
Structured Operational Semantics and Bisimulation as a Congruence
(extended abstract)

Jan Friso Groote
Frits Vaandrager

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Email: jfg@cwi.nf & fritsv@cwi.nf

In this paper the question is considered in which cases a transition system specification in Plotkin
style has 'good' properties and deserves the predicate 'structured'. The discussion takes place in a
setting of labelled transition systems. The states of the transition systems are terms generated by a
single sorted signature and the transitions between states are defined by conditional rules. We argue
that in this setting it is natural to require that strong bisimulation equivalence is a congruence on the
states of the transition systems. A general format, called the tyftltyxt format, is presented for the
conditional rules in a transition system specification, such that bisimulation is always a congruence
when all the rules fit into this format. With a series of examples it is demonstrated that the tyftltyxt
format cannot be generalized in any obvious way. Briefly we touch upon the issue of modularity of
transition system specifications. We show that certain pathological tyft!tyxt rules (the ones which
are not pure) can be disqualified because they behave badly with respect to modularisation. Next
we address the issue of full abstraction. We characterize the completed trace congruence induced
by the operators in pure tyftltyxt format as 2-nested simulation equivalence. The pure tyftltyxt for
mat includes the format given by De SIMONE [16, 17] but is incomparable to the GSOS format of
BLOOM, ISTAAJL & MEYER [7]. However, it turns out that 2-nested simulation equivalence strictly refines
the completed trace congruence induced by the GSOS format.

l. INTRODUCTION

In [14, 15] PLOTKIN advocates a simple method for giving operational semantics to programming
languages. The method, which is often referred to as SOS (for Structured Operational Seman
tics), is based on transition systems. The states of the transition systems are terms in some for
mal language that, in general, will extend the language for which one wants to give a semantics.
The main idea of the method is that the transitions between states are defined by conditional
rules.

Nowadays Plotkin's method has become rather popular and a large number of (concurrent)
languages have been provided with an operational semantics in SOS style. Therefore it might
be worthwhile to consider in more detail the questions how expressive different classes of transi
tion system specifications (TSS's) are and in which cases a TSS has good properties.

The following desirable properties of TSS's are stated by BLOOM, ISTRAIL & MEYER [7], as
requirements to be fulfilled by any reasonably structured TSS.
l. existence of a canonical system of transition relations agreeing with the rules,
2. availability of structural induction as a proof technique,
3. the TSS leads to transition systems which are computably finitely branching,
4. strong bisimulation is a congruence.
Let us consider these requirements in more detail.
(1) The first requirement clearly makes sense but will not be much of a problem for us, since in

I. The research of the authors was supported by ESPRIT project no. 432, An Integrated Formal Approach to Industri
al Software Development (METEOR), and by RACE project no. 1046, Specification and Programming Environment for
Communication Software (SPECS). A full version of this paper appeared as [9]. There also the proofs can be found
which have been omitted here.

424

this paper we consider only Plotkin style conditional rules with positive hypothesis. In this case
the initial algebra approach guarantees the existence of a natural transition relation: a transition
is there iff it has a proof. BLOOM, lsTRAIL & MEYER [7] also consider rules with negative prem
ises. In this case the first requirement becomes less trivial.
(2) Since the title of Plotkin's original paper ([14]) is 'A structural approach to operational
semantics', one may argue that the first S in SOS should stand for 'structural' rather than 'struc
tured'. Apparently, Plotkin used the word 'structural' because of its connection with structural
induction on abstract syntax. However, by now there are many examples of interesting TSS's,
which are commonly accepted as specifications in the SOS style, but which contain rules which
clearly are not compatible with structural induction. Besides the standard example of the rule
for recursion, other examples are described for instance in [2-4, 8]. The point is that one can
appeal to more general induction principles. In this paper we will mostly use induction on the
structure of the proofs of transitions.
(3) We think that, although it is certainly pleasant to have finiteness and decidability, it is much
too strong to call any TSS leading to a transition relation which does not have these properties
'not reasonably structured'. If one disqualifies infinitary and undecidable TSS's right from the
start, then one misses a large number of interesting applications. We will describe a rule format
that gives us the expressiveness to describe the invisible nature of -r (see section 3.11). Therefore
it is to be expected that, in general, we also have the infinite branching and undecidability of
the models of CCS/ ACP, based on observation equivalence.
(4) A fundamental equivalence on the states of a labelled transition system is the strong bisimu
lation equivalence of PARK [13]. Strong bisimulation equivalence seems to be the finest exten
sional behavioural equivalence one would want to impose, i.e. two states of a transition system
which are bisimilar cannot be distinguished by external observation. This means that from an
observational point of view, the transition systems generated by the SOS approach are too con
crete as semantical objects. The objects that really interest us will be abstract transition systems
where the states are bisimulation equivalence classes of terms, or maybe something even more
abstract. If bisimulation is not a congruence then this means that the function that returns the
transitions associated to a phrase when given the transitions associated to its immediate com
ponents, depends on properties of the transition system which are generally considered to be
irrelevant, such as the specific names of states. Hence we think that a transition system
specification which leads to transition systems for which bisimulation is not a congruence
should not be called structured: possibly it is compositional on the level of (concrete) transition
systems but it is not compositional on the more fundamental level of transition systems modulo
bisimulation equivalence.

Summarizing, we agree with BLOOM, ISTAIL & MEYER [7] that requirements 1 and 4 are essen
tial, but we think that their requirements 2 and 3 are too strong in general. This brings us to
the first main question of this paper which is to find a format, as general as possible, for the
rules in a (positive) TSS, such that bisimulation is always a congruence when all the rules have
this format. We proceed in a number of steps.

In section 2 of the paper definitions are given of some basic notions like signatures and sub
stitution. We define the notion of a transition system specification (TSS) and describe how a
TSS determines a transition system. Moreover the fundamental notion of strong bisimulation is
introduced.

In section 3 we present a general format, called the tyft!tyxt format, for the rules in a TSS
and prove that bisimulation is always a congruence when all rules have this format (and a small
additional technical condition is satisfied). With a series of examples it is demonstrated that
this format cannot be generalized in any obvious way. Section 3 also contains some applica
tions of our congruence theorem. We think that our result will be useful in many situations
because it allows one to see immediately that bisimulation is a congruence. Thus it generalizes
and makes less ad hoe the congruence proofs in [2, 12], and elsewhere. If the rules in a TSS do
not fit in our format then there is a good chance that something will be wrong: either

425

bisimulation is not a congruence right away or the congruence property will get lost if more
operators and rules are added.

