
A PROOF TECHNIQUE FOR REGISTER ATOMICITY
(Preliminary Version)

Baruch Awerbuch (l)
lefteris M. Kirousis (2!
Evangelos Kranakis <3l
Paul M. B. Vitdnyi (3,4)

ABSTRACT

An implementation of a concurrent data object is wait-free if any process
can complete any operation in a bounded number of steps, independently
of the execution speeds of the programs. Much recent work has been done
on concurrent access of shared variables by asynchronous processes. That
work shows that implementing such shared variables does not require syn­
chronization (by e.g. mutual exclusion), but can be solved in a wait-free
manner. A fruitful paradigm in this context is the notion of a shared regis­
ter satisfying a niceness condition called atomicity. Recent proposed
solutions have led to the realization that: (1) neither the problem to be
solved nor the model required were rigorously defined, (2) there was no
clear insight in what constitutes a good proof of correctness in the area,
and (3) the proposed protocols are so complicated that although correct­
ness may be possible in a "platonic fashion", verifiability seems impossi­
ble to attain by human beings. A lot of controversy and allegations about
constructions and proofs have arisen. Consequently, we have spent great
effort to put the area on a rigorous basis. The thrust of this paper is to pro­
vide a new proof technique, and demonstrate its applicability by a non­
trivial example. In other words, a new model is rigorously presented for
the first time, and then a new method is given for proving register atomi­
city. It is then used to give a simple proof of the atomicity of the first and
only direct construction of a multireader multiwriter register from atomic
I-reader I-writer r<'gisters. (This construction was given in [8], by two of
the present authors, with a completely different proof.)

(I) Depanment of Mathematics and Laboratory for Computer Science, MIT. Cambridge MA 02139, USA (2) University of Patras, Department of Mathematics, Patras, Greece
(3) Centrum voorWiskunde en Informatica, P.O. Box 4079. 1009 AB Amsterdam, The Netherlands (4) Faculteit Wiskunde en lnformatica, Universiteit van Amsterdam, The Nctherilrnds

287

1. Introduction

Concurrency control of asynchronous processes is often realized by actively serializing
concurrent actions, using synchronization primitives like mutual exclusion, semaphores,
and locking. Thus, although it seems that the actions are executed concurrently, in the
system they are actually executed serially in some order. It has been pointed out in [3]
that to implement such primitives we first need interprocess communication through a
shared memory unit, which we shall call a register, even if the processors communicate
by message passing. This suggests that the problem of simultaneous memory access
needs to be solved without recourse to synchronisation primitives. It is desired that such
a solution involves no waiting by one operator for another one. Thus we kill two birds
with one stone, since it is the waiting involved in synchronization methods to control the
communication between asynchronous participants, which may make such solutions
unacceptable. Note, that asynchrony need not be due solely to hardware, but can also be
caused by multiple users on the various machines. The problem of providing general
wait-free asynrhronous communication interfaces becomes more acute, as more and
more hardware from different technologies, scale and speed continue to be connected in
computer networks and other complexes. The purpose of the present investigation is to
examine the feasibility of such general interfaces. In particular, we analyse the problem
of how to implement a shared register which can be read by different asynchronous pro­
cessors (the readers) and be written by different asynchronous processors (the writers) in
a truly concurrent fashion. That is, without any restrictions to prevent simultaneous
access and making no assumptions, either about the relative durations of the reads and
writes, or about the actual timing of the lower level constituent operation executions.

More precisely, we are given some registers with certain restrictions on their mode
of operation, e.g. that only a certain number of operators are allowed to access each one
of them. We are asked to construct a more powerful (compound) register without some of
the original restrictions, while retaining some of the positive characteristics of the subre­
gisters, e.g. their serializable mode of operation (otherwise called atomicity). These
compound registers will comprise a set of registers (i.e. subregisters) and an operation
execution on the compound register will consist of a sequence of operation executions on
the subregisters that follow a given protocol. All we require from the constructed proto­
col is that it guarantees the existence of some total (i.e., linear) order in which the opera­
tion executions on the compound register could have taken place (external consistency).
This order, in some sense, represents the succession these operations seemingly follow.
Of course, for such a total order to be meaningful, it must satisfy certain additional
requirements. For example, there should be no second write placed by this order between
a read and the write it reads (internal consistency). If we assume that there is a global
(i.e. referring to all registers) time-reference system (otherwise, a global clock), and if all
subactions of an operation execution on the compound register precede in time all the
subactions of a second operation execution on the compound register, then this order
must place the second operation execution after the first one. In general, we have a rela­
tion on the operation executions which is naturally imposed by the problem (e.g., an acy­
clic relation that tells if an operation execution can have an influence on another), and we

288

desire the existence of a total order that extends this relation, but without violating the
above restrictions. If this is possible for each scenario of operation executions of a pro­
posed register, then the register is atomic.

In the next section we present the model rigourously, and give two general atomi­
city criteria that are suitable for proving register atomicity (the second criterion is a sim­
ple variation of the first, but is more suitable for I-writer registers). Our work is in the
spirit of the general 'causality' model proposed by Lamport [3], and we have no need to
assume the existence of a global clock. It considerably extends Lamport's work, notably
so by treating multiwriter registers in an order setting for the first time. Lamport avoids
this issue, and is explicit that his framework only covers single writer registers. More­
over, we focus sharper on concurrent register access, as opposed to concurrent operation
executions in general. We also investigate how the assumption of global time affects
these criteria, by proving a rather general shrinking function theorem. In Section 3 we
prove the atomicity of a multiwriter, multireader compound register directly constructed
from atomic I-writer, I -reader subregisters. This is the first atomic multiwriter register,
and was introduced by two of us in [8]. Using unbounded tags, it incorporates the essence
of the problem area in a simple and comprehensible algorithm. At this time of writing, it
still is the only published direct implementation from atomic I-reader I-writer registers.
The atomicity proof given here is based solely on causality considerations.

