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ABSTRACT 

We use a structured top-down approach to develop algorithms 
for atomic variables shared by concurrent asynchronous wait-free 
processes, starting from the problem specification. By this design we 
obtain a better understanding of what the algorithms do, why they do 
it, and that they correctly implement the specification. Our main 
construction of a multiwriter variable directly from 1-writer I-reader 
variables is the first such construction. Simplifications yield mul
tireader algorithms and multiwriter algorithms. The complexity 
improves that of known algorithms, in the cases where there were 
any. Our algorithms are timestamp based. We use a new "shooting" 
technique to recycle used timestamps. 

1. Introduction 

Lamport [La] has shown how an atomic variable (or register), shared between one 
writer and one reader, acting asynchronously and without waiting, can be con
structed from lower level hardware rather than just assuming its existence. These 
ideas have aroused interest in the construction of multi-user atomic variables of 
that type. In a short time this has already lead to a large number of conceptually 
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extremely complicated ad hoe constructs and (erroneous) proofs. In this paper our 
goal is to supply a solution to all main problems in the area, left after Lamport's 
work. We do this by deriving the implementations by correctness-preserving 
transformations from a higher level specification. As a consequence of their struc

tured programming genesis, the resulting algorithms are correct and easily under
stood. The final algorithms complexity-wise improve existing algorithms or best 
combinations of existing algorithms. 

The present manuscript has gone through a series of transformations from the 
preprint [LV]. We present, informally but in some detail, a version of the construc
tion which we think can be explained in a limited number of pages. However, in 
such a difficult subject (the whoes and sorrows of which will be apparent from the 
section on 'related work'), in the end one wants a rigorous approach and, prefer
ably, an actual computer implementation. This is provided in the final version 
[L 1V], based on an improved algorithm (cf. Acknowledgement), which is available 
on request. 

1.1. Informal Problem Statement and Main Result 

Usually, with asynchronous readers and writers, atomicity of operation executions 
is simply assumed or enforced by synchronization primitives like semaphores. How
ever, active serialization of asynchronous concurrent actions always implies waiting 
by one action for another. In contrast, our aim is to realize the maximal amount of 
parallelism inherent in concurrent actions by avoiding waiting altogether in our 
algorithms. In such a setting, serializability is not actively enforced, rather it is the 
result of a pre-established harmony in the way the execution of the algorithm by 
the various processors interact. Any of the references, say [La] or [VA], describes 
the problem area in some detail. 

Our point of departure is the solution [Pe, La] of the following problem. (We 
keep the discussion informal.) A flip-flop is a Boolean variable that can be read 
(tested) by one processor and written (set and reset) by one other processor. Sup
pose, we are given atomic flip-flops as building blocks, and are asked to implement 
an atomic variable with range 1 to n, that can be written by one processor and read 
by another one. Of course, logn flip-flops suffice to hold such a value. However, the 
two processors are asynchronous. Suppose the writer gets stuck after it has set half 
the bits of the new value. If the reader executes a read after this, it obtains a value 
that consists of half the new value and half the old one. Obviously, this violates 
atomicity. 

At the outset we state our main result: 

Theorem 1. We supp~y a construction for an atomic n-reader n-writer variable 
from 0 (n 2) atomic I-reader I -writer variables, using 0 (n) accesses of subvariables 
per operation execution and 0 (n) control bits per subvariable. 
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1.2. Comparison with Related Work. 

Related ad hoe and very difficult constructions have been proposed by 
[SAG,KKV,BP,NW,IL] (for the I-reader I-writer to multi-reader I-writer case) and 
by [VA,PB,IL,DS] (for the multi-reader I-writer to the multi-reader multi-writer 
case). We note that especially the latter construction has appeared to be quite 
difficult. Both algorithms that have been completely published, and subjected to 
scrutiny, turned out to contain errors. I.e., the algorithm in [VA] presented in 
FOCS86 is not fully atomic but only satisfies the weaker "regularity" condition, as 
pointed out in FOCS87 errata. A modification of this algorithm presented subse
quently in FOCS87 [PB], was found to contain several errors by Russel Schaffer 
[Sc]. The multiwriter algorithm promised in [IL] has not yet been published in any 
detail. The recent [DS) starts from multi-reader variables, and uses a simplified 
version of the unbounded tag algorithm of [VA] (as presented in [L V]) as point of 
departure. Generally, papers in the area are hard to comprehend and check. 

With these difficulties, there has been no previous attempt to implement an n

writer n-reader variable directly from I-reader I-writer variables, like we present 
here. Yet we believe the construction we present is relatively simple and tran
sparent. Both problems above, that have been subject of other investigations, are 
solved by simplifications (as it were 'projections') of our main solution. We appear 
to improve all existing algorithms under some natural measures of complexity. 
Worst case complexity comparison of our direct solution here with the best combi
nations: 

paper control bits atomic accesses 

[This paper] O(n 3) O(n) 
[BP]+ [PB, Sc] O(n 3) O(n 3) 

[SAG, KKV, BP,IL,VA] O(n 3) O(n 2) 

[SAG, KKV, BP,DS] O(n 3) O(n 2 logn) 

