', we need 

DEFINITION 1.16 (Syntactic environments) 
The set ~ of syntactic environments, with typical elements 8, is defined by 

~ = { 8 I 8E(Stmv->fin L 0 )/\(8 is normal)}, 

where the notion of normal environments is given in: 

DEFINITION 1.17 (Normal environments) 
A syntactic environment 8 is called normal whenever 

(i) 'VxEdom(8) [8(x)EL6] 

(ii) '<:fsELo [FV(s)c;;,dom(8)=>3k;;.O [s[8]kcL61]], 
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where s[of =s, s[o]1 =s[o(x 1)/x1' ... ,6(xn)lxn] (with FV(s)={xi. ... ,xn}) and 
s[or+ 1 =(s[o])[or. For o normal and seL0, with FV(s)Cdom(o), we define s<o> = s[oJ", 
where k = min{m ls[oFeLn. 

REMARKS 1.18 
(1) From now on we shall assume whenever we consider seL0 and oeA together (as two 

arguments for a function, or as a pair) that FV(s) Cdom(o). 
(2) Let OEStmv-+fi" Lo be such that for x,yeStmv: o(x)=y and o(y)=x. Such an environment 

is not normal. It does not give us any useful information about the values of x and y. 
(3) It would be too restrictive to require for all oEStmv-+finLo that 'Vxedom(o) [x[o]ELfi1]. 

An example may illustrate this. Let o be defined such that dom ( o) = { x,y } , and 

o(y)= µy[b ;x ;y ], o(x)=µx[a ;µy[b ;x ;y ]]. 

Such an environment we shall encounter when computing 00 '[µx[a ;µy[b ;x ;y ]]]. Now 
y[o]= 5(y)~L81, buty[o]2 eLf;t. 

Now that we have introduced syntactic environments, we can formulate a principle of induc
tion for the set Lo X A, which we shall heavily use in the sequel. 

TuEOREM 1.19 (Induction principle for Lo X A): Let EC Lo X A. If 

(1) A XllkE 

then: 

(2) {s,t}XA~E => {s;s,sUt, silt} XllCEfor s,t, seL0 

(3) {s}XACE: => {µx[s]}XllCEfor seL~ 

(4) (o(x),5)eE: => (x,o)eE for x eStmv and Sell, 

E = L 0 XA. 

We cannot reason about a free statement variable x unless we know what statement it is 
bound to. Therefore, we consider non-closed statements together with syntactic environments, 
which give information about the free variables they contain. This explains why we have formu
lated an induction principle for L 0 XA instead of Lo only. 

Now let ECL0 XA. The first three conditions of the principle suffice to prove that 
~ XACE, since they express exactly the syntactic structure of L6 (see lemma 1.4). (We have 
chosen Lo here instead of L~, because the latter set has no simple inductive structure.) Thus 
also L81 XA ( CL6 XA) c:::. Adding condition (4) enables us to prove L0 X/lkE. This may 
be motivated by the following. For every statements eL0 and normal environment oeA there 
exists an /el\I such that s[8]1eL31 C~- Let us call kel\I with k=min{/ls[o]1eL81 } the degree 
of closedness of s with respect to o. Please note that every seL~ has degree 0, and arbitrary 
s E L0 has, for arbitrary {), a finite degree. Therefore, this degree can be used as a measure for 
the complexity of statements. Our induction principle is indeed a principle of induction on the 
degree of closedness. Conditions (1), (2), and (3) are sufficient to prove E for all (s, o) with 
degree 0. They form, so to speak, the basis of the principle. Condition (4) expresses the "step 
part": if E holds for (5(x),5), which has degree k, say, then E holds for (x,o), which then has 
degree k + 1. 