A natural and important operation on transition system specifications P 0 ,P 1 is to take their
componentwise union P 0 ffiP 1• A desirable property is that the outgoing transition of states in
the transition system associated to P0 are the same as the outgoing transitions of these states in
the extended system P 0 ffiP 1• This means that P 0 ffi P 1 is a 'conservative extension' of P 0 : any
property which has been proved for the states in the old transition system remains valid (for the
old states) in the enriched system. In section 4 we show that most of the tyft!tyxt rules (the
rules which are pure) behave fine under modularisation. Rules that are not pure behave badly
under modularisation, but fortunately these rules are quite pathological.

Central in the theory of concurrency is the idea that processes which cannot be distinguished
by observation, should be identified: a process semantics should be fully abstract with respect to
some notion of testing. Mostly one takes the position that the observations one can make on a
process include its completed traces, i.e. the (finite) maximal sequences of actions which can be
performed by a process. Two processes are completed trace congruent with respect to some for
mat of rules if they yield the same completed traces in any context that can be built from
operations defined in this format. The main result of section 5 is a characterization, valid for
image finite transition systems, of the completed trace congruence induced by the pure tyft!tyxt
format as 2-nested simulation equivalence. On the domain of image finite transition systems, 2-
nested simulation coincides with the equivalence induced by the Hennessy-Milner logic formulas
[10] with no [] in the scope of a o. Consequently the following two trees, which are not bisirni
lar, cannot be distirlguished by operators defined with pure tyftltyxt rules:

a a

a a

b b b c b b c

FIGURE 1. Pure tyftl tyxt congruent but not bisimilar

Many process equivalences can be based on some notion of testing, a framework of extracting
information about a system by doing experiments on it. ABRAMSKY [I], for instance, develops a
notion of testing for bisirnulation equivalence which incorporates a hierarchy of increasingly
powerful testing constructs: traces, refusals, copying and global testing. In the full version of
this paper, we adress the question whether there exists a reasonable notion of testing for 2-
nested simulation equivalence. tyft!tyxt languages allow one to observe traces and to detect
refusals indirectly: one concludes that a certain action is refused because some completed trace
is not there. In addition it is allowed to make copies of processes at every moment. Finally, the
lookahead in the tyft!tyxt rules makes it possible to investigate all branches of a process for
positive information and to see whether a certain tree is possible. Because the lookahead does
not allow one to see negative information (like the absence of some action) directly, and
because it is also not able to force that all nondeterministic branches are pursued by some
number of copies, lookahead does not give one the full testing power of global testing. Bloom,
Istrail & Meyer argue that, unlike copying, global testing is not realistic. We think that, unless
one believes in fortune telling as a technique which has some practical relevance for computer
science, also lookahead as a testing notion is not very realistic. Still, lookahead pops up natur
ally if one looks at the maximal format of rules for which bisimulation is a congruence and we

426

argued that rules with a lookahead are often useful. Therefore we think that, just like bisimula
tion equivalence, 2-nested simulation equivalence is inte_resting and worth studying.

The full version of this paper contains an extensive comparison of our format with the format
proposed by DE SIMONE [16, 17] and the GSOS format of BLOOM, ISTRAIL & MEYER [7].
Roughly speaking, the GSOS format and the pure tyft!tyxt format both generalize the format of
De Simone. The GSOS format and our format are incomparable since the GSOS format allows
negations in the premises, whereas all our rules are positive. On the other hand we allow for
rules that give operators a lookahead and this is not allowed by the GSOS format. A simple
example in [7] shows that the combination of negation and lookahead is inconsistent in general.
The point where the two formats diverge is characterized by the rules which fit into the GSOS
format but which contain no negation. We call the corresponding format positive GSOS.
BLOOM, lSTRAlL & MEYER [7] proved that the completed trace congruence induced by the GSOS
format can be characterized by the class of Hennessy-Milner logic formulas in which only F
may occur in the scope of a []. This implies that 2-nested simulation equivalence refines GSOS
trace congruence. In [9], we show that the completed trace congruence induced by the positive
GSOS format equals the GSOS trace congruence. So although the general GSOS format can be
used to define certain operations which cannot be defined using positive rules only, the use of
negations in the definition of operators does not introduce any new distinctions between
processes.

ACKNOWLEDGEMENTS. We want to thank Bard Bloom for a very interesting and stimulating
correspondence. Discussions with him had a pervasive influence on the contents of this paper.
We also thank Rob van Glabbeek for many useful comments and inspiring discussions.

2. BASIC DEFINITIONS
Throughout this paper we assume the presence of a countably infinite set V of variables with
typical elements x,y,z ...

2.1. DEFINITION. A (single sorted) signature L is a pair (F,r) where Fis a set of function names
disjoint with V, and r:F-?N is a rank function which gives the arity of a function name; if fEF
and r (j) = 0 then f is called a constant name. With lr (L), we denote the set of open terms over
signature L (so these terms may contain variables from Ji'). T(L) denotes the set of closed or
ground terms over L. Var(t) (;:; V denotes the set of variables in a term t. A substitution a is a
mapping in V-? lr(L). It is extended to a mapping a:lr(L)~ T(L) in the standard way. If a and
p are substitutions, then substitution a0 p is defined by: aop(x) = a(p(x)) for x E V.

2.2. DEFINITION. A transition system specification (TSS) is a triple (L,A,R) with ~ a signature,
A a set of labels and R a set of rules of the form:

{t; ~t;' Ii El}

t~t'

where I is a finite index set, t;,t;',t,t' ET(L) and a;,a EA for i El. If r is a rule satisfying the
above format, then the elements of {t;~t/JiEJ} are called the premises of rand t~t' is

called the conclusion of r. A rule of the form -a0 is called an axiom which if no confusion
t ...:!..7t' ' '

can arise, is also written as t~t'. An expression of the form t~t' with aEA and t,t'ET(~)
is called a transition (labelled with a). The letters cj>,l/J,x, .. will be used to range over transitions.
The notions 'substitution', 'Var' and 'closed' extend to transitions and rules as expected.