Previous work in this area is due to Bloom, Lamport, Peterson, and Vitanyi and
Awerbuch (see [I], [3], [6], [8]). More recent work can be found in PODC87 and
FOCS87.(*) Generally, the algorithms and proofs, especially of the ambitious bounded
tag algorithms in [8] and in the related papers in PODC87 and FOCS87, defy comprehen­
sion even by other workers in the field. Reference [8] contains the fairly simple
unbounded tag algorithm we present here, and a complicated bounded tag algorithm for a
subcase of the general question, together with a proof method. The bounded tag algo­
rithm contains an error (see Errata, FOCS87). A 'patched up' version of this algorithm
was presented by Peterson and Bums in FOCS87 [7], but was recently found to be
erroneous as well by Russell Schaefer. The reader, when consulting these references,
will find that inventing the 'right' formalism and level of rigour is of major importance in
this complicated area. In this paper we have succeeded developing simple formal criteria
and proof methods, and demonstrate their usefulness by proving a major but simple pro­
tocol correct in a convincing manner.

2. TheModel

A proto-register is an abstract data type, capable of holding values out of a given
domain of values. Initially the proto-register is empty. The operations that can be per­
formed on the proto-register are writes and reads. A write of a value puts that value in the
proto-register. A read reports a value from the domain.

(*) PODC87 stands for "Proceeding of 6th ACM Symposium on Principles of Distributed Com­
puting" held in Vancouver, Canaca, 1987, and FOCS87 stands for "28th Annual IEEE Symposium
on Foundations of Computer Scince" held in New York, USA, 1987.

I
!:
·1

289

We assume that such values have an identity apart from a value. That is, values
written by different write operation executions may have the same value, e.g. 0, but they
are not identical. The identity id(v) of a value v written by a write w is defined by
id(v)=w. (Thus, v=v' and id(v)~id(v') may be both true.) If a read operation execution
reports a value v, then either id (v)=w for a particular write w or else id (v) is undefined.
If a read r reports v with id (v)=w for some write w, then we say that r reports the value
written by w. The proto-register can be implemented by a multiset over a given domain.
That is, an unordered list of elements, where the same element can occur more than once.
A proto-register has associated with it a finite set of processors called the writers and a
finite set of processors called the readers. A processor can be both a reader and a writer.
A write can only be performed by a writer, while a read can only be performed by a
reader.

A sequential register is a proto-register where all operations are executed in
sequence, and an execution of a read operation reports the value written by the execution
of the last write operation that precedes it. A sequential register can be implemented by a
linear list. Originally, the list is empty. A write adds an element to the end of the list,
and a read reports the element at the end of the list.

We address the problems arising from true concurrency, where we allow simultane­
ous operation executions by different processors. However, simultaneous operation exe­
cutions by the same processor are excluded. Informally, we aim at a specification of a
general concurrent register, register for short, which corresponds as closely as possible
to that of the sequential register. In the atomic register defined below, the operations
may be actually executed concurrently, yet it will seem as if they were executed in
sequence. For read operations to report a value which was written by a write operation to

the register, there must be causal relations between the operations. We define an
'apparent' precedence relation (--7) on the set of operation executions, which captures the
crucial aspect of the causal relations between operation executions to the same register.

Remark. Lamport [3] defines two precedence relations --7 and----7, the semantics
of which are intended to be problem independent. If a "precedes'' relation on the subac­
tions of a ,b is defined, then a - - --7 h means ''some subaction of a precedes some
subaction of b '', and a --7 b means "each subaction of a precedes each subaction of
b." In the context of shared register access there is always an intended way for the
actions to interact, which ensures correctness of the algorithm. Therefore, it is advanta­
geous to reflect this essential causal relation between the actions of a particular algorithm
by a single made-to-measure precedence relation. This relation is our --7, not to be con­
fused with Larnport's --7, and will have an algorithm dependent semantics.

To define various degrees of niceness conditions on a register with simultaneous
operation executions, we need some formal definitions first. We use 'action' as synonym
for 'operation execution'.

A run p = (A, --7, 1t) consists of the following:

(R I) A finite or countably infinite set A of read and write actions. If R is the set ofread
actions and W is the set of write actions, which were actually performed during the

290

course of the run, then A =WuR and W rlR =0.

(R2) A reading mapping which is a partial function 1t : R ~ W.

(R3) An irreflexive partial order -7 on the set A of actions. We call ~ a precedence
relation. If a ~b then we say a precedes b. To initialize the run, there is an ini­
tial write that precedes all other actions. We moreover require that, for each a EA,
there are only finitely many b EA such that -,(a-7b). Informally, this means that a
run begins at some point in time, rather than extending in the infinite past [3], and
that an action cannot be infinitely long or infinitely small in duration.

Intuitively, a ~ b will imply that, in the aspect we deem important, a may
influence b, but b cannot influence a. Two actions a, b are called concurrent if
-,(a ~ b or b ~ a). I.e., if they arc incomparable in the relation -?. If w is a write and
r is a read , then w directly precedes r, if w ~r and there is no write w', such that ,
w ~w ~r.

Irreflexive orders.

All orders in this paper are irreflexive. For convenience, "total order" and "par­
tial order" will henceforth mean "irreflexive total order" and "irreflexive partial
order," respectively.

A run p =(A,-?, 1t) can now be classified into the following categories according
to how well it behaves under concurrent operations. The definitions below closely follow
the presentation of Lamport [3]. The 'normal' run is a new category we found advanta­
geous to introduce.

1. (safe) For each read r, that has no concurrent writes, 1t(r) is defined, and directly
precedes r.

2. (normal) For each read r, 1t(r) is defined, and 1t(r) either precedes r or is con­
current with r .