Explanation: The compound variable (here n-reader n-writer) is composed from 
primitive variables (here I-reader I-writer). To store a value in the compound vari
able, it is stored in a subset of the primitive variables, along with some control 
information (like time-stamps) to allow selection of the most recent value. The 'con
trol bits' column displays to over-all number of bits of control information 
required, summed over all primitive variables ("space" complexity). The 'atomic 
access' column displays the number of reads/writes from/to primitive variables 
required in the execution of one read/write from/to the compound variable ("time" 
complexity). The related work is [Pe], [La], [B], [VA], (AGS], [Ly], (KKV], (PB], 
[BP], [AKKV], [IL], [NW], [Vi], [LTV], [DS]. 
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2. Definitions, Problem, and Specification 

We are primarily interested in the algorithmics of the subject matter, and hence 
give the basics in a nutshell - as rigorous as we think is needed here. For more for
mal treatment see [La] and [AK.KV]; [BI], [He] are examples in the area using 110 
automata [LT]. A concurrent system consists of a collection of sequential processes 
that communicate through shared datastructures. The most basic such datastructure 
is a shared variable. A user of a shared variable V can start an operation execution 
a (read or write) at any time when it is not engaged in another operation execution, 
by issuing an "execute a" input command on V. It finishes at some later time 
when it receives a response from V that the execution of a is completed. We can 
express the semantics in terms of local value v of a process P and the global value 
contained in V. In absence of any other concurrent action the result of process P 
writing its local value v to V is that V: = v is executed, and the result of process P 
reading the global V is that v: = V is executed. 

An implementation of V consists of a set of protocols, one for each reader and 
writer process, and a set of shared variables X, Y, ... , Z. (A shared variable is some
times called a register.) An operation execution a by user process P on V consists 
of an execution of the associated protocol which 

• starts at time s (a) (the start time) 

• applies some transformations on shared and local variables X, Y, ... ,Z 

• returns a result to Pat time/(a) >s(a) (the finish time). 

The start and finish times of all operation executions are supposed to be disjoint. 
I.e., for operation executions a =I= b we have s (a)-::/= s (b ), s (a) =I= f (b ), and 
f (a) =I= f (b ). All interactions between processes and variables are asynchronous 
but reliable, and can be thought of as being mediated by a concurrent scheduler 
atomaton. The read/write operations are total, i.e., they are defined for every state 
of the variable. An implementation is waitjree if: 

• the number of sub-variable accesses in an operation execution is bounded by a 
constant, which depends on the number of readers and writers; 

• there is no conditional waiting; i.e., each sub-variable access that has no out
standing sub-sub-variable accesses, has an enabled return transition. 

Linearizability or atomicity is defined in terms of equivalence with a sequential 
system in which interactions are mediated by a sequential scheduler that permits 
only one operation to execute at any variable at a time. A shared variable is 
atomic, if each read and write of it actually happens, or appears to take effect, 
instantaneously at some point between its invocation and response, irrespective of 
its actual duration. This can be formalized as follows. 

Let V be a shared variable with associated user processes P, Q, .. ,R which exe
cute a set of operation executions A on V. Order the set A (of reads and writes) 
such that action a precedes action b, a--">b, if f (a)<s(b). Note that with this 
definition ~ is a special type of partial order called an interval order (that is, a 
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transitive binary relation such that if a~b and c~d then a~d or c~b). Define 
the reading mapping 'TT as a mapping from reads to writes by: if r is a read that 
returns the value writen by write w, then TT(r) = w. We call the triple CJ= (A,~, TT) a 
system execution. 

Definition. A system execution o is atomic if we can extend ~ to a total order 
~'such that 

(Al)'1T(r)~'r, and 

(A2) there is no write w such that '1T(r)~'w~'r. 

That is, the partially ordered set of actions can be linearized while respecting 
the logical read/write order. A shared variable is atomic if each system execution 
CJ= (A, ~,'TT) of it is atomic. 

2.1. The Problem to be Solved 

Our goal is to implement an atomic wait-free shared variable V, with n users that 
can both read and write V. We implement such a V using atomic variables Ri,J' 
1 <.i,j <.n for which i is the only associated writer process and j is the only associ
ated reader process. Since i is the only one who can write to variables Ri, 1, •• ,R;,n, 
we say it owns these variables. 

2.2. Specification 

While the definition of atomicity is quite clear, we transform it into an equivalent 
specification, from which we can directly derive our first algorithm that implements 
V. Viz., partition the actions in A into subsets induced by write actions w. Define 
the equivalence class of a write action was [w] = {a:a=w or a is a read and 
'TT(a) = w}. The precedence relation ~ on the actions in A induces a relation << 
on the set of [w]'s as follows: [w 1]<<[w2] iff w1 '76w2 and there are a E[wi] and 
b E[w 2] such that a-')>b. The following lemma is from [AKKV]. 

Lemma 1. (Al) and (A2) hold ifJ <<is acyclic and not(r~'TT(r))jor any read r. 

Proof. "If". If << has no cycles then it can be extended to a total order < 
on the set of [w]'s. Define-')>' by: 

(i) if [a] =F [b] then a~' b iff [a]< [b ]; 

(ii) within each [ w] we can topologically sort the elements beginneing with the 
write (since r ~'1T(r)), so that [w]= {w,r1,..,rk} and r; ~ r1 implies i <j. Now 
put W-')>'r1-')>' ... -')>'rk. 

It is easy to verify that -')> 1 exists, and that it is a total order on A satisfying (Al) 
and (A2). 