427

2.3. DEFINITION. Let P =(};,A,R) be a TSS. A proof of a transition 1/1 from P is a finite,
upwardly branching tree of which the nodes are labelled by transitions t-1!.?t' with t,t'ET(I)
and a EA, such that: the root is labelled with 1/1, and if x is the label of a node q and {Xi I i EI}
. th f 1 . . { .P; Ii El} .
1S e set o abels of the nodes directly above q, then there is a rule m R and a sub-

</>
stitution a such that x=a(<J>) and ;x;=a(</>;) for iel. If a proof of 1/1 from P exists, we say that iJi
is provable from P, notation b If!. A proof is closed if it only contains closed transitions.

2.4. LEMMA. Let P =(I,A,R) be a TSS, Jet aeA and let t,t'eT(};) such that P~ t-1!.?t'. Then
t ..!!..? t' is provable by a closed proof

As a running example we present below a TSS for a simple process language.

2.5. Ex.AMPLE. Let Act = { a,b,c, .. } be a given set of actions. We consider the signature
I(BPA~) (Basic Process Algebra with 6 and () of [18]. I(BPA~) contains constants a for each
a eAct, a constant 6 that stands for deadlock, and a constant t: that denotes the empty process, a
process that terminates immediately and successfully. Furthermore the signature contains
binary operators + (alternative composition) and · (sequential composition). As labels of transi
tions we take elements of Act v =Act U { V}. Here V (pronounce 'tick') is a special symbol used
to denote the action of successful termination.
The TSS P (BPA~) consists of signature I(BPA~), labels Act...;, and the rules of table 1. There a
ranges over Act..;, unless further restrictions are made. Infix notation is used for the binary
function names.

1. a~t:

3.
x -1!.?x'

x+y~x'

5. x~x'

XJ'~X'J'

2.

4.

6.

TABLE l

y -1!.?y'
x+y~y'

x~x' y-1!.?y'

xy~y'

An operational semantics makes use of some sort of (abstract) machines and describes how
these machines behave. Here we take as machines simply nondeterministic automata in the
sense of classical automata theory, also called labelled transition systems.

2.6. DEFINITION. A (nondeterministic) automaton or labelled transition system (LTS) is a struc
ture (S,A,~) where Sis a set of states, A is an alphabet, and~ ~S XA XS is a transition rela
tion. Elements (s,a,s')e~ are called transitions and will be written ass ~s'.

The notion of strong bisimulation equivalence as defined below is from PARK [13].

2. 7. DEFINITION. Let te= (S,A, ~) be a L TS. A relation R <;;;, S X S is a (strong) bisimulation if it
satisfies:
I. whenever s Rt and s ~s' then, for some t'ES, also t~t' and s'R t',
2. conversely, whenever s Rt and t~t' then, for some s'eS, also s~s' and s'R t'.
Two states s,t eS are bisimilar in @., notation ~s tt t, if there exists a bisimulation containing
the pair (s,t). Note that bisimilarity is indeed an equivalence relation on states.

428

2.8. DEFINITION (TSS's, transition systems and bisimulation). Let P =(};,A,R) be a TSS. The
transition system TS(P) specified by P is given by:

TS(P) = (T(};),A,-?p).

Here the relation -7 pt;;; T(};) XA X T(~) is defined by: t~p t' .;=? b t ~ t'. We say that two
terms t,t' ET(};) are (P-)bisimilar, notation t ttpt', if TS(P):t ti t'. We write t tt t' if it is
clear from the context what P is. Note that tip is also an equivalence relation.

2.9. ExAMPLE. For the TSS P(BPA~) of example 2.5 one can derive identities (a)-(e) below. In
(f) it is shown that the left distributivity of · over + does not hold in bisimulation semantics.
Like in regular algebra we will often omit the· in a product xy and we take· to be more bind
ing than +. Missing brackets in expressions xyz and x + y + z associate to the right.

(a) et: tt t: {d) be ti b
(b) bttb+b (e) t:b tt b
(c) (w +t:bXcdo+8) tt (a(c+8)d+bc(d+d))O (f) ab+ac ~a(b+c)

3. COMPOSITIONAL TRANSITION SYSTEM SPECIFICATIONS
TSS's do not always generate automata for which bisimulation is a congruence. A number of
examples will follow in the sequel. But if the rules in TSS satisfy the format below (and an
additional small technical requirement is met), bisimulation will turn out to be a congruence.

3.1. DEFINITION. Let ~=(F,r) be a signature and let P =(~,A,R) be a TSS. A rule in R is in
tyft format if it has the following form:

{t;~y; \iEI}

f(xi. .. ,Xr(j))~t

with la finite index set, fa function name from F, x; (l .;;;;,i ~r(f)) and y; (i El) are all different
variables from V, a;,a EA and t;,t Elf"(};) for i El.

A rule in R is in tyxt format if it has the following form:

{t;~y; \iEI}
x~t

with l a finite index set, x,y; (i El) all different variables from V, a;,a EA and ti>t ell"(~) for
i El. P is in tyft!tyxt format if all the rules in R are in tyft!tyxt format. A transition system is
called tyft!tyxt specifiable if it can be specified by a TSS in tyft!tyxt format.

Observe that there does not have to be any relation at all between the premises and the conclu
sions in a rule satisfying our format. In fact our format explicitly requires the absence of cer
tain relations between occurrences of variables in the premises and in the conclusion. Note that
not only the TSS P(BPA~) of example 2.5 is in tyft!tyxt format, but also any TSS obtained
from this TSS by dropping some arbitrary rules.

3.2. Circularity. A TSS with the rule:

f(x,y2)~Y1 g(x',y1)-4y2

x~x'

can be in tyft!tyxt format. However, we have a sort of circular reference. The particular form
of y 1 will, in general, depend on f (x,y 2) and thus on Y2 while Y2 depends on g (x ',y 1) and thus
on y 1• We will exclude this type of dependencies, as they give rise to complicated TSS's. For
this purpose the notion of a dependency graph is introduced.

429

3.2.1. DEFINITION. Let P =(~,A,R) be a TSS. Let S = { t; ~t;' Ii EI} be a set of transitions of
P. The dependency graph of Sis a directed (unlabelled) graph with:

Nodes: U Var(t; ~t;'),
iel

Edges: { <x,y >Ix E Var(t;), yE Var(t;') for some i El}.
A set of transitions is called circular if its dependency graph contains a cycle. A rule is called
circular if the set of its premises is circular. A set of rules is called circular if it contains a circu
lar rule. Finally, a TSS is called circular if its set of rules is circular.