We now proceed with the definition of 00 '. It will be of type 0o':Lo-'>A-'>Po, which could be 
called intermediate between 0a:L81-'>Po and D0 :L0 _,,f_,,P0 • Instead of basing the definition 
of 00 ' on some transition relation (as in definition 1.7) we use a variant of the initial step func
tion (definition 1. 9). 
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DEFINITION 1.20 (Initial steps with syntactic environments): We define a function 
l':L0 -'>/::,.-""GJ'ftn(A X Lo X /::,.), using the induction principle for L 0 X /::,.. The predicate ::: c;;:; L 0 X D. 
we use is defined as: 

S(s,8) - J'(s)(o) is defined. 

We shall define I' such that ::: satisfies the induction conditions. Thus we ensure that I' is 
defined for every s ELo and 8 ELl (with FV(s )c;;:;dom(8)). 
(I) 1'(£)(8)= 0, and J'(a)(8)={(a,£,o)}, for all a EA, 8ED.. 
(2) Suppose J'(s)=AB·{(a,,s;,o,)}, l'(t)=AB·{(bi,ti,81 )} for s,t,s,,t1 EL 0 , a,,h1 EA, 81,81 ED.. 

(The variables i and j range over some finite sets of indices, which are omitted.) Then: 

l'(s;S)(8) ={(a,, s1;s, 81 )} (jorsEL 0 ) 

l'(s Ut)(o) = l'(s)(8)UJ'(t)(o) 

J'(sllt)(o) = {(a;, s,llt, 81)} u {(h1 , slltr 81 )} 

(3) For the definition of J'(µx[s]) we have to consider possible clashes of variables. There
fore, we distinguish between two cases (supposing that l'(s) has already been defined): 

{
I'(s)(o{µx[s]/x}) if xfl:dom(o) 

l'(µx[s ])(8) = 
l'(S)(o{µX[S]lx}) if xEdom(8), 

where x is some fresh variable with x <idom(o) and s=s[x Ix]. 
(4) Suppose J'(8(x))(8) has already been defined. We set: 

l'(x )(o) = l'(o(x ))(o). 

Note that if J'(s)(o)={(a;,s;,81)}, then for all i and xEStmv: if xEdom(o)ndom(o;), then 
8(x)=8,(x). 

DEFINITION 1.21 (<flo'): We define <flo':(Lo-'>/::,.-'>Po)-'> (Lo-'>Ll-'>Po) by 

{
{€} if s=E 

<l>o'(F)(s)(o) = U {a·F(s')(8')1(a,s',8')El'(s)(8)} otherwise 

for FELo-""6,.-""Po, sEL 0 , and 8Eb. with FV(s)c;;:;dom(8). 

DEFINITION 1.22: 0o' =Fixed Point(<flo') 

Next, we compare (90 and (90 '. We can do this by relating I and!', since we have: 

0o[sD = U {a·0o[s'D l(a,s')El(s)}, for sEL61• s=j=E 

00 '[sD(o) = U {a·l90 '[s'](8')1(a,s',o')El'(s)(o)}, for sEL0 , s=j=E, 8ED.. 

THEOREM 1.23 (Relating I and J'): For all sELo and oEt:.., with FV(s)c;;:;dom(8), we have: 

'r;/a EA 'r:/s' ELo 'r:/8' Ell [(a,s',o')E/'(s)(o) ~ (a,s'<o'>)E/(s<8>)]. 

(For the definition of s<8> see definition 1.17.) 

The proof should generalise the intuitively obvious fact that, for s with x occurring freely in 
s: (a,s',o')E l'(s )(8{µ.x(s ]/ x}) ~ (a,s' <8'>) El(s[µx[s] Ix]). 

We formulate the relation of (90 and 00 ' in terms of their defining contractions <I>o and <I>o'· 
This can be elegantly done using the following 
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DEFINITION l.24: We define < > :(Lf}->Po)--> (L0 ->ll~Po), for every FELf} ~Po, by 

<>(F) = F<> (notation) = "AsEL 0 ·ME!:.· F(s<o>). 

This mapping links two kinds of semantic functions, of which the first uses syntactic environ
ments whereas the second does not. If FEL81 ~P0 , then p<> is a in a sense extended version 
of F: it can take as an argument also statements s E Lo that are not closed, provided it is sup
plied with a syntactic environment, which is to give the (syntactic) values for the free variables 
ins. 