"Only if." First assumer-')> '1T(r) for some read r. Since ~' extends ~, we also 
have r -')>1'TT(r) which contradicts (A 1). This shows not(r·-')> '1T(r)). Because of (Al) 
and (A2), each [w] is a consecutive sequence of actions in the total order ~'. It 
follows that the order < on the [w]'s, induced by ~', is total. If [w 1] << [w 2] 

then there are a1 E[wi] and a 2 E[w 2] such that a 1 ~w2 • Since~' extends~. we 
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also have a1 ~'a2, and thus [wi]<[w2]. We see that< is an extension of<<. 
Since< is acyclic, so is<<. 0 

This way we have found the specification an atomic variable has to satisfy: for 
each of its system executions o =(A, ~ • .,,) 

(SI) not(r~'IT(r)) for any read execution r, and 

(S2) the induced relation << has no cycles. 

3. The Basic Algorithm 

Our first approximation of the target algorithm captures the essence of the problem 
solution apart from the boundedness of the constituent shared variables.* Let V be 
as in the problem description above. For most implementations of V, condition 
(S 1) is trivially satisfied, since violation of it means that a read execution returns a 
value before the write of it ever started. 11ris condition will be trivially satisfied by 
all algorithms we consider, so we mention it no further. How can we satisfy (S2)? 
We proceed as follows. Let (T, <) be a partially ordered set of tags. For each sys
tem execution o=(A, ~ • .,,),let tag: A ~Tbe a function such that 

(TI) tag(a)=tag(b) for b E[a]; 

(TI) if a ~b then tag(a).;;;;; tag(b); and 

(T3) if w1 =:f:w2 then tag(w1)=:f=tag(w2). 

(TI) ensures that each [w] has a unique tag. If [wi] << [w 2], then by definition 
w1 =:f:w 2 and there are a 1 E [w 1] and a 2 E [w2] with a 1 ~a2, so that (T2) gives 
tag(w1)~tag(w 2 ). By (T3), we have tag(w 1)=:f=tag(w2), which combines to 
tag(w 1) < tag(w 2). It suffices to devise an algorithm such that for each system 
execution o there is a function tag satisfying (TI), (T2) and (T3), in which case << 
has no cycles and (S2) is satisfied. 

Using unbounded tags, we can implement variable Vas follows. (TI) will be 
satisfied by letting read actions copy the tag of the value they choose to return. 
(TI) will be satisfied by letting the users maximize over the tags that are visible in 
their actions. Different writers will choose different tags by making the index of the 
writer part of the tag, i.e., each tag in T is a pair (t,i), where t is a natural number 
(a timestamp) and i is index between I and n of the writer that writes the tag first. 
The <-order on T is the total lexicographical order. Finally, a writer will not use a 
tag that has been used before, because it chooses its tag greater than the maximum 
visible tag. Thus, (T3) is also satisfied. 

This leads us to the basic Algorithm I. The shared variable V is composed 

* In fact, this is essentially the "first solution" in [VA] (the correct one of the two solutions present
ed), there presented with a different proof. 1bis 'matrix' architecture is used in all later construc
tions such as [SAG, KKV, BP, IL,N-W], that start from I-reader I-writer variables to implement 1-
writer n-reader variables. This is the only multiwriter algorithm generally accepted as being correct 
- but it uses unbounded tags. 
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from atomic subvariables R;,j which can be written by writer i and read by reader 
j, 1 ~ i, j o::;;; n. Each R;,J contains fields value and tag, where the latter has 
subfields timestamp and index. The algorithm is initialized by setting all fields of 
all local and subvariables to 1. This puts the system in a state which appears to 
have resulted from an initial write by user 1 of value 1 with tag (1, 1), followed by 
successive reads from all other users 2, ... , n, such that these all choose maximum 
tag:= (1, 1). 

Each user i (1 ~i ~n) has a local variable newvalue that, at the start the write 
invocation, contains the value to be assigned to V. Each user i (1 ~i ~n) also has a 
local variable value to which the value of V is assigned by the time a read invoca
tion finishes. In the algorithm, i denotes user i, 1 ~i o::;;;n. The algorithm is 
displayed in Figure 1. 

i reads value: /* value : = V* I 

Rl) Read R 1,;, . .,Rn,i· 

R2) Select the lexicographical maximal tag, say (t,p ). 

R3) Write tag:= {t,p) and value := value@(t,p) to R;,i. . .,R;,n, and value .
value@(t,p ). 

i writes newvalue (I ~i ~n): /* V : = newvalue*/ 

WI) Read R1,;, .. ,Rn,i· 

W2) Select the lexicographical maximal tag, say (t,p ). 

W3) Write tag:= (t + 1, i) and value:= newvalue to R;, 1,..,Ri,n· 

Figure 1. Algorithm 1 

Lemma 2. Algorithm 1 implements an atomic waitfree multiwriter variable. 