3.2.2. ExAMPLE. The dependency graph of the rule in section 3.2 is given in figure 2. The rule is
circular since the graph clearly contains a cycle.

~
x ----.. Yi Y2 -------x'

"-./
FIGURE 2

3.3. DEFINITION. Two TSS's P and P' are equivalent if TS(P) = TS(P').

Hence, two TSS's are equivalent if they have the same signature, the same set of labels and if
the sets of rules determine the same transition relation. The particular form of the rules is not
important. In example 2.5 for instance, we can replace rule 6 of table 1 by the rule:

x..::413 y~y'
xy~y'

The resulting TSS P'(BPA8) is equivalent to P(BPA~)- The reason for this is that whenever
P(BPA8) proves a transition of the form t-4t', t' will be syntactically equal to 13. Observe
that P'(BPA8) is not in tyft!tyxt format. We will come back to this in section 3.10.

3.4. LEMMA. Let P =(~,A,R) be a (non circular) TSS in tyftltyxt format. Then there is an
equivalent (non circular) TSS P'=(~,A,R') in tyftformat.

3.5. DEFINITION. Let P =(:::E:,A,R) be a TSS and let r be a rule in R. A variable in Var(r) is
free if it does not occur in the left hand side of the conclusion or in the right hand side of a
premise. Rule r is pure if it is non circular and contains no free variables. TSS P is pure if all
its rules are pure.

3.6. LEMMA. Let P =(:::E:,A,R) be a non circular TSS in tyft!tyxt format. Then there is an
equivalent pure TSS P'=(2.,A,R') in tyft format.

We now come to the first main theorem of this paper.

3.7. THEOREM. Let 2.=(F,r) be a signature and let P =(2.,A,R) be a TSS. If P is non circular
and in tyft!tyxt format then strong bisimulation is a congruence for all function names, i.e. for all
function names fin F and all closed terms u;, v; ET(~) (l .:;;;i .:;;;r(f)):

"iii U; "=Zp V; =:> f(ui, .. ,u,ljj) t!p f(vi.--,Vr(f))·

430

3.8. COUNI'EREXAMPLES. Before we commence with the proof of this theorem, we present a
number of examples which show that the condition in the theorem that the TSS is in tyftltyxt
format cannot be weakened in any obvious way. At present, we have no example to show that
the condition that the TSS is non circular cannot be missed: we just have not been able to
prove the theorem without it. However, circular TSS's are so exotic that we doubt whether they
will ever be used. In section 4 it will be shown that circular rules are ill-behaved with respect to
modularisation.

The first example shows that in general the variables in the left side of the arrow in the con
clusion must all be different. It is obtained by adding to P (BP An the axiom x + x ~6. We
then have a ti a£, but a+ a ~a+ a£ as a and a£ are not syntactically equal.

In general there may not appear more than one function name at the left of the transition
predicate in the conclusion. Take the TSS P(BPA8) extended with the axiom x+(y+z)~6.
We have b ti b +b, but b +(b +b) ~b +b.

Our next example shows that in the premises the right hand side of a transition are not
allowed to contain function names. We add prefixing operators a:(·) to P(BPA8) for each
a EAct and define the operational meaning of these operators with axioms a:x ~x. If we now
add moreover the rule:

X~£
x~6

we have problems because a:£ ~a:(£·t:) even thought: ti t:·t:.
The variables at the right hand side of the arrows in the premises must in general be

different. This is shown by adding the rule:

x~y x'~y - - a=fav
x·x'~6

to P(BPAn. Now a ti a£, but aa ~(a£)a.
If variables in the left hand side of the conclusion and the right hand side of the premises

coincide, problems can arise too. Add the rule:

x~y
x+y~6

to P(BPA8) and observe that t:t: tit:, but a+££ ~a +t:.

3.9. Proof of theorem 3.7. Let '2.=(F,r) be a signature and let P=('2.,A,R0) be a non circular
TSS in tyftltyxt format. We have to prove that 'dp is a congruence. Let R ~ T('2.)X T('2.) be
the least relation satisfying:

t:tp~R,

for all function names fin F and terms u1,v1 in T('2.) (for l"50;i"50;r(f)):

('iii u1Rv1) =:. f(u1> . .,u,rf))Rf(v1,..,v,<J>).

It is enough to show that R ~tip because from that it immediately follows that tip is a
congruence for all fin F. In order to prove that R ~tip it is enough to show that R is a
bisimulation. For reasons of symmetry it is even enough to show only one half of the transfer
property: if u R v and u....!!?p u' then there is a v' such that v~p v' and u' R v'. If u R v then by
definition of R either u tip v or, for some function name f in F: u f (ui, .. ,u,<J>) and
v f (v 1 .. ., v,<J>) with u1 R v1 for all i. As tip trivially satisfies the transfer property, only the
second option needs to be checked. Summarizing, we have to prove the following statement:

Whenever b f(u1,..,u,<J>)....!!?u' and u1 R v1 for l"50;i"50;r(f) then there is a v' such that
P~ f(v 1,..,v,(fi)....!!?v' and u'R v'.

Lemma 2.4 says that there is a proof for f(ui, . .,ur<J>)~u' that only contains closed

431

transitions. We will prove the statement with induction on the structure of this proof. Lemma
3.6 allows us to assume throughout the proof that the rules in R0 are pure and in tyft format.

Basis. Transition/ (ui. .. ,ur(f))~u' has a proof tree consisting of a single node. Hence, there is
an axiom r in R 0 and a substitution a:V-T(I) such that a(r)=j(u 1 ,..,u,<Ji}~u'. This
means that r is of the form/(x 1 ,..,x,<J>}~t with x1EV for l<.i<.r(j) and tET(I) such that
a(x;)=u; and a(t)=u'. Now define substitution a':V-T(I) by:

{
V·

a'(x) = :(x)
ifx=x1 for1<.i<.r(j)

otherwise

Note that this definition is correct as all x1 are different. Take v'=a'(t). The tree with a single
node labelled j(v1>··•Vr<f))~v' is a proof as a'(r)= f(v 1 , •• ,v,<Jj)~v'. We claim that u' R v'.
By assumption Var(t)~{xi. .. ,x,<J>} and a(x;)Ra'(x1) for 1<.i<.r(j). Now the claim follows
directly from the following fact.