THEOREM 1.25 (Relating 4>0 and 4>0 '): "IFELf}->Po (il>o'(F<>) =(<l>o(F))<>J 

PROOF: The theorem is an immediate consequence of theorem 1.23. Let FEL81->P 0 , let 
s EL0, s=/=E. 

4>0 '(F<>)(s)(o) = U {a·F<>(s')(o')i(a,s',o')EJ'(s)(o)} 

U { a·F(s' <o'>) I (a,s',o')El'(s)(o)} 

=[theorem 1.23] U {a·F(s'<o'>)l(a,s'<o'>)El(s<o>)} 

= <l>o(F)(s<o>) = (4>0(F))<>(s)(o). 

Because 4>0 and cl>0 ' are contractions with l'lo and l'l0 ' as their respective fixed points, we have: 

COROLLARY 1.26 (l'lo'=C~if>): "lsELo "ifoE!:. [Oo'[s](o)= l'lo[s<o>]]. 

Finally we relate 00 ':L0 ->t::,.~P 0 and 0])0 :L0~r ~Po. For this purpose we define the follow
ing mapping: 

DEFINITION 1.27: We define ~:(Lo->I'->Po)->(Lo-> D.->Po) by: 
- -F 

~(F) = F (notation) = A.s EL 0 ·ME!::,.· F(s)(o ) 
-F -F -F 

for FELo---:I'.->Po, where o is given by o = N:Edom(o)-F(o(x))(o ). (We often write o 
rather than of if from the context it is clear which F should be taken.) 

We have to justify the self-referential definition of o. For this purpose we define 

E(s,o) - "ifxEFV(s) [s\tL6->(o(x) is well defined)], 

for sEL0 and oE!:., and use the induction principle to prove: E=L0 X!:.. Then it follows for 
all x EStmv with x Edom(o) that o(x) is well defined. Conditions (I) through (3) of the ~nduc
tion principle are trivially fulfilled. We prove con~ition (4). Suppose (o(x),o)EE. Thus o(yl is 
well defined for allyEFV(o(x)). This implies that o(x) is well defined, since o(x) = F(o(x))(o). 

In the same way as < >, also ~ links two different kinds 9f semantic functions, one using 
syntactic, and the other using semantic environments. Again F is an extended version of F in 
the sense that it takes syntactic environments as an :i.rgument instead of semantic ones. In the 
definition above, a syntac:_tic environment oE!::,. is changed into a semantic version (according to 
the semantic function F) o of it, which then is supplied as an argument to F. 

Next, we come to the main theorem of this chapter. It relates the denotational seman~ics 6D0 

and the operational semantics l'l'0 , which is a fix~d point of cl>'0 , by stating that also 6D0 is a 
fixed point of il>'0 . From this it follows that (90 '=6D0 . 

THEOREM 1.28: <l>o'(6LJo)=6Do 
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PROOF: Let :::: c; Lox l\ be defined by 

E(s, o) = <l>o'(6Do)(s)(o) = 0U0 (s)(o) 

for (s, o)E Lox 6. We use the ip.duction principl~ for Lox 6 to show that :::: =Lox~- Let 8 El\. 
( !) For a EA we have <1>0 '(6D0 )(a)(o) = {a}= 0u0 (a)(o), so A x ~ c; ::::. 
(2) Let s,t ELo and suppose E(s, o) and E(r, o). We show: E(s lit, o). 

<l>0 '( 6ll0 )(sllt)(o) = [definition $ 0 ' and J'(sllt)] 

U {a'·6Do(s'llt)(8')1 (a',s',o')El'(s)(8)} U 

U {b'·6D0(sllt')(8')1 (b',t',8')El'(1)(8)} 

= U {a'·(GDo(s')(o')li'~0 (t)(8'))1 (a',s',8')El'(s)(o)} u 
- -u { b' ·(GDo(s )( o') II 6Do(t')( 8')) I (b'' /1 , 8') E ]' (t )( o)} 