3. (regular) For each read r, 1t(r) is defined, and 1t(r) directly precedes r or is con­
current with r. (Hence a regular run is both safe and normal.)

4. (atomic) A run is atomic if it is normal and there is a total order =>, which we call
an atomic precedence relation, on the set A of actions, as follows.

(i) if a ~b then a =>b (external consistency), and

(ii) for each read r, 1t(r) is the write directly =>-preceding r (internal con­
sistency).

We say that=> atomically extends the precedence relation-?.

Without proof we state the hierarchy involved. Every atomic run is regular, but not
every regular run is atomic. By definition, regular runs are exactly the ones which are
both safe and normal. There are runs which are safe but not normal, and there are runs
which are normal but not safe.

A run is a possible set of operation executions by a register, a possible 'history'. We
now tie up the notion of a register and the notion of a run. Intuitively, a register is a
detenninistic 'black box' that reports a value in response to a read query. We can view

291

the function of this black box as associating a reading mapping with a given pair (A.~).

Since (A.~) i::; a high-level description, it is actually an equivalence class of different

finer grained descriptions. These differences may give rise to different responses to the

same read query. Thc;.:fore, the register associates a set of reading mappings with each

<A ,-7). Let n be the set of all its possible reading mappings. Formally, a register map­

ping REG: {(A ,-7)}-72n is a total mapping, that associates a nonempty set of reading

mappings 1t with each pair (A ,-7) satisfying (R 1), (R2) and (R3). With each register we

associate a register mapping. We assume that each processor actually executes opera­

tions to the register serially. This assumption is embodied in requirement (R4) below. If

K is a register and REGK is its associated register mapping, then a run p=(A .~,7t) of K

satisfies

(R4) if a and b are different actions by the same processor then either a-?b or b-?a,

and this total -7-order on the actions by the same processor is identical with the

serial order in which a processor executes its actions in A ;

(R5) 1t e REG K (A ,-7); and

(R6) if a read r returns a value v and id (v)=w, then 7t(r)=w.

A register is atomic (respectively regular, normal, safe) if each of its runs is

atomic (respectively regular, normal, safe). Obviously, the atomic register is the ideal

register; the operations may be concurrent, yet they seem to be executed in a serial

fashion, extending the given precedence relation (external consistency) and consistent

with the reading function (internal consistency).(*) Given a particular implementation of

a data structure, and having selected the particular precedence relation -7 we wish to

employ, it is often simple to check whether it is a safe, a normal, a regular register or

none of these. However, proving atomicity using the given definition, or its 'shrinking'

variant which we will meet below, turns out to be a difficult matter. Therefore, in the

next section we propose simple criteria which are necessary and sufficient for atomicity.

In a later section we show how to use these atomicity criteria for verifying that a pro­

posed construction implements an atomic register.

2.1. Atomicity Criteria

For a proposed data structure K to be an atomic register, it suffices to prove that each of

its runs, as defined in (R 1) through (R6), is atomic. Let p =(A ,-7,7t) be a normal run of

K, so 1t is total. We divide the set of actions A into equivalence classes induced by 1t.

Each such equivalence class, called a clan, is assodated with a write. The clan associ­

ated with a write w is the set [w l == {w }u{r E R : 1t(r) = w }. For any two writes w, w'

(*) The notion of register atomicity is closely related to what is called '(strict) serializability' in

conventional concurrency control, in particular in the context of databases with concurrent 'tran­
sactions'. See e.g. [5]. Concurrent transactions are usually called atomic if they are both serializ­

able and recoverable. Recoverability means that each transaction appears all-or-nothing: either it

executes to completion (in which case we say that it commits) or it cannot influence other transac­

tions (in which case we say that it aborts). Recoverability is a problem only in the presence of

failures. We assume that registers are failure-free, so we do not consider recoverability.

292

define [w] ~7t [w'] if and only if w ~ w' and there exist actions a e [w] and a' e [w']
such that a ~ a'. Note that ~7t is not necessarily acyclic. The following theorem is
basic for proving the atomicity of runs.

Theorem 2.1. (Atomicity Criterion)
Let p =(A,~. 7t) be a run. The following statements are equivalent:
(1) p is atomic.
(2) p is normal and ~7t is acyclic.

Proof.

(1) implies (2). Let p be atomic. By definition, atomicity implies normality, which
shows the first part of (2). To show the second part of (2), let => be a total order that
atomically extends ~. I.e., for each read r, we have

(i) 7t(r)=>r, and

(ii) there is no write w with 1t(r) => w => r.
We prove that ~7t is extendible to a total order, which implies acyclicity of ~it. It is
enough to show that for any two writes w, w' , if [w] ~it [w'] then w => w' .

Since => is a total order, the negation of w =>w' is equivalent to w' =>w. Therefore,
we only need to show that for any two writes w ,w', if w' => w then -.([w] ~it [w']).
Thus, suppose w' =>w. Exhaustive analysis of all cases shows that then the combination
of (i) and (ii) implies w' =>r' =>w ::}r, for all reads r E [w] and r' e [w']. Hence, there are
no a e [w] and a' e [w'] such that a --'?a1

• Therefore, -.([w]~7t[w']).
(2) implies (1). Assume (2) holds. It is clear that the transitive closure of ~it is a

partial order, which in tum can be extended to a total order =>7t. Since p is normal, for
each read re [w], we have -.(r ~ w). Hence, there is a total order =>[wJ on each [w]
atomically extending~ and such that w =>[w I r, for each read r e [w]. Define a unique
relation => on the set A as follows. For all a ,a' e A , a =>a' if and only if either
(i) a ,a' E [w] and a=>[w 1a', or

(ii) a e [w], a' e [w'], and [w] =>7t [w'].

Clearly,=> is a total order atomically extending~. It follows that p is atomic. •
The second atomicity theorem refers to registers with only one writer. In this case,

for each pair of different writes w ,w' eA, either w ~w' or w' ~w, by (R4). The
theorem is similar to a corresponding theorem in Lamport [3].