Proof. Obviously Algorithm 1 is wait-free. We only have to argue atomicity. 
Let a=(A, ~,'11') be a system execution according to Algorithm 1. Condition (TI) is 
satisfied, because according to the read protocol, for each read execution b in [a] 
we have tag (b) = tag(a ). Condition (TI) is satisfied because, for each pair of ele
ments a,b in A, if f (a)<s(b) then tag(a)o::;;;tag(b). Condition (T3) is satisfied, 
since if w 1 :;;if::w2 are two writes, then tag(w 1)=;;if=tag(w 2) (if the writes are by the 
same user, then the later one has a higher timestamp, if they are by different users 
the indexes are different). Because << can be isomorphically embedded in the 
total lexicographic order on T, condition (S2) is satisfied. Condition (Sl) is satisfied 
trivially. D 

4. Second Algorithm 

The only problem with Algorithm 1 is that T = N X {1, .. ,n} is infinite. The obvious 
way to proceed is to refine Algorithm 1 to an Algorithm 2 that induces a function 
tag' such that for each system execution a= (A, ~. '11'), if tag (a)= (t, i) then 
tag'(a) = (t mod C, i) for some system constant C. The only difficulty with this 
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scheme is that the old timestamps (first coordinates of tags) may be confused with 
the new ones when looping back. However, if the loop is wide enough then out
dated timestamps are seen many times by at least one writer. Similarly, long pend
ing actions are seen many times by at least one writer. We exploit this insight using 
a "shooting" trick, where for now we assume the existence of operations with cer
tain properties, and only in Algorithm 3 show how these operations are imple
mented. Each time a writer finishes a write, it "shoots" every other read or write 
execution it "sees" once. A tag is dead, if its associated operation execution is shot 
at least c times by the same writer, c a large enough system constant. In this way, 
each out of date timestamp gets eliminated after en writes. When the "information 
gathering" step R/W 1 of an operation execution starts, very old operation execu
tions have received e shots from at least one writer (certainly those such that en 
writes have completed since their start). 

In Algorithm 2 we "bracket" the information gathering step R/Wl of an 
operation execution in Algorithm 1 by an extra preliminary step R/WO that sets up 
a target associated with the operation execution, and by an extra test step R/W2.0 
that checks the number of times the target has been shot. 1bis way an operation 
can check in step R/W2.0 if it has been shot ~e/2 times by the same writer. If so, 
it completely "overlaps" some write execution from the e/2 shooting ones, say the 
one-before-last, and can safely "abort", i.e., terminate without executing the 
remainder of its program (see below). An aborting read execution will report the 
value of the one-before-last shooting write. Hence, at most en 12 writes complete 
during step R/W 1 of a non-aborting operation execution a. Operation executions 
that have been shot c times by the same writer are "dead". So at the start of an 
action a, roughly speaking, all actions b such that there are en actions d with 
s (b) < s (d) < f (d) < s (a) are dead already. Hence a nonaborting action a only 
has to consider alive timestamps that are less than 2en apart. Therefore, a loop of 
length C = 4en suffices to identify the largest timestamp in the <2en-size "win
dow." The aborting actions present no problem since they overlap completely one 
write, as will be explained below. 

We define three primitives with, for now, informal semantics: 

(i) a aborts: Operation execution a terminates without executing the remainder of 
the program. 

(ii) create(a): Initialize a new operation a such that a is not shot by the "preced
ing shots" ("concurrent shots" may or may not shoot a). Such an initialization 
by user i entails adding a new operation record to a stack of operation records 
which is maintained in each own variable Ri, 1, .. ,Ri,n· Such an operation 
record contains a value and tag field and a "target to shoot at". We assume 
the last e operation records are saved, older ones are discarded. 

(iii) a shoots b: Write a shoots operation b once. 

Semantics. 
(1) Write a can only shoot operation b if s(b)<f (a). 
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(2) Shooting appears to take effect at some point between its invocation and the 
response that it has been executed. (We don't care whether this point is different 
for observations by different users.) 
(3) User i executing b can determine whether b has been shot at least s times by 
writes of some user j, by reading the variable R1,;, for s =O, .. ,c, when it checks in 
step R/W2.0. 
( 4) User i executing a can determine whether writes by user j have shot some 
operation b by user k at leasts times by reading R1,; and Rk,i• for s =O, .. ,c, when it 
checks in step R/W2.0. 

We define an operation (and its associated timestamp) as dead if it is shot at 
least c times by the same writer. In step R/W2 of the read/write protocol below, a 
timestamp t is maximal in the set of alive timestamps, if the set does not contain 
t + i mod C, 1::s;;;;f.;;;;CI2. Initialization: Each subvariable R;,J (1 ::s;;;;f,j ::s;;;;n) contains 
an initial operation record, and nobody is shot yet. Timestamps and values in the 
operation records in all R;,J are initialized as in Algorithm I. The resulting algo
rithm is depicted in Figure 2. 

i reads value: /* value : = V* I 

RO) Create(a). 

Rl) Read R 1,;, .• ,Rn,i• to select maximal timestamp in step R2 
R2.0)Read R 1,;, .. ,Rn,i; 

if operation execution a itself is shot at least c/2 times by one and the same 
writer j 
then return the one-before-last value in R1,; and abort else 

R2) select the lexicographical maximal tag, say (t,p ), among the operations from step 
Rl that are shot <c times by each writer; 

R3) Write tag:= (t,p) and value:= value@(t,p) to R;, 1, •• ,R;,n, and value := 
value@(t,p ). 

i writes newvalue: /* V : = newvalue* I 

WO) Create(a). 

W 1) Read R 1,;, .. ,Rn,i• to select maximal timestamp in step W2. 