= [see remark after definition 1.20] 
- -U {a'·(0Llo(s')(8')11 6ll0 (t)(8))1 (a',s'.8')El'(s)(8)} U 
- -U {b'·(0Vo(s)(8)11''lla(l')(8')) I (b',t',8')El'(t)(o)} 

= [definition lL (see remark 1.13(2))] 

(( U {a'·0U0 (s')(8')1 (a',s',8 1)El'(s)(8)})ll GD0(t)(o)) U 
- -(( U {b'·GlJo(t')(o')I (b',t',8')El'(t)(8)})ll 6Do(s)(8)) 

= [definition <l>0 '] 

- - ,.. -(<l>o'(liDo)(s)(o)lL 6Do(t)(8)) U (<l>0 '(6] 0 )(t)(8)ll 6D0 (s)(8)) 

= [we have E(s,8) and E(t,8)] 
- - - -(GDo(s)(o)lL 6lJo(t)(8)) u ("Do(t)(o)ll 6lJo(s)(8)) 
- - -= 6Do(s)(8)116Do(t)(8) = "Do(sllt)(o). 

This proves E(s lit, 8). The cases E(s ;s,8) and E(s U t, 8) are very similar. 
(3) Let sEL6 and suppose {s} Xl\<.;;;E. We show: E(µ.x[s],8). Assume (without loss of gen

erality) that x ridom(o). Then 

1>0 '(GD0 )(µ.x[s])(o) =[definition il>0 ' and 1'(µ.x[s])(8); let 8'=8{µ.x[s]lx}] 

U {a'·6D0 (s')(o')I (a',s',o')El'(s)(8')} 

= <I>o'("Do)(s)(o') 

= [we have E(s,o')] GD0(s)(o') = 6Do[s](S') 

=[definition S'] 6D0 [s](S{ 6ll0 [µ.x[s]](S)/x}) 

= [definition 6llol 6Do[µ.x[sj](o) = 6D0(µ.x(s])(o) 

This proves E(µ.x[s ],o). 
(4) Let x EStmv, suppose E(8(x),8). Now 

<I>0 '(6U0)(x)(8) = [definition <1>0 ' and l'(x)(o)] <I>a'( 6Do)(o(x))(o) 

= [because E(8(x),8)] 0ii0 (o(x))(8) = 6Do[o(x)](S) 

= (definition 8] B(x) = GD0[x](S) = Gua(x)(o). 
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Thus 2:(x, o). 
The induction principle now implies:::::= L 0 Xl.l. D 

As an immediate consequence of this theorem, we have 

COROLLARY 1.29 (0o'=®a): 'r/sELo 'r/oE!:.. [<9o'[s](8)= 6Do[s](S)]. 

The combination of corollaries 1.26 and 1.29 yields the main theorem of this section. 

THEOREM 1.30 (tlif> =(~o}: 'r/sELo 'r/8Et:.. [19o[s<o>]= 6Do[s](B)]. 

COROLLARY 1.31: ForallsEL~, andarbitraryyEI': <9a[s] = 6Do[s](y). 

LS Summary of section 1 
It may be useful to give a short overview of this section. We have defined an operational 
semantics (90 for Lo as the fixed point of 4>0 , and a denotational semantics 6D0 as the fixed point 
of o/0 . We have related 190 and 6Do via an intermediate semantic function 190 ', defined as the 
fixed point of <P0 '. To be more precise, we have related <P0 , '1'0 , and <Po' using mappings <> 
and ~, for which we have proved some properties, schematically represented by the following 
diagram: 

<l>o 

L3'-;Po -; LS' ->Po 

<>t * t<> 
<!>,' 

Lo-;t:,,,-;Po -> Lo-;!:..->Po 

"'l *fix l"' 
+o 

L0 -;f-;P0 -; L 0-;f ->Po 

The * in the upper rectangle indicates that it commutes, the symbol *fix in the lower rectangle 
indicates that it commutes only for the fixed point of '1'0 (that is, 6D0 ). Please note that * has 
been formulated as theorem 1.25, and *fix as theorem 1.28. The main result of section 1 
(theore!? 1.30) follows from this diagram, because * implies: 19if > = 00 ' and *fix implies: 
l9o' = 01lo. 