Theorem 2.2. (1-writer Atomicity Criterion)
Assume that K is a register with only one writer. Then for each run p =(A,~. 7t)
of K the following statements are equivalent:
(1) p is atomic.
(2) p is regular and 7t is weakly monotonic (i.e., if r ~ r', then either 1t(r) ~ 1t(r')
or 1t(r) = 1t(r')).

Proof.

(1) implies (2). Let p be atomic. Atomicity implies regularity. Therefore we only
need to prove weak monotonicity of 7t.

293

Let r ,r' e A be different reads with r ~r'. Since there is only one writer, we have
by (R4) that either 1t(r)~1t(r') or n(r)=n:(r') or 1t(r')~1t(r). Atomically extend ~ to a

total order ~. as in the definition of an atomic run. Exhaustive case analysis shows that,
by the properties of~, either 1t(r) ~ r ~ n(r') ~ r', or n(r) = n(r').

(2) implies (1). Let p be regular and 1t be weakly monotonic. By Theorem 2.1, if we
prove that ~it is acyclic, then we are done. Assume to the contrary, there is a cycle

[w] ~it [w']~it· • • ~1t[w] .

Since [w]~it[w'], there are a E [w] and a' e [w'], w:;ew', such that a ~a'. If both a and
a' are writes then w ~w'. If a ,a' are both reads, then by weak monotonicity of 7t, we
have w ~w'. If a is a read and a' ==w', then a ~w' ~w (=n(a)) contradicts normality of
p. Therefore w~w' by (R4). If a=w and a' is a read, then w' ~w~a' (7t(a')=w') con­
tradicts safety of p, and therefore w~w' by (R4) again. Hence, [w]~7t[w'] implies

w ~w'. Since this argument holds for all pairs of adjacent clans in the cycle, we obtain a
cycle w ~w' ~ · · · ~w. This contradicts that~ is a partial order. •

2.2. Compound Register

The most obvious approach to constructing a register is to build it from simpler ones. The
existence of such a simpler register is either postulated, or it is constructed from still
simpler registers. More precisely, a compound register consists of a finite number of
registers, called subregisters. The set of readers and writers of the compound register is
the union of the set of readers and writers of the subregisters. The subregisters are
allowed to hold a value out of a given domain. We can distinguish essentially two cases.
In one case the subregisters are simpler than the compound register in that their domain
of values is smaller than the value domain of the compound register. Then the construc­
tion for the compound register distributes the value to be stored piecemeal over the
subregisters. E.g., a positive integer n can be distributed in log n bits over log n boolean
subregisters. In the other case the set of readers and writers associated with the com­
pound register is larger than the set of readers and writers associated with each subregis­
ter. Then the construction for the compound register replicates the value to be stored as
versions in several subregisters. A reader has to determine the 'latest' version among the
versions it obtains from different subregisters. To make this possible, extra information
such as a 'timestamp' is attached to each version. As a result, the value domain of each
subregister has to be larger than the value domain of the compound register. The con­
struction of a compound register in this paper is of the latter type. To express their com­
plexity we use the following cost measures. Let V be the value domain of the compound
register, v == I V I , and let there be n readers and m writers associated with the compound
register. Let S ,T: V xNxN ~ N be total cost functions, with N the set of nonnegative
integers. Let the value domain of each subregister of the compound register be (iso­
morphically) contained in TAG xV, with I TAG I = S (v ,n ,m), the number of elements in

TAG. Then the space complexity of the compound register is log S (v ,n ,m). The pro­

cessors execute read or write actions on the compound register, independently of each

other but following a protocol. Let each read or write action by a given processor on the

294

compound register consist of at most T (v ,n ,m) read and/or write actions on the subregis­
ters. Then the time complexity of the compound register is T (v ,n ,m). An action on the
compound register is considered to be a higher-level operation execution of the same
nature as its subactions. Thus, with each run of the compound register is associated a run
of each subregister which constitutes the compound register. This means that we associ­
ate with each subregister a set of subactions related by a precedence relation. Sets of
subactions associated with different subregisters are disjoint. We assume that a processor
actually executes all its subactions in serial order. The disjoint precedence relations of
the subacti0ns on respective subregisters are related by the order in which each processor
executes its subactions. For the compound register we define a transitive precedence
relation (->>) on the set of all subactions involved, as follows.

Let K be a compound register comprising subrcgisters K 1, ... , Kn. Let p=(A .~.7t)
be a run of K ap.d let Pi=CAi .~i ,1tj) be the associated run of subregister Ki, l~i :01. The
precedence relation-» on the set U(~1Ai, is defined as the minimal transitive relation
that extends all precedence relations ~i, 1 g :01 , such that
(R7) if a and ~ are different subactions by the same processor, then either a-»13 or

13-»a., but not both, and this total -»-order on the subactions by the same proces­
sor is identical with the actual serial order in which the processor executes these
subactions; and

(R8) if a ,b EA and for each subaction a of a and each subaction 13 of b holds a-»J3,
then a~b.
Lemma 2.3.

->>is a partial order.

Proof.