FACT. Let tET(I) and let a,a':V-T(I) be substitutions such that for all x in Var(t):
a(x)R a'(x). Then a(t)R a'(t).
PRooF. Straightforward induction on the structure oft using the definition of R. 0

Induction. Assume that P~ j(u 1 ,..,u,<Jj)~u' with a proof of depth n >1. Let r be the last rule
used in the proof. Assume that r is equal to:

{t;~Y; Ji EI}
f(x 1,..,x,(j))f!..7 t

It follows that: 1) a(x1)=u1 for 1<.i<.r(j), and 2) a(t)=u'.
Our aim is to use the ruler again in the proof of f(v 1 ,..,v,<J>)~v' for some v' by finding a
proper substitution a'. Define:

a'(x;)=v; for l<.i<.r(j)

a'(x)=a(x) for xi;:XU Y

Here X={x; J 1<.i<.r(j)} and Y={y; JiEJ}. Stepwise we will extend the definition of a' to
elements of Yin such a way that for all variables x in V: a'(x) is defined ~ a(x)R a'(x). Con
sider the dependency graph G of the premises of r. Call a node of G coloured if a' is defined for
this node (cq. variable). So initially we are in a state where all nodes are coloured except for the
ones in Y. We will colour these nodes one by one. In the process the invariant will be preserved
that whenever a node is coloured, all its predecessors are coloured too.
A term er transition is called coloured if all the variables contained in it are coloured. Hence,
initially none of the transitions in { t1 -.El?y1 Ii EI} is coloured. In the process of colouring vari
ables we also preserve the invariant that whenever a transition o/E { t1 -.El? y; I i El} is coloured,
i.e. a' is defined for all variables of l/J, there exists a proof from P of a'(o/).
Now we first observe that with a complete colouring that satisfies the invariant properties, the
induction step can easily be finished. Due to the last invariant property there is a proof for
a'(x;) for all premises X; of r. Now construct a new proof with as root a'(j(x1i .. ,x,<J>)~t) and
as direct subgraphs the proofs of the a'(x;). Define v'=a'(t). Clearly, we have a proof for
f(v 1 ,.., v,if>)~v'. We may also conclude that for all x E Var(t): a(x)R a'(x). By an application
of the previously proved fact it follows that a(t) R a'(t) or equivalently u' R v'. This completes
the induction step except for the proof that a complete colouring exists.
In order to do this, it is sufficient to show that whenever we have a colouring which satisfies the
invariant properties and in which only some nodes in Y are not coloured, we can extend this
colouring with one element, while preserving the invariant. Let X' be such a colouring. We
claim that there is some i El such that t; is coloured but y1 not. In order to see that this is true,
assume that there is no such i. It cannot be that for some j El, y1 is coloured, but tj is not

432

coloured, because that would contradict with the assumption that all predecessors of a coloured
node are coloured, too. Hence, we can partition I in two sets. le= U I tj and Yj are coloured}
and Inc=Ultj andyj are not coloured}. By assumption Inc is non-empty. In the dependency
graph G each element y; with i in Inc has an incoming edge from some element Yj with j in Inc·
Hence, G contains a cycle and we have a contradiction. So let i El with t1 coloured but y1 not
coloured. We have that P proves the transition u(t1)~o(y1) with a proof of depth less than n
and furthermore u(t1)R a'(t1) because for all variables x E Var(t1) u(x)R a'(x) (use the previously
proved fact). By definition of R we can distinguish between two cases:
I) u(t1) tlp u'(t;). In this case there is a wET(~) such that b u'(t1)~w and u(y1)R w. This

of course means that we can extend the definition of u' to y1 by taking a'(y;) = w. One can
easily check that the invariant properties of the colouring are preserved.

2) There is a function name gin F and there are terms wj,w/ for J.;;;;.j.;;;;.r(g) such that:

u(tj)= g(w1 , .. , Wr(g)),

u'(tj)= g(w1 ', .. , Wr<g)') and

w1Rw/ for 1.;;;;.j.;;;;.r(g).

But now we can apply the induction hypothesis which gives that there is a w such that
Pt- g(w 1', •• ,wr(g>')~w and o(y1)R w. Again we can extend the definition of o' to y1 by
taking o'(y1)=w and it is easy to check that the invariant properties are preserved.

This completes the proof of the induction step. 0

3.10. The implication in theorem 3.7 cannot be reversed. The TSS P'(BPA8) described follow
ing definition 3.3 is not in tyftltyxt format. But, as observed in that section, it is equivalent to
the TSS P(BPA8) which is in tyftltyxt format. Hence, bisimulation equivalence is a congruence.
However, if one adds new operators and rules, then the congruence property can get lost, even
if the rules for the new operators are in tyftltyxt format. In order to see this, consider the TSS
obtained by adding to P'(BPA8) encapsulation or restriction operators aH for H r:;;,Act and the
tyft rules:

x~x'
aH(X)~an(x')

We then obtain a tt a(b}(a), but a·b 'if! a(b)(a)·b.

a~H

This example shows that there is another reason for using TSS's in tyftltyxt format, namely
their extensibility, without endangering congruence properties. It seems that, whenever a TSS
contains a non tyftltyxt rule, we can extend this TSS (except for some trivial cases) with a
number of tyftltyxt rules such that for the resulting TSS bisimulation is not a congruence.

We conclude this section with two examples of applications of our congruence theorem.