W2.0)Read R 1,;, ..• Rn,i; 

if operation execution a itself is shot at least c/2 times by one and the same 
writer j 
then abort else 

W2) select the lexicographical maximal tag, say (t,p), among the operations from step 
WI that are shot <c times by each writer; 

W3) Write tag : = ((t + 1) mod C, i), value : = newvaJue, and shoot every operation b 
seen in step WI, to R;, 1'··,Ri,n· 

Figure 2. Algorithm 2 (operation execution a). 

Lemma 3. Algorithm 2 implements an atomic multiwriter variable (with 
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C=4cn). 

Proofsk.etch. We use Xa to denote the writer or reader which performed 
operation execution a. Consider a fixed system execution o2 =(A, ~2 ,?T2) of Algo
rithm 2 with all aborted operation executions deleted. Those aborted operations can 
be inserted at will after we serialize the other operations since no read returns the 
value of an aborted write and: 

Claim 3.1. In Algorithm 2, if an operation execution aborts, then it overlaps 
completely a write by the writer that shot it c I 2 times. Therefore the aborted 
read/write can be inserted immediately after/before the one-before-last such write in 
the atomic order. 

Proo/sketch of Claim 3.1. If operation a of processor Xa determines in step 
R/W2.0 that it is shot c I 2 times by writer W, then obviously a overlaps the one
before-last shooting write by W completely, for c large enough. If a is a write then 
it is never read since it aborts, and it is hidden in the atomic order by the write just 
after it. If a is a read, then it reports the value of the one but last write and is put 
just after it in the atomic order. Both orderings are consistent with the precedence 
relations and the logical read-write order. 0 

Now let Algorithm 1 execute exactly the same schedule of operation execu
tions (without the aborted ones) as Algorithm 2, such that corresponding reads and 
writes of the R;Js happen at precisely the same times. (I.e., the atomic subactions 
in steps Rl, WI, R3, W3.) This results in a system execution o1 =(A, ~i.'11" 1 ), with 
~I an extension of ~2 (because the operation executions time intervals in o1 are 
subintervals of the corresponding ones in 02.) We have to show that '77'1 =?T2 . Let 
tag(a) be the tag of a in Algorithm 1 and let tag'(a) be the tag of a in Algorithm 2. 

We show that, if operation execution a in Algorithm 1 selects the maximum 
tag tag(max) with max in S 1 ={bi, .. ,bn}, then the corresponding operation execu
tion a in Algorithm 2 selects tag'(max) with max in S 2 ~ S 1• (I.e., S 2 consists of 
the "alive" operation executions in steps R2 and W2.) The difference between S 2 

and S 1 is the set of killed operation executions. We need to show that max cannot 
be in S 1 -S 2, and that with tag'(max)=(q,j), for all a in S2 and tag'(a)=(p,i), we 
have p =I= (q + r) mod C for 1...;r ,..;:;C I 2. Since the "window" in which the alive 
timestamps cluster is therefore of size less than half of the "loop", and contains 
the maximal tag tag(max) chosen by Algorithm 1, it follows that 
tag'(max) = tag(max) mod C is chosen by Algorithm 2. Tiris then implies '77'1 =7T2. 

We delegate the remainder of the proof to the Appendix. 0 

5. Algorithm 3 

We now give an implementation of the shooting primitives to derive Algorithm 3. 
Written down our solution looks complicated. However, the basic idea is simple 
and the reader may design another implementation that suits her/him better. (In 
fact, in [LTV] we opt for a different implementation.) The correctness of Algo
rithm 3 follows from the correctness of Algorithm 2, by demonstration that the 
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shooting primitives have the properties (l)-(4) claimed in relation to Algorithm 2. 
The informally mentioned "operation records" in Algorithm 2 correspond to 
"frames" below. With each operation execution execution a (a read or a write) we 
associate aframe[[a]J of the format depicted in Figure 3. 

operation a of 
user i 

(l~i ~n) 

DJ Ell all 

SHOOTllall 

(times tamp [[all, i) 

Value[[a]] 

Figure 3. Frame in Algorithm 3 

Each register Ri,J holds c frames: framed -h l = 0, .. , c - 1. When Jrame1 holds 
operation a, we denote the frame index associated with a by [[a]]= j, and we also 
writeframe[(a]J· At any fixed time, the system contains up to en timestamps in dis
tinct frames, the frames indexed by 1, .. ,cn. Each frame contains the current status 
of an operation execution: a tag=(timestamp,i), its value, and DJE[[aJJ, SHOOT[[a]] 
arrays to implement the recent shooting history.* The semantics and lay-out of the 
arrays is roughly described by: 

DJEFRAME SHOT AT(PROCESS THAT SHOOTS, TARGET SHOT AT) 

SHOOTFRAME THAT SHOOTS(FRAME SHOT AT, TARGET SHOT AT) 

Since there are n users, each of which can shoot, and each frame will have c targets 
that can be shot at, the D/£U11 ll(l:n, l:c)'s are n Xc arrays. Similarly, there are en 
frames to shoot at, and c targets in each frame, so the SHOOT[[all(l:cn, l:c)'s are 
en X c arrays. Each array element is a (c + 1)-ary digit. We say that operation exe
cution a is killed by the operation execution d, the killer, iff 
D/£llall(f[[d]]!cl, l:c)=SHOOT[[dlla[a]], l:c). 

Remark. The purpose of the (c + 1)-ary entries in the arrays is that in a 
freshly created frame of operation execution a, [[a]]= j, each DJEi[k,i] entry can 
be set different from the c SHOOTk' (j,i) entries in the c frames k' contained in 
variables Rk,l (1 ~l ~n and k = rk' I cl). 