Clearly, (R7) precludes -»-cycles containing two subactions by the same proces­
sor. Therefore, since the sets of subactions on the same subregisters are disjoint, any
-»-cycle contains only subactions on the same subregister. But these subaetions are par­
tially ordered, which contradicts such a -»-cycle.•

Finally, we need to express the 'registerhood' of the compound by suitably restrict­
ing the choice of~. That this is necessary can be seen from the following example. Let
K be a compound register consisting of subregisters K 1,K 2. Let p be a writer associated
with subregister K 1, and let q be a reader associated with subregister K 2, p :t:.q • Then
there is no way that q can read what p has written. Yet runs of K can satisfy (Rl)
through (R8) and even be atomic. For example, atomicity of K 1,K 2 implies atomicity of
K. Such anomalies are due to the fact that we have not yet required the existence of
causal relations between actions by different processors. There must be some causal
relation between a write and a read, since otherwise a reader cannot report what a writer
wrote. There must be some causal relation between two writes, because otherwise a
writer cannot replace the value in the register by the value it wants to write. However, it
is not necessary to have a causal relation between two reads; this b because neither do
reads have to change the value contained by the register, nor do they need to report what
the another read wrote. The following condition expresses these requirements on the

295

compound register in terms of subregisters. Assuming the general setting above:
(R9) if a ,b eA are not both reads, then there are subactions a of a and J3 of b, a,J3 are

not both subreads, and some i (I $i $n), such that a,J3e Ai . (a and J3 act on the same
subregister Ki .)

It follows that a choice of~ satisfying (R9) is 'proper' if the choices of the ~i's are
'proper.' This can be argued as follows. Assume that the ultimate subsub .. subregister is
atomic. If a ,b are not both reads, then there are subactions a of a and f3 of b , not both
reads, which act on the same subregister, and so on. At the atomic subsub .. subregister
level the subsub .. subactions involved have an apparent total order. Choose this as the
precedence relation. For convenience, let the Ki 's be the basic atomic subregisters, so
the ~i's are total orders. Then either a~i J3 or 13-~i a, but not both, by (R7). Suppose
a~i J3. If c ,d EA , c ~a and b ~d, then by (R8) we have c ~d. Suppose f3~i a. If
c ,d EA, a ~c and d ~b, then by (R8) we have d ~c. Using the precedence relations at
the previous level, we induce in this fashion a 'coarse' precedence relation at each next
higher level compound register. Our choice of~ is constrained to be an extension of
this coarse precedence relation. That is, (R7) through (R9) restrict the freedom of our
choice of~ appropriately, by ultimately reducing the constraints on our choice of pre­
cedence ~ to precedence at the elemental level.

2.3. Naming of Registers

Unfortunately, the naming conventions for types of registers are inconsistent. For a 1-
writer register, the operator who writes can simply remember the value it wrote last.
Therefore, the name 'I-writer, I-reader' register is used for a register that can be read by
both writer and reader [3]. By analogy, we use 'I-writer, (n-1)-reader' register for a
register that can be written by one writer and read by n -1 readers that cannot write. The
writer can always read as above. However, in an m-writer register, with m>l, while a
writer can remember what it wrote last, this value can have been overwritten by a later
write of another writer. Hence, here we might as well have writers that cannot read (in
addition to readers that cannot write). We will, however, only consider registers where
the writers can also read. For us, an 'm -writer, n -reader' rep:ister, m > l, designates a
register that can be written by m processors, and read by n processors including the m
writers (nan).

2.4. New Proof Technique

In the present paper we propose a new proof technique for proving the atomicity of com­
pound registers. In summary, our approach consists of the following method:
I. Find an appropriate partial order ~ between the high level reads and writes defined

in terms of the assumed partial order between the lower level reads and writes.
Induce the ~n relation on the set of clans defined by the reading mapping.

2. Find a way to totally order the writes, using the intuition which makes you believe
the protocol works correctly. Use this total order to prove that ~n is acyclic.

296

3. Example: Multiwriter Register
The matrix register is a compound n -writer, n -reader register constructed as a matrix of
atomic 1-writer, I -reader subregisters. The domain of values of the subregisters is the
cartesian product of the domain of values of the compound register with the nonnegative
integers. This is the first atomic multiwriter register [8], and at the time of writing still is
the only direct construction from atomic 1-reader I -writer subregisters. It may well be a
register of practical importance, because of its simplicity, elegance and low complexity
(cf. below). We prove correctness by application of the atomicity Theorem (Theorem
2.1).

Architecture.

Let p h····Pn be n processors and let K be an n xn matrix register consisting of n2
atomic, 1-reader, I-writer registers Ki ,) , i ,j = 1, ... ,n. Each Pi is a writer of (i.e., is con­
nected to the write terminal of) each Ki ,J. Each Pi is also a reader (i.e., is connected to
the read terminal) of each KJ ,i . Let V be the domain of values of the compound register.
Then Nx{l, ... , n }xV, with N the nonnegative integers, is the domain of values of each
subregister. A tag is a pair (k ,i), where k is a nonnegative integer and i e {I, ... ,n}. We
say that each subregister can hold a tag, next to a value from the domain V of the com­
pound register. All subregisters are initialized with tag (0, 1) and value 0. Moreover,
each run of the compound register starts with a write action, which precedes all other
actions, as required by (R3). The architecture is depicted in Figure 1.

Protocol.

The register K obeys the following protocol.

Pi writes the value v :

I. for all j = 1, ... ,n read Kj ,i (i.e., read the i th column);
2. determine the lexicographically largest tag (kmax•m);

3. set own tag to (k max+ 1, i);

4. for all j = 1,. .. ,n write on K;j (i.e., write to the ith row) the new tag, as well as the
value v.

Pi reads:

1. for all j = 1,. .. ,n read KJ ,i (i.e., read the i th column);
2. determine the lexicographically largest tag (k max•m) and let vm be the value con­

tained in a register with such a tag;
3. set own tag to (k max•m);

4. for all j = l,. .. ,n write to K;,j (i.e., write to the ith row) the new tag, as well as the
value Vm, which was determined in 2. (Also, report vm .)