2. SEMANTIC EQUIVALENCE FOR OTHER LANGUAGES 
In [KR], the full paper of which this is an extended abstract, the method of proving semantic 

equivalence defined in the previous section is applied to two other languages, L 1 and L 2 , which 
we shall briefly describe here. Finally, we shall mention two other parallel languages (POOL 
and Concurrent Prolog) to which this method has been successfully applied. 

For L 1 we introduce some structure to the (possibly infinite) alphabet A of elementary 
actions. Let C <;;;;A be a subset of so-called communications. From now on let c range over C 
and a,b over A. Similarly to CCS [Mi] or CSP [Ho], we stipulate a bijection - :C---'>C with 
- 0 - = idc. It yields for every c EC a matching communication - ( c ), which will be denoted by 
c. In A \ C we have a special element r denoting a successful communication. Let Stmv, with 
typical elements x,y, ... , be again the set of statement variables. 

DEFINITION 2.1 (Syntax for L 1): The set L 1, with typical elements s,t, ... , is given by 
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s:: =a ls1 ;s2 ls1 +s2 ls1 lls2 Ix lµx[t] 

where t is guarded for x. Note that a EA :;;;;i C. 

In [KR], an operational semantics '9 1:L 1_,.p 1 and a denotational semantics 0111 :L 1 _,.f _,.p 1 
are defined along the lines of the previous section. An importance difference is the use of a so
called reflexive domain P1 for the denotational semantics of L 1 (as will be the case for L 2 , 
described below), being a solution of some domain equation in the style of Plotkin ([Pll]) and 
Scott ([Sc)). In a metric setting these domain equations have been treated in [BZ] and [AR]. 
Then the method of section 1 is straightforwardly generalised. A slight complication in e:roving 
the semantic equivalence of 81 and 611 1 is the difference between the domains P 1 and P 1: the 
first contains sets of sequences, whereas the latter has tree-like structures for its elements. (This 
difference is sometimes characterised by the terms linear time semantics versus branching time 
semantics.) As a consequence of this, we compare (91 and 0D1 via two intermediate models 
instead of just one. It is shown that the following diagram commutes: 

<I>, 

L)1 _,.p I _,. L)1 _,.p I 

<>! * !<> 
<I>,' 

LI _,.fl._,.p I _,. LI _,.fl._,.p I 

aj * ja 
>!',' 

LI _,.fl._,.p I _,. LI _,.fl._,.p I 

~t *fix t~ 

L 1 ...... r _,.J> 1 

>!', 
_,. L1_,.f_,.p1 

where (as in subsection 1.5) * indicates commutativity and *fix indicates commutativity with 
respect to the fixed point of '11 1 (that is, 6))1); <I>, <I>', '11 and 'lt' are suitably defined contractions; 
and a.:P 1_,.p 1 is an abstraction operation, mapping branching structures onto sets of 
sequences. 
From this diagram it follows that for all sEL}1 and arbitrary yEf: 

'91 [s] = a.(6111 [s](y)). 

The third language discussed in [KR] is a nonuniforrn language. Elementary actions are no 
longer uninterpreted but taken as either assignments or tests. Communication actions c and c 
are refined to actions c?v and c!e (with v variable and e an expression), and successful com
munication now involves two effects: both synchronisation (as in the language L 1 ), and value 
passing: the (current) value of e is assigned to v. Thus, we have here the synchronous 
handshaking variety of message passing in the sense of CCS or CSP. In the definition of the 
syntax of L 2, we need three new syntactic categories, viz.: the set Var, with elements v,w, of 
individual variables; the set Exp, with elements e, of expressions; and the set Bexp, with ele
ments b, of boolean expressions. We shall not specify a syntax for Exp and Bexp. We assume 
that (boolean) expressions are of an elementary kind; in particular, they have no side effects 
and their evaluation always terminates. Statement variables x,y, ... are as before, as are the 
communications c EC. The latter now appear syntactically as part of value passing communica
tion actions c?v or c!e. 