We implement shooting primitives and an "abort" primitive as follows (k is a local 
(c + 1)-ary variable of each processor): 

* The notion we use to implement actions like creation of frames or shooting, can be compared to a 
hotel switch. A hotel switch is a switch that can be switched from two different locations. I.e., there 
is a light switch upstairs and downstairs. From both one can switch the light on or off. The light 
(on or off) is a shared variable between two parties, one at each switch, that can be set and reset by 
both parties using their own switches (i.e., local variables). 
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(i) create(a): Tbis co~sists ~n setting a new frame[[aJI in each R;,1, I ~j ~n. Now 
before we start with this, each R; · contains the c frames of the most recent . ,) 

operat.J.on exec~tion~ by i = Xa. To accommodate frame[[a ll• we have to delete 
another frame m this stack. Let frame[[b ll be the most recent one. To start the 
new operation a, if b is a read execution, then processor i replaces frame[[b 11 
by f~ame[[alJ• else it replaces the least recent frame by frame[[aJI· Now we 
descnbe what the contents of frame[[a]) is going to be. To determine this, i 
first reads all SHOOT arrays of R 1,;, • .,Rn,i· Then, in atomic writes to 
R;, 1,..,R;,m processor i sets frame[[a)] with EMPTY timestamp (which is less 
than all other timestamps) field and EMPTY value field, 
SHOOT[[all: =SHOOTffb]] (to inherit the most recent shooting record of 
writer l) and, using the SHOOT arrays of R 1,;,..,Rn,i read above, set 
DJE[[a]](f[[d]]!cl, i):#SHOOT[[dll([[a]], i) (set itself alive) for [[d]]=1,..,cn, 
i = 1,..,c. 

(ii) a shoots b: The operation execution a shoots b using k by setting 
SHOOTllall([[b ]], k): = DJEl[bll([[a ]], k). 

(iii) a aborts: operation execution a terminates without further changing any local 
or register variable. 

Initialize: k =O, and DIE, SHOOT arrays such that nobody shoots anybody. 
Timestamps and values in frames in all R; are initialized as in Algorithm 2. The 
maximality criterion in step R/W2 is the same as in Algorithm 2. The resulting 
algorithm is depicted in Figure 4. 

Lemma 4. Algorithm 3 implements an atomic multiwriter variable with C = 4cn. 

Proofsketch. The only thing we have to prove is that this implementation of 
the shooting primitives have the semantics properties (l)-(4) we required above. 
Properties (1), (2) and (3) are straightforward, and property (4) is proven in the 
Appendix. D 

6. Algorithm 4 

Algorithm 3 satisfies Theorem 1 but for the control bit complexity which is 0 (n 2 ). 

Tbis depends on c = 0 (n) which we needed only to satisfy Claim 3.2 in the Appen
dix. However, with a simple expedient it suffices c = 0(1), achieving the control bit 
complexity of Theorem 1. The only change is to execute a complete read extra, 
according to the read execution of Algorithm 3, inside each write execution, 
between step Wl and step W2.0 in Algorithm 3. Tbis 'dummy' read for user i uses 
an extra row Rn+;, 1,..,Rn +i,n to perform its write phases on (steps RO, R3). If the 
'dummy' read aborts, then so does the write that spawns it. The 'dummy' read does 
not need to return a value; its only function is to propagate the maximum tag it 
has seen by writing it in its row Rn+;, J,. . .,Rn +i,n· Each column read phase in both 
the read and write protocol for user i now reads R 1,;, ... ,R2n,i instead of R 1,;,. .. ,Rn,i 
(steps RO, Rl, R2.0, WO, WI, W2.0, in Algorithm 3). The resulting changes to 
Algorithm 3 give Algorithm 4. In the analogous proof to that of Algorithm 2, the 
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RO) Create(a). 
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RI) Read R 1,;, •• ,Rn,i• to select maximal timestamp in step R2. 

R2.0)Read R 1,1, •• ,Rn,;; 
if operation execution a itself is shot at least c I 2 times by some writer j 
then return the one-before-last value in Rj,i and abort else 

R2) select the lexicographical maximal tag, say (t,p ), among the operations from step 
RI that are shot <c times by each writer; 

R3) Write tag:= (t,p) and value:= value@(t,p) toframe[[alJ in R;,i. .. ,R;,n in one 
atomic write each (without changing the other arrays); value : = value@(t,p ). 

i writes newvalue (l~i :s;;;n): /* V: = newvalue*/ 

WO) Create(a). 

WI) Read R 1,;, ... ,Rn,i• to select maximal timestamp in step W2. 

W2.0)Read R 1,;,. .. ,Rn,;; 
if operation execution a itself is shot at least c I 2 times by some writer j 
then abort else 

W2) select the lexicographical maximal tag, say (t,p ), among the operations from step 
WI that are shot <c times by each writer; 

W3) Write tag : = ((t +I) mod C, i) and value : = newvalue to tag and value fields in 
frame[[alJ• and shoot every other frame read in step WI using kin one atomic 
write per variable R;, 1'··,Ri,n; k: =(k +I) mode. 