Each action a by processor Pi consists of a set of subreads R (a , 1,i), ... , R (a ,n ,i)
followed by a set of subwrites W (a ,i, 1), ... , W (a ,i ,n), where the last two indices i ,j

297

......... f K4,3 f · ·f K 4,41

Figure 1: An action by processor P2 in the 4-rcader, 4-writer, matrix register.

indicate the subregister K; ,j on which the subaction took place. The order in which these
subreads and subwrites take place is arbitrary, but for the fact that each subread precedes
each subwrite. Each subregister Ki ,j (I Si ,j Sn) of K is atomic. Let p=(A ,-7,7t) be a run
of K. Let Ai be the subset of actions in A that are executed by Pi (1 ~i ~n). Define, for
all lSi ,jSn, Pi ,J=(Ai,J ,-7; .J ,1ti ,J), the run of Ki ,J associated with p, where

Ai ,j = Ri ,juwi .J,

Ri,J=(R (a ,i ,j): a eAJ },

Wi,j=(W(a ,i ,j): aeA i };

Ri ,J is the set of subreads, and Wi J is the set of subwrites on subregister Ki ,J. Since Ki J
is atomic, there is an atomic extension ~i ,; of -7i .j, for all 1 Si ,j Sn. This atomic exten­
sion is a total order on the subactions executed on the subregister concerned. Moreover,
if a subread reads a subwrite (on a subregister), then there is no other subwrite placed
between them by this order. The orders on the disjoint sets of subactions associated with
each subregister are related by the orders on the disjoint sets of subactions by each pro­
cessor. Let -» be the minimal transitive relation on the subactions in Uf.j=IAi,j
extending the ~i.J 'sand satisfying (R7). By (R7), the subactions by the same processor
p are totally ordered by-». This order is the serial execution order of the subactions by

298

p. In particular, -» must satisfy:

R (a ,i ,j) -» W (a ,j ,k) , (3.1)

for all a e A j and all 15,i ,j ,k $n . We now define a precedence relation ~ on A . For any
two actions a and b on the compound register K, by Pi and PJ• respectively, let --7 be
the transitive closure of~':

a ~' b iff W(a ,i ,})-» R (b ,i ,j).

Clearly, this satisfies (R8) and (R9).

Lemma3.l.

~ is a partial order on A .

Proof.

(3.2)

Existencf' of a ~-cycle containing a e A J, implies W (a ,j ,k)-»R (a ,i ,j), for some
k ,i (l:Q ,i-5,n). This contradicts (3.1), since-» is a partial order by Lemma 2.3. •

Remark. If - » extends the original partial orders --7 i J , instead of the apparent
total orders =>i,J• then Lemma 3.1 still holds for the~ resulting from (3.2). This will be
useful in the proof of Theorem 3.5.

The following theorem is the main result of this section.
Theorem 3.2.
The matrix register K is an atomic, n -writer, n -reader compound register, which is
implemented with n 2 atomic, I -writer, I-reader registers.
Proof.

Let p =(A ,7,tt) be a run of K. Examine the write protocol. For a write w e A, let
v (w) be the value written by w to the compound register, and, if t (w) denotes the tag
determined in step 3 of w, let (t (w),v (w)) be the value written to the subregisters in step
4 of w 's execution. For a read r e A , let v (r) be the value reported by r from the com­
pound register, and, if t (r) is the tag associated with v (r), let (t (r),v (r)) be the value
written to the subregisters in step 4 of its execution. The pair (t (r), v (r)) is selected in
step 3 of the read protocol.

Claim. For each read r, there is a write w, such that

t(r) =t(w) & id(v(r))=id(v(w)) (=w). (3.3)

If id (v (r)) = w then 1t(r) = w. Hence, 1t is total.
Proof of Claim. The subregisters are initialized with tag (0, 1), and there is a write

preceding all other actions, by (R3). Hence, there is an a e A, such that
(t(r),v(r)) = (t(a),v(a)). If a is a write then we are done, else a is a read and we repeat
the argument. If r~a, then, by (3.2) and atomicity of the subregisters, r can not read
the value written by a to the subregister involved. There are only finitely many a, such
that -,(r~a), ~ is a partial order, and there is an initial write preceding all other
actions, by (R3). Hence, we need only finitely many repetititions of the argument before
we find a write w such that (3.3) holds. If id(v(r)) = w then n(r) = w by (R6). Since

299

this holds for each read r, n is total. This proves the Claim.

Let <ix be the irreflexive lexicographic order on pairs of integers. If a ,be A such
that a -7b (therefore a ::t.b), then it follows by (3.2) and the choosing of the new tag in
step 3 of the write and read protocols, that:

t (a) ~Ix t (b) (t (a) <ix t (b) if b E W) . (3.4)

The prove atomicity, by Theorem 2.1, we only need to prove that p is normal and
that there is a total order extending the -71t relation among the clans. Intuitively, we
proceed by first choosing a plausible total order on the set of writes, and next showing
that the corresponding total order on the set of clans extends -77t. In the matrix register,
the obvious total order on the set of writes is the lexicographical order of the associated
tags. Proceeding this way. the conclusion of the theorem follows from Theorem 2.1 and
by the following lemma.

Lemma3.3.

(1) p is normal, and
(2) if[w]-7n: [w']. then t(w) <ix t(w'). In particular, -7n: is acyclic.

Proof.

(1). By the Claim above, 1t is a total function. Let n(r)=w (i.e., re [w]). Then, by
(3.3), t(r)=t(w). However, if r-7w, then by (3.4) we have t(w)>1xt(r), which is a
contradiction. Hence, --,(r -7W), i.e., p is normal.

(2). Let [w] -7n: [w']. By definition of -7rr, there exist actions a e [w] and
b e [w'] such that a -7 b .

Suppose b = w'. Then by (3.3) and (3.4) it follows that t(w')>1xt(w), which is as
claimed.

Suppose that a = w and b is a read. By (3.3) and (3.4), t(w) ~Ix t(b) = t(w'). If
w ,w' are writes by different processors, then their tags have different processor numbers;
if they are writes by the same processor then, since w :;:. w', one of them -7-precedes the
other. Therefore, by (3.4), they must have different tags. In both cases, t(w);t:t(w'),
which is as claimed.