DEFINITION 2.2 (Syntax for L2) 

s:: = v: = e I b I c?v I c!e Is 1;s2Is1 + s2Is1 lls2 Ix I µx[t ], 

where t is guarded for x. 
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The semantic domains for the operational semantics 02 and the denotational semantics % of 
L 2 are somewhat more intricate than the semantics of L 1 : they now involve the notion of state. 
But this turns out to be irrelevant for the proof of the semantic equivalence of 02 and % 
(defined similarly to 01 and 6D1 ), which is established in exactly the same way as for L 1• 

We would like to conclude this section by mentioning two other examples. Along the lines of 
this paper, we have proved the semantic equivalence of an operational and a denotational 
semantics (defined in [ABKRl] and [ABKR2], respectively) for POOL, which is an acronym for 
parallel object-oriented language (defined in [Am]). At first sight, these two semantics seem to 
be quite different; a major problem is the fact that the denotational semantics uses continua
tions, whereas the operational semantics does not. Moreover, the denotational semantics has for 
its semantic domain a rather intricate version of Plotkin's domain of resumptions ([Pll ]). 
Nevertheless, also this language fits smoothly into our approach (see [Ru2]). Finally, it is also 
possible to apply the method in the domain of (concurrent) logic programming. In [Kol], a 
compositional semantics for Concurrent Prolog is defined. The main idea is to describe the 
meaning of a program with the help of substitution transforming processes rather than state 
transforming processes. This semantics can be related to an operational one, which is based 
on the use of transition systems, by the method described above. There are some complica
tions due to the atomic execution of guards, but the skeleton of the proof remains the same. 
The result will be described in [Ko2]. 

3. CONCLUSIONS 

We have developed a uniform method of comparing different semantic models for imperative 
concurrent programming languages. We have defined operational and denotational semantic 
models for such languages as fixed points of contractions on complete metric spaces, and have 
related them by relating their corresponding contractions. Here, we benefit from the metric 
structure of the underlying mathematical domains, which ensures the uniqueness of the fixed 
point of such contractions (Banach's theorem). It turns out that once this method has been 
applied to a certain (simple) language (L0 ), it can be easily generalised to more complex 
languages (L 1 and L 2). This we consider to be the strength of our approach. Recently, we 
have investigated possible extensions of this method to deal with yet other languages, contain
ing, e.g., program constructs for process creation. This has resulted (in [Ru2]) in an 
equivalence proof for POOL, a parallel object-oriented language defined in [Am]. An 
equivalence proof for Concurrent Prolog will be presented in [Ko2). In [BM], a number of con
current languages, containing constructs for simultaneous recursion, is presented for which 
equivalence proofs are given along the lines of this paper. 

Our investigations are related to the question of full abstraction, which at the same time is a 
topic for further research. If L is a language with semantics 0 and 6D, then we call 6j) fully 
abstract with respect to e if 

'VseL'r/teL [6D[sJ=6D[t] ~ 'VC(·) [19[C(s)]=0[C(t)]], 

where CO ranges over the set of contexts for L, that is, the set of statements in L containing 
one or more holes. An example would bes;(·), where(·) denotes the hole. Given such a con
text C(·) and a statements, the statement C(s) is obtained by substituting s for all the holes in 
C(} The issue of full abstraction is mostly raised with respect to a model (9 that is operational, 
expressing a notion of observability, and a model 6j) that is compositional. Then it follows from 
a relation between 0 and 6D of the form 0=a0 6D that for alls and tEL: 

6D[s] =6D[t] =>'</CO [19[C(s)] =fi[C(t)]]. 
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(This property is sometimes called: correctness of GD with respect to 0.) Thus, our result of 
proving (')=a00] partly solves the problem of full abstraction. In [Ru!], a semantics for a sim
ple language like Lo is defined with the use of failure sets (introduced in [BHR]), which is 
shown to be fully abstract with respect to a given operational semantics. 
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