3.11. The silent move. In process algebra it is current practice to have a constant T representing
an internal machine step that cannot be observed. In order to describe the 'invisible' nature of
T, the notions of observational congruence [11] and rooted-r-bisimulation [5] have been introduced.
As observed by VAN GLABBEEK [8] it is not necessary to introduce a new notion of bisimula
tion. Below the signature }:(BPA8) is enlarged with a constant name T and rules are given that
capture the notion of hidden, internal machine steps. P(BPA;6) = (~(BPA~),Actn1,R(BPA;6))
with Act d =Act v U { T }. R(BPA;6) consists of the combination of the rules in table I (but now
a ranges over Act TV) and table 2 (where a also ranges over Act d). We claim that the theory
BPA;a of table 3 (where a ranges over elements from Act,), is a sound and complete axiomatisa
tion of the model generated by the TSS P(BPA~) modulo strong(!) bisimulation. Thus bisimu
lation becomes a congruence in a natural way. For more information we refer to [8].

a~'T (a=fa.v)

x+y =y+x
x +(y +z) = (x +y)+z
x+x = x
(x +y)z = xz +yz
(xy)z = x(yz)
x+8 = x
8x = 8

433

TABLE 2

Al aT = a
A2 'l'X +.x = 'TX

A3 a(Tx +y) = a(TX +y)+ax
A4
A5
A6 u = x
A7 X(= x

TABLE 3

Tl
T2
T3

A8
A9

3.12. Recursion. There are many ways to deal with recursion in process algebra. One approach
is to introduce a set :=: of process names. Elements of :::: are added to the signature of the TSS as
constants names. The recursive definitions of the process names are given by a set
E={X<=txlXeE} of declarations. Here the tx are ground terms over the signature of the TSS
(hence, they may contain process names in E). If X «=tx is a declaration, then the behaviour of
process X is given by its body tx. Formally this is expressed by adding to the TSS rules

tx~Y
X~y

for every declaration X<=tx. Now observe that these rules fit in the tyft format. Hence it fol
lows that bisimulation remains a congruence.

4. MODULAR PROPERTIES OF TRANSITION SYSTEM SPECIFICATIONS

Given two TSS's Po and P 1 we use P 0 ffiP 1 to denote their componentwise union. A nice pro
perty to have in such a situation is that the outgoing transitions in TS(P0) of terms in the sig
nature of P0 are the same as the outgoing transitions of these terms in TS(P0 $P1). This
means that P 0 ffi P 1 is a conservative extension of P 0 : any property which has been proved for
the states in the old transition system remains valid (for the old states) in the enriched system.
In this section we study the question what restrictions we have to impose on P 0 and P 1 in
order to obtain conservativity. First we give the basic definitions.

4.1. DEFINmoN. Let ~;=(F;,r;) (i=O,l) be two signatures such that feF0 nF1 ~

r0(j)=r 1(j). The sum of~ and ~h notation ~ffi~i. is the signature:

~ ffil:1 =(Fo U F1) .. fif feFo then ro<J) else r1(j)).

4.2. DEFINmON. Let P;=(}:.;,A;,R;) (i =O, 1) be two TSS's with ~$~1 defined. The sum of Po
and Pt> notation Po ffiP1> is the TSS (~ffil:i.Ao UA 1>Ro UR 1).

4.3. DEFINmON. Let P;=(~;,A;,R;) (i=O,l) be two TSS's with P=P0 <BP 1 defined. Let
P =(~,A,R). We say that Pisa conservative extension of Po and that P1 can be added conserva
tively to P0 if for all seT(~0), aeA and teT(~): b s~t # P0 t- s~t.

Note that the implication Pf- s...!?t «= Pof- s~t holds trivially. Observe further that if Pisa
conservative extension of P 0 , P is also a conservative extension of P0 up to bisimulation, i.e. for
s,teT(~): Sti'pt #Sttp.t.

434

4.4. THEOREM. Let P 0 = (ZJ ,A 0, R0) be a TSS in pure tyft! tyxt format and let P 1 =(Ii.A i.R i)
be a TSS in tyft format such that no rule of R 1 contains a function name from Zi in the left hand
side of its conclusion. Let P = P 0 ffi P 1 be de.fined. Then P 1 can be added conservatively to P 0•

In the full version of this paper a number of simple and easy to find counterexamples are
included which show that there is no obvious generalisation of the above theorem. So TSS's
which are not pure are ill-behaved with respect to modularisation. Because modularity is an
important and desirable property one might decide, for this reason, to call such TSS's unstruc
tured.

5. CoMPLETED TRACE CONGRUENCE

In this section we study the completed trace congruence induced by the pure tyft!tyxt format.
Intuitively, two processes s and t are completed trace congruent if for any context C[] which
can be defined using the pure tyft!tyxt format, the completed traces of C[s] and C[t] are the
same. It seems reasonable to require that, whenever new function names and rules are added to
a TSS in order to build a context which can distinguish between terms, these new ingredients
may not change the original transition system: the extension should be conservative. Otherwise
we could add rules like:

x~x',y~y'
x+y I'm(s+t»x'+y'

and make that syntactically different terms always have outgoing transitions with different
labels. Completed trace congruence would then just be syntactic equality between terms.
The results of the previous section show that for a TSS in tyft!tyxt format it is in general rather
difficult to determine a class of TSS's which can be added to it conservatively. Consequently it
is also difficult to characterize the completed trace congruence induced by this format. However,
for TSS's in pure tyft!tyxt format such a class exists: by theorem 4.4 every TSS in tyft format
can be added conservatively to a TSS in pure tyft!tyxt format. For this reason we decided to
study the completed trace congruence induced by the pure tyft!tyxt format and leave the gen
eral tyft!tyxt format for what it is. We think that this is not a serious restriction.

5.1. DEFINITION. Let 6e=(S,A,~) be a LTS. SES is a termination node, notation s_.pj, if
there are no t ES and a EA with s ~ t. A sequence a 1 *··*an EA• is a completed trace of s if
there are states si.s2, .. ,sneS such that s...!!.l.?s 1 ...!!.1.? .. ~sn+:?· CT(s) is the set of all com
pleted traces of s. Two states s,tES are completed trace equivalent if CT(s)=CT(t). This is
denoted as s =er t.

5.2. DEFINITION. Let if}' be some format of TSS rules. Let P =(I,A,R) be a TSS in if}' format.
Two terms s,teT(I) are completed trace congruent with respect to if}' rules, notation s::~t, if for
every TSS P'=(I',A',R') in <ff' format which can be added conservatively to P and for every
Iffi~'-context C[]: C[sJ=cTC[t]. sand t are completed trace congruent within P, notation
s ::pt, if for every I-context C[]: C[s] =cr C[t].

ABRAMSKY [I] and BLOOM, IsTRAIL & MEYER [7] give Plotkin style rules to define operators with
which one can distinguish between any pair of non-bisimilar processes. This is not possible
with pure tyftltyxt rules because, as we will see, the notion of completed trace congruence with
respect to pure tyftltyxt rules exactly coincides with 2-nested simulation equivalence (for image
finite processes). This last equivalence is coarser than bisimulation equivalence.