Figure 4. Algorithm 3 (operation execution a). 

reads fill the same role, but each write in Algorithm 4 now corresponds to a combi
nation of a write and a read in Algorithm 1. Tiris reduces the required size of c in 
Claim 3.2 to 0(1). This solution, while somewhat clumsy, has the advantage that 
the proof of correctness of Algorithm 3 carries over immediately to Algorithm 4. 
But in [LTV) we have found another, more basic, solution. That solution has the 
added advantage of making the write algorithm a simple extension of the read algo
rithm, and hence the combined algorithm is shorter. 

7. Construction of Multiwriter Variables from Multireader Variables 

A simplification of Algorithm 3 corresponds to the problem addressed in [VA, PB, 
IL, DS]. Viz., to implement an atomic wait-free shared variable W, with n n-reader 
single writer atomic sub-variables 1, .. ,n. 

To implement W, collapse each row R;, i, .. ,R;,n in Algorithms 1-3 to the single 
multireader variable R; owned by i. So the multiple atomic writes in steps R/WO 
and R/W3 of the algorithms turn into a single atomic write. Each variable R1,; 
(1 :s;;;j :s;;;n), read in steps R/Wl and R/W2.0 is replaced by R1. As a consequence of 
the fact that each columns R 1,;, •• ,Rn,i is reduced to the same column R 1, .. ,Rm the 
constant c can be reduced from 0 (n) to 0 (1) outright, without having to use the 
trick of Algorithm 4. Moreover, in a read the users do not have to execute the write 



501 

in step R/W3. This solution uses 0 (n) control bits per sub-variable R; and 0 (n) 
atomic accesses of sub-variables R; per read or write of W. Explicit algorithms are 
given in [LTV], but it is a simple exercise to derive them as indicated. 

8. Construction of Multireader Variables from Singlereader Variables 

Another simplification of Algorithm 3 corresponds to the problem that addressed in 
[SAG],[K.KV],[BP],[NW],[IL]. Viz., to implement an atomic wait-free shared vari
able R, with user 1 the only writer, and users 1, .. ,n the readers. R is implemented 
using atomic I-reader I-writer variables R;,1, 1 ~i,j ~n for which user i is the only 
associated writer, and user j is the only associated reader. We show how to imple
ment R using 0 (n) control bits in each variable R l,J (I~} ~n) owned by the 
writer 1, and 0 (I) control bits in each variable R;,J (1 ~} <i ~n) owned by readers 
2, .. ,n. (Total, O(n 2) control bits.) The construction is the same as Algorithms 1-3, 
except 

(1) just like in the previous simplified solution, system constant c is 0(1); and 

(2) the writer now only needs to maintain SHOOT arrays (and no DIE arrays), 
and as before the readers need to maintain only DIE arrays (and no SHOOT 
arrays). Hence, the SHOOT arrays of the writer have O(n) bits, but the DIE 
arrays of the readers need only 0 (1) bits; and 

(3) obviously the write will never abort. 

This brings the total number of bits needed to 0 (n 2 ), which is optimal. The 
number of atomic accesses of Ri,/s in each read or write is 0 (n ), which is optimal 
too. Explicit algorithms are given in [LTV], but it is a simple exercise to derive 
them as indicated. 

9. On Optimality of Control Bits for Multiwriter Constructions 

Is the linear tag-size optimal? In [IL], an O(n) lower bound is proved for the tag
size for sequential binary comparison algorithms. Let us explain what this means in 
the current context. An algorithm is sequential, if it contains no overlapping opera
tion executions. The algorithms we have considered are concurrent, they allow over
lapping. A lower bound proven for a sequential restriction of an algorithm holds a 
fortiori for the concurrent version. In our context binary comparison means that a 
user can determine the (apparent) atomic order between every two writes. However, 
it does not need to do so - we need only to be able to detennine the latest write 
from a set of writes, and we do not care about the relative order among the remain
ing writes. In fact, the lower bound proven in [IL] is not relevant for the multi
writer problem, since we exhibit an O(logn) upper bound for a sequential solution 
below. 

We generalize the time-stamp system defined in [IL], removing all restrictions: 
This discussion assumes some knowledge of [IL]. A (sequential) generalized time
stamp system of order n is <G,f >,where G is a set of nodes (or just numbers) and 
f is a symmetric function from Gn to G such that the following n pebble game can 
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be infinitely played on G, 

(1) Initially all n pebbles are on the first node; 

(2) At each step, the adversary chooses a pebble and the pebbler has to move this 
pebble to a node v such that/({v,v1, · · · ,Vn-d)=v where v1, · · · ,Vn-1 are 
the nodes in G where the rest of then -1 pebbles are located. 

We call f the labeling function. Obviously the new time-stamp system has 
most nice properties of the old time-stamp system of [IL]. However in [IL] it was 
proved that 0(2n) nodes are needed for the sequential [IL]-time-stamp system of 
order n. The following modification of Algorithm 1, assuming the operation execu
tions do not overlap, needs only O(logn) bits to encode a (sequential) generalized 
time-stamp system of order n. The tags ( = time-stamps in this case) are just 1, ... , n 

and are initialized with value 1. The algorithm is displayed in Figure 5. 

i reads value: /* value : = V* I 

RI) Read R 1,;, .. ,Rn,i· 

R2) Compute m = (~j tag@Rj,;) modn. 