Suppose both a ,b are reads. Then t (a)= t (w) ~Ix t (b) = t(w'), by (3.3) and (3.4).
The proof oft (w):;:. t (w') is now exactly as before. This proves the lemma. Hence the
proof of theorem 3.2 is complete. •

3.1. Complexity and Optimality

The time complexity of the matrix register is 2n (or rather 2n-2, as follows from
Theorem 3.4 below) which seems to be as low as it can possibly be. The space complex­
ity of the matrix register is unbounded. In theory this is pretty bad. In practice, however,
this solution uses far less space than many solutions which theoretically do better. For
instance, in [8] a solution has been proposed where the space complexity of the com­
pound register is Sn 2log n . However, we can assume that a system executes only a lim­
ited number of actions on the compound register in its total lifetime. If we set a generous

300

bound of at most 2so such actions, the matrix solution is superior in terms of space com­
plexity, with respect to the mentioned bounded space solution, for any number n:::::3 of
associated processors. Thus the matrix register has effectively a lower space complexity
than comparable solutions with bounded space complexity, even for solutions which
solve only subproblems of the one addressed by the matrix solution. An exception is the
Bloom register in [l] (with only two writers), which both effectively and theoretically
cannot be improved in space and time complexity.

Another complexity criterion is the number of subregisters of a certain type used in
the compound register. Leaving out the subregistcrs on the main diagonal, which are
redundant, the matrix solution is optimal in the number of 1-writer, 1-reader subregisters
used.

Theorem 3.4. (Optimality)

The implementation of a compound safe n -writer, n -reader register from]-writer,
]-reader subregisters, requires at least n (n -1) such subregisters (atomic or not).
Register K, minus the subregisters on the main diagonal, is such an optimal imple­
mentation.

Proof.
Suppose we have implemented a safe compound n -writer, n -reader register R, with

associated processors p 1, .•• , Pn , from I-writer, l -reader subregisters. For each ordered
pair of processors (pi•PJ), ISi ,}Sn and i-;ej, we can consider a run ({w ,r },-7,1t) of R,
consisting solely of two nonoverlapping operation executions: a write w by Pi, followed
by a read r by PJ. Since R is safe, 1t(r)=w. Since i-;ej, there must be a subregister Ri ,j,
such that Pi i~ the associated writer and p J is the associated reader. There are n (n -1) dif­
ferent ordered pairs (pi ,p j), i '# j. In each such ordered pair the first element is a writer
and the second element is a reader. No subregister Ri .j can be associated with more than
one such (writer, reader) pair, since the subregisters have only one associated writer and
one associated reader other than the writer. Hence, there must also be n (n -1) different
subregi::.ters Ri ,j in the compound register R. This is exactly achieved by the presented
matrix register K, noting that the subregisters on the main diagonal are superfluous. I.e.,
Pi can remember what it wrote last in Ki ,i. •

4. Global Time, Intervals and Shrinking

In [1], [6], [7], [8], atomicity is related to the assumption of a global time reference frame
(also called global clock). We show that the theory as developed here is more general. In
particular, a register is atomic in global time if and only if it is atomic for a particular
choice of the ~ precedence relation. This precedence relation turns out to be the interval
order induced by the time intervals representing the actions.

An important aspect of atomic runs is the following property. Although their
actions have a duration on a global time scale, and such durations may overlap, each
action may be considered to take place instantaneously, i.e., as if it happened completely
at a particular time instant. If all of these time instants are distinct, then the apparent time
instants of the actions orders the actions totally. This reL.tes the order approach to

301

atomicity with the global time approach.

Time is represented by the set of real numbers R, ordered as usual. Assume that
every action a is represented by an open time interval (s (a), f (a)), s (a)</ (a), within
the b0nnd.;; of which the action is supposed to have taken place. s (a) (respectively, f (a))
is a real number called the starting (respectively, finishing) time of the action a.

Remark. To exclude some technical difficulties, there is usually an assumption that
s(a):t:s(b), s(a):t:f(b) and f(a):t:f(b), for any two distinct actions a,beA, and
s (a):t:f (a) for each action a eA. The fact that we should be allowed to assume that no
two starting or finishing times are equal, is justified by appeal to the sensibility of natural
law [3]. "No physical meaningful result could depend on upon completely accurate
knowledge of these times. (It makes no physical sense to specify starting and finishing
times of an operation execution down to the fraction of a micropicosecond.)" By exclud­
ing the starting and finishing times from the duration associated with action a , to obtain
the desired effect in the mathematical framework, we may come closer to the spirit of
physics. Thus, we choose to represent durations of actions as open intervals.

Define the precedence relation ~. as the natural relation a ~b iff f (a)~ s (b). A
relation which is so induced by a set of intervals of the real line R, satisfies the axioms of
a special type of partial order called interval order. Formally, an interval order on a set
A is an irreflexive relation ~ that satisfies

a ~b & c ~d implies a ~d or c ~b, for all a ,b ,c ,d eA (see [2]). (4.1)

Every interval order is a partial order, and hence the previously developed theory applies.
Since not every (irreflexive) partial order is an interval order, the global time approach
requires more from the precedence relation (~) than the general approach in (R3). We
now proceed with the definitions of this more wnventional global time approach to
atomicity. The relation between the two approaches is analysed in Theorem 4.1.

A shrinking function on the set of actions of a nm p=(A .~,7t), with~ the interval
order induced by the set of intervals {(s (a),/ (a))~R: a EA}, is a one-to-one function o­
that associates with each action a of the run a time instant (i.e., a real number) o-(a) such
that:

(S 1) o-(a) belongs to the interval (s (a),/ (a)) of a.