435

5.3. First we define the notion of m-nested simulation equivalence for arbitrary m;;;.o.

5.3.1. DEFINITION. Let ct=(S,A,~) be a LTS. A relation R ~ S XS is a simulation if, when
ever s Rt and s.J!.?s', there exists a t'eS, with t4t' and s'R t'. scan be simulated by t, nota
tion s s;. t, if there is a simulation containing the pair (s,t). s and t are simulation equivalent,
notation s~t. ifs s;.t and t f;.s.

5.3.2. DEFINITION. Let ct=(S,A,~) be a LTS. The relations s_m (m;;;.O) are defined induc
tively by:
i) s;.0 =SXS,
ii) A relation R ~ S X S is an m + I-nested simulation if it is a simulation contained in

(s;. m)- 1• State s can be simulated m +I-nested by state t, notation s s_ m + 1 t, if there exists
an m +I-nested simulation containing the pair (s,t).

Two states s and tare m-nested simulation equivalent, notations~ t ifs s_ m t and t £.ms.

Observe that I-nested simulation equivalence is the same as simulation equivalence. Further
note that for m;;;.O, tt ~~+! ~ s_m+I ~<s:::;".

5.3.3. ExAMPLE. For every m;;;.O we can find processes that are m-nested similar, but not
m +I-nested similar. Consider TSS P(BPA~). Let terms sm,tm be defined for m;;;.O as follows:

so = ell

Sm+I = atm

to = cll+bll

Below in figure 3 a part of the transition system is displayed (some £'s are dropped). One can
easily prove that: Sm ~m tm and Sm ¥f' + 1 tm for m ;;;.O,

'~ a a c
a a

a a c ll
t2ilio

b

FIGURE 3

5.3.4. LEMMA. Let ~=(F,r) be a signature and let P =(~,A,R) be a TSS. If P is non circular
and in tyftltyxt format, then~ (m;;;.O) is a congruence for all function names in F.
PROOF. Completely analogous to the proof of theorem 3.7. D

It is well known that simulation equivalence does not refine completed trace equivalence. Take
for example the simulation equivalent processes a and all+ a. The sets of completed traces are
{a*V'°} and {a,a*V}, respectively. However, it is not hard to see that for m;;;.2, m-nested
simulation equivalence does refine completed trace equivalence. This observation, together with
theorem 4.4 and lemma 5.3.4 gives the following theorem.

5.3.5. THEOREM. Let P =(~,A,R) be a TSS in pure tyft!tyxt format. Then ~2 ~=pure ryftltyxt·

5.4. Hennessy-Milner logic. Next we recall the definition of Hennessy-Milner logic (HML). The
definition is standard and can also be found in [10].

436

5.4.1. DEFINITION. The set e of Hennessy-Milner logic (HML) formulas (over a given alphabet
A = { a,b,. .. }) is given by the following grammar:

<j>:: =TI <j>/\<j> I ..,.p I <a></>.

Let &=(S,A,---7') be a LTS. The satisfaction relation F c;;;;sxeis defined in the standard way
(s Ha></> iff for some t ES: s ~t and tF<j>).

We write F for -.T, cpV..p for ..,(-.q,/\..,if!), and [a]q, for -.<a>-.</>. It is not difficult to see that
any HML formula is logically equivalent to a formula in the language e' which is generated by
the following grammar:

<j>::=T IF I cp/\<j> I <j>V<j> I <a></> [[a)q,.

5.4.2. DEFINITION. Let (S,A,--?>) be a LTS and let % be a set of HML formulas. With ~:ic we
denote the equivalence relation on S induced by %: s -:ic t = (V'</>E%: s F</> = t F<j>). We will
call this relation %formula equivalence.

5.4.3. DEFINITION. An LTS (S,A,---7') is image finite if for all sES and aEA the set {tls~t}
is finite.

We recall a fundamental result of HENNESSY & MILNER [10]:

5.4.4. THEOREM. Let (S,A,--?>) be an image finite LTS. Then for all s,t ES: s tt t = s ~et.

5.4.5. DEFINITION. Form EN we define the set e,,, of HML-formulas by:
ea is empty,
e,,, + 1 is given by the following grammar:

cp::=-.o/(for o/Ee,,,) IT I <j>/\<j> I <a>cj>.

We leave it as an exercise to the reader to check that the equivalence induced by e,,, formulas is
the same as the one induced by the set of e' formulas with at most n alternations of o and [].

5.4.6. ExAMPLE. Consider example 5.3.3 Define for m;;;;.l the formula <JJmEe,,, by:
<p1 = T /\<c>T and 'Pm +I= <ah<pm· It is easily checked that for i ;;;;.Q: s; II <Jli +I and t; F <p; + 1.

5.4.7. THEOREM (Testing Bi. formulas). Let P 0 =(};0,A 0,R0) be a TSS in pure tyft!tyxt format.
Then there is a TSS P 1 =(};1>A 1,R 1) in pure tyft format, which can be added conservatively to P 0,

such that completed trace congruence within P 0 ffi P 1 is included in ~ formula equivalence.
PROOF (sketch). Set A 1 consists A 0 , possibly extended with some additional labels to guarantee
that A 1 contains at least 5 elements. Pick 5 elements from A 1 and give them the names ok, left,
right, syn and skip. Signature };1 contains a constant li, unary function names a: for each
a EA 1, and binary function names + and Sat. Note that ~ 1 is finite if A 0 is finite. For li and
+ we have the same rules as in BPA~ and a: denotes prefixing like in the example of section
3.8. The most interesting operator is the operator Sat. The Sat operator tests whether its
second argument satisfies the ~ formula which is represented by its first argument. The rules of
the Sat operator are given in table 4. In the table a ranges over A 1• Because P 1 is in tyft for
mat, ~o n2:1 = 0 and P 0 is pure tyft!tyxt, it follows with theorem 4.4 that P 1 is a conservative
extension of P 0 . Bi. formulas are encoded using the following rules:

CT=skip:li, Cq,/\>f=left:Cq, +right:C>f, C-.</>=skip:Cq,, C,a>.P =syn:a:Cq,.