R3) value : = value@Rm,i· 

i writes newvalue (l~i o;;;;;;n): !* V := newvalue*/ 

WI) Read R 1,;, . .,Rn,i· 

W2) Compute m such that i = (m + ~j.;=itag@R1,;)modn. 
W3) Write tag:= m and value:= newvalue to Ri, 1'··,Ri,n· 

Figure 5. Sequential multiwriter algorithm using n tags. 

Appendix 
Remainder Proofsketch of Lemma 3. The lemma follows immediately from Claim 3.3 
below. In the proof of Claim 1.3 we need the following: 

Claim 3.2. In Algorithm 2, if a non-aborting write a is shot for the cth time by Xb in 
write b, then tag(b)>tag(a) in Algorithm 1. 

Prooftketch of Claim 3.2. Since write a did not abort at the end of step W2.0, a is 
shot <c/2 times by xb at time T2, the time when step W2.0 of a starts. In order for xb to 
kill a, it needs to shoot a at least >c/2 more times. The second such shot can finish only 
after a finishes its step WI. Hence the next shots have to come from complete writes that 
start after a has already scanned all timestamps from which it is going to select the maxi
mal one. Now suppose that tag(e)=(t,i) is the highest tag a has read in step WI of Algo
rithm I, while e is not completed yet. Then, tag(a)=(t +I,.). However, because of a chain 
of operation executions that have partially completed step W3, t may be larger than t' 
where (t',Xb) is the tag of a write execution that shoots a. But a little reflection shows that 
at any fixed time, if (tp,r) is the highest tag in column R I,p•"•Rn,p and (tq,s) is the highest 
tag in column R 1,q,..,Rn,q then I tp - tq I <n. Therefore, at time T2 , the maximum tag 
tag(f)=(t',j) in any column R1,k> .. ,Rn,k> must satisfy t'+n>t. Now each subsequent 
nonaborting write of Xb writes a larger timestamp than the previous one. Therefore, with 
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c12>n + 1, 

the last of the c I 2 writes by Xb that shoot a after time T2 , say write f, has tag(j) = (t",Xb), 
with t"~t'+n + l>t + 1, which proves the claim. D 

The lemma then follows from the following claim: 

Claim 3.3. Let R =a1,a2, ... be a total atomic ordered set of nonaborting operation 
executions associated with Algorithm 1. In both Algorithms l and 2, for all i, a; selects 
the tag associated with the same write in corresponding steps W /R2 in Algorithms l and 
2. 

Prooftketch of Claim 3.3. By induction on a/s. 

Base. Both protocols are identically initialized. 

Induction. Assume that the claim is true for i =I, · · · ,k -1. Consider action ak 

(which did not abort) in Algorithms 1 and 2. 
(i) We first establish that if tag'(max) is the maximal tag selected by ak in Algorithm 1, 
then max is not killed (shot for the eth time) by writer Xa, in write a1 and ak scans both 
tag'(max) and tag'(an in step R/Wl of Algorithm 2. Namely, as before let S;= set of 
(alive) tags that were obtained by ak in step R/Wl of Algorithm i in system executions a., 

for i = 1,2 respectively. We exploit the assumption that all atomic subactions of the steps 
R/Wl and R/W3 of the corresponding operation executions in the system executions a1 

and a2 according to Algorithms 1 and 2 take place at exactly the same times. In particular 
therefore, corresponding operation executions scan tags from the corresponding same sets 
of writes in step R/Wl of their Algorithm, in both system executions. Let tag(max) be 
the maximal tag in S 1• We know that max is not killed by any operation execution a1 with 
a1 ES 2 in the system execution according to Algorithm 2, since otherwise the killer's tag 
tag(an would also be in S 1 and by Claim 3.2, tag(a1)>tag(max) in Algorithm 1, a con
tradiction. 

(ii) We secondly establish that all alive timestamps scanned by ak in Algorithm 2 are in a 
small enough window. We first observe that at any time instant all alive timestamps are 
within an interval of size en in the mod C cycle, say operation execution a least and b 
greatest in the total order R. Namely, if a and b are ~en apart, then there are at least en 
complete writes within the time interval from th~ start of a until the finish of b. Conse
quently, one writer executes at least c writes of the en, shooting a at least c times, and kil
ling it: contradiction. 

Let step R/WO finish at time T0, and step R/W2.0 start at time T2 • At time T0, all alive 
timestamps written in own variables are within an interval of size en by the above argu
ment. From To to T2 , less than en I 2 consecutive timestamps can be written. If not, then 
some writer would shoot ak twice and ak would detect this after T 2 in its scan in step 
R/W2.0 and abort, contradicting the assumption that ak did not abort. Therefore the alive 
timestamps observed by ak are clustered in a window of size ~ 3cn I 2 which include the 
tag(max) seen by ak according to the system execution a1, which corresponds to the maxi
mal tag in the <2cn-size "window" among the alive timestamps seen by ak in a2 . So 
Algorithms I and 2 choose the tags corresponding to a same write in ak. This finishes the 
induction. D 

Remainder Proofsketcl:t of Lemma 4. Property (4) follows by: Assume that writer Xb 
shoots e for the ith time in write b, i ,,;;;c. By Algorithm 3, e never changes its DIE arrays 
once initialized. Xb will keep the shooting bits for e in its most recent frame, as long as it 
scans e in step WI of a nonaborting write execution. (Actually Xb keeps shooting at e at 
every write, and a read does not change shooting bits). Hence once e got shot ~i times by 
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Xb, i