A shrinking function gives a possible serialization of the actions. Condition (S 1)
enforces external consistency of the serialization. In the order approach, external con­
sistency follows from the fact that the serialisation extends ~- Define the precedence
relation ~CJ• induced by a, as a ~CJb iff o-(a)<o-(b). Obviously, ~a is a total order on
A . Then (S 1) implies that ~CJ extends ~. A shrinking function o- is consistent with the
reading mapping 1t if

(S2) (A .~CJ.7t) is atomic.

A run p is shrinking atomic if there is a shrinking function cr such that (S 1) and (S2) are
satisfied.

302

Theorem 4.1. (Shrinking Function Theorem)
Let p=(A ,-?,1t) be a run, and let-? be the interval order induced by a representa­
tion of open (time) intervals of the actions in A. The following statements are
equivalent:
(1) p is atomic, and
(2) p is shrinking atomic.

Proof.
(J) implies (2). Suppose (1) holds. Let=> be a total order which atomically extends

-?. Define Q (a)={b: -,(a _;;b) & -,(b =>a)}. Note that, by (R3), Q (a) is finite, and that
Q (a) is nonempty since a e Q (a). Define, by induction on a, cr(a) to be a real number
such that:

(i) if b =>a then cr(a) >a(b),

(ii) cr(a)>s (a), and

(iii) cr(a)<µ,with µ=min{/ (b): be Q (a)}.

Note that (ii) and (iii) imply (Sl), and (i) implies (S2). Induction is possible if:
(a) if b-?a then cr(b)<µ. and
(b) s(a)<µ.

Let b minE Q (a) be an action such that µ= f (b min).
Ad (a). Assume b-?a. If b-?bmin then a(b)<f (b)5.s(bmin)<f (bmin)=µ.

If -.(b-'tbmin)& -,(bmin-'tb) then, since b-?a, we have -,(bmin=>b). Therefore,
b minE Q (b). Then, a(b)<min{f (c): c E Q (b)}Sf (b min)=µ.
If bmin-'tb then bmin-'tb-?a, contradicting bminE Q (a).

Ad (b). Since -.(a-?bmin) & -,(b min=>a) we have s(a)<f (bmin)=µ.
(2) implies (1). Assume (2). Since -?0 is a total order extending __;; and satisfying

(S2), atomicity of p is immediate. •
Corollary.

The matrix register is shrinking atomic.
Proof sketch.

The argument goes as follows. Assume global time. The interval representations of
the subactions induce the -?i ,J precedence relations on the subregisters. Each such rela­
tion is therefore an interval order. The intervals associated with the subactions of each
processor are linearly ordered (do not overlap) by definition. Since each subregister Ki ,J
is atomic, each run Pi ,J =(Ai ,J ,-7i ,J ,rci ,j) has a shrinking function a; J such that
(Ai ,J ,-'tcr1J,1ti .J) is shrinking atomic, by Theorem 4.1. Since the associated intervals are
open, we can always choose the criJ's such that cr'=uf'.J=IcriJ is one-to-one. Define
-» as the total order of the real images of the subactions under cr', i.e.,-» agrees with
the usual total order< on the reals. Then-» satisfies (R7) and (3.1). Define a -?11 b
iff cr'(a.) <a'(~) for all subactions a of a and 13 of h. Then -?11 is an interval order. This
satisfies (R8) and (R9), and -? is a refinement of-?". The proof of Theorem 3.2 goes

303

through exactly as before, with interval order ~,, instead of~. which implies that regis­
ter K is shrinking atomic by the Shrinking Function theorem (Theorem 4.1). •

S. Conclusion

To recapitulatf' the main result of this paper we propose a method of proving atomicity of
shared registers in an order setting. It seems to us that it can be applied in many cases
where we have to prove atomicity (e.g. we have used the methods presented in the
present paper to prove the atomicity of the 2-writcr register given in [1]). In outline:

1. Find an appropriate partial order ~ between the high level reads and writes defined
in terms of the assumed partial order between the lower level reads and writes.
Induce the ~it relation on the set of clans defined by the reading mapping.

2. Find a way to totally order the writes, using the intuition which makes you believe
the protocol works correctly. Use this total order to prove that ~it is acyclic.

Acknowledgement

Conversations with Bard Bloom, Leslie Lamport, Arjen Lenstra and Nancy Lynch are
gratefully acknowled::ed. Lambert Meertens' comments had a profound influence on this
paper.

References

[1] Bloom, B., Constructing Two-writer Atomic Registers, Proceedings of the 6th
Annual ACM Symposium on Principles of Distributed Computing, Vancouver,
Canada, 1987.

[2] Fishburn, P.C., Interval Orders and Interval Graphs, Wiley, 1985.

[3] Lamport, L., On Interprocess Communication, Part /: Basic Formalism, Part II:
Algorithms, Distributed Computing, vol. 1, pp. 77-101, 1986.

[4] Lamport, L., The mutual exclusion problem, part I - A theory of interprocess com­
munication, Journal ACM, vol. 33, pp.313-326, 1986.

[5] Papadimitriou, C., The serializability of concurrent database updates, Journal
ACM, vol. 26, pp. 631-653, 1979.

[6] Peterson, G. L., Concurrent Reading While Writing, ACM Transactions on Pro­
gramming Languages and Systems, Vol. 5, No. 1, Jan. 1983, pp. 46-55.

[7] Peterson, G.L. and J.E. Bums, Concurrent Reading While Writing II, the Multi­
writer Case, Proceedings 28th IEEE Symposium on Foundations of Computer Sci­
ence, New York, USA, 1987.

[8] Vitanyi, P. M. B., and Awerbuch, B., Atomic Shared Register Access by Asynchro­
nous Hardware, Proceedings 27th IEEE Symposium on Foundations of Computer
Science, 1986, 233-243. (Errata, in Proceedings 28th IEEE Symposium on Founda­
tions of Computer Science, New York, USA, 1987 .)