We claim that for </>E~, Sat(Cq,,t) has a completed trace ok iff tF</>. With this claim we can
finish the proof: whenever for some s,tET(2:0 ffi};1) with s 1-e., t, then there is an~ formula <Po

437

x~x'
Sat(x,y) ok)Sat(x',y)

x~x1, Sat(xi.y)~Y1
x~x,, Sat(x,,y)~y,

Sat(x,y) ok)y1+y,

x ...!!'.!!)x', x' ~x"
y ~y', Sat(x",y')~y"

Sat(x,y)~y"

TABLE 4

2

3

such that s Flf>o and t II lf>o (or vice versa). This means that Sat(C.,.,,s)'i:crSat(C.,..,t). 0

Now the next corollary is immediate:

5.4.8. COROLLARY. Let P be a TSS in pure tyftltyxt format. Then: =pure tyftltyxt C -e,·

The following theorem is a variant of theorem 5.4.4. The proof is a bit more involved.

5.5. THEOREM. Let (S,A, ---j.) be an image finite LTS. Then for all s,t ES and m EN:

s'#" t <=> s "'e.. t.

Combination of theorem 5.3.5, corollary 5.4.8 and theorem 5.5 now leads to the following
characterisation of the completed trace congruence induced by the pure tyftl tyxt format.

5.5.1. THEOREM. Let P =(:2:,A,R) be a TSS in pure tyft!tyxt format such that TS(P) is image
finite. Let s, t E T (::2:). Then: s =pure tyft 1 tyxt t <=> s tr,.2 t <=> s -e, t.

5.6. Characterization theorem for tree rules. Bloom, Istrail & Meyer have studied the completed
trace congruence induced by tree rules. Tree rules differ from pure tyftltyxt rules in that they
may only have variables in the premises and there may not be a single variable in the left hand
side of a conclusion. Hence, one could also call this type of rules 'pure xyft rules'. They proved
the following theorem [6]:

5.6.1. THEOREM (BLOOM, ISTRAIL & MEYER). Let P =(~.A,R) be a TSS in tree rule format such
that TS (P) is image finite. Let s,t E T(::2:). Then: s =1ree rules t <=> s "'e, t.

The result of Bloom, Istrail & Meyer follows from theorem 5.3.5, theorem 5.5 and the following
theorem 5.6.2. In fact this combination gives a result which is even stronger than their result as
we allow more general rules in the original system and our test system is finite if the alphabet of
the old system is finite. The next theorem also strengthens theorem 5.4.7 because now only tree
rules are used.

5.6.2. THEOREM. Let P0 =(~0 ,A 0,R 0) be a TSS in pure tyftltyxt format. Then there is a TSS
P 1 = (:2:1oA l>R 1) in tree rule format, which can be added conservatively to P 0, such that completed
trace congruence within P 0 ffi P 1 is included in ~ formula equivalence. Moreover, if alphabet Ao is
finite, then the components of P 1 are finite too.

438

REFERENCES
[l] S. ABRAMSKY (1987): Observation equivalence as a testing equivalence. Theoretical Computer

Science 53, pp. 225-241.
[2] J.C.M. BAETEN & R.J. VAN GLABBEEK (1987): Merge and termination in process algebra. In:

Proceedings 7th Conference on Foundations of Software Technology & Theoretical Com
puter Science, Pune, India (K.V. Nori, ed.), LNCS 287, Springer-Verlag, pp. 153-172.

[3] J.C.M. BAETEN & F.W. VAANDRAGER (1989): An algebra/or process creation. Report CS
R89 .. , Centrum voor Wiskunde en Informatica, Amsterdam, to appear.

[4] J.W. DE BAKKER & J.N. KOK (1988): Uniform abstraction, atomicity and contractions in the
comparative semantics of concurrent Prolog. In: Proceedings Fifth Generation Computer
Systems 1988 (FGCS'88), Tokyo, Japan.

[5] J.A. BERGSTRA & J.W. KLoP (1988): A complete inference system for regular processes with
silent moves. In: Proceedings Logic Colloquium 1986 (P.R. Drake & J.K. Truss, eds.),
North Holland, Hull, pp. 21-81, also appeared as: Report CS-R8420, Centrum voor
Wiskunde en Infonnatica, Amsterdam 1984.

[6] B. BLOOM (November 1988): Personal communication.
[7] B. BLOOM, S. ISTRAIL & A.R. MEYER (1988): Bisimulation can't be traced: preliminary

report. In: Conference Record of the l51h ACM Symposium on Principles of Programming
Languages (POPL), San Diego, California, pp. 229-239.

[8] R.J. VAN GLABBEEK (1987): Bounded nondeterminism and the approximation induction princi
ple in process algebra. In: Proceedings STACS 87 (F.J. Brandenburg, G. Vidal-Naquet &
M. Wirsing, eds.), LNCS 247, Springer-Verlag, pp. 336-347.

[9] J.P. GROOTE & F.W. VAANDRAGER (1988): Structured operational semantics and bisimulation
as a congruence. Report CS-R8845, Centrum voor Wiskunde en Informatica, Amsterdam.

[10] M. HENNESSY & R. MILNER (1985): Algebraic laws for nondeterminism and concurrency.
JACM 32(1), pp. 137-161.

[l l] R. MILNER (1980): A Calculus of Communicating Systems, LNCS 92, Springer-Verlag.
[12] R. MILNER (1983): Calculi for synchrony and asynchrony. Theoretical Computer Science 25,

pp. 267-310.
[13] D.M.R. PARK (1981): Concurrency and automata on infinite sequences. In: Proceedings 5th

GI Conference (P. Deussen, ed.), LNCS 104, Springer-Verlag, pp. 167-183.
[14] G.D. PLOTKIN (1981): A Structural approach to operational semantics. Technical Report

DAIMI FN-19, Computer Science Department, Aarhus University.
[15] G.D. PLOTKIN (1983): An operational semantics for CSP. In: Proceedings IFIP TC2 Work

ing Conference on Formal Description of Programming Concepts - II, Garmisch, 1982 (D.
Bj0mer, ed.), North-Holland, Amsterdam, pp. 199-225.

[16] R. DE SIMONE (1984): Calculabilite et expressivite dans /'algebra de processus paralleles Meije.
These de 3• cycle, Univ. Paris 7.

[17] R. DE SIMONE (1985): Higher-level synchronising devices in MEIJE-SCCS. Theoretical Com
puter Science 37, pp. 245-267.

[18] J.L.M. VRANCKEN (1986): The algebra of communicating processes with empty process.
Report FYI 86-01, Dept. of Computer Science, University of Amsterdam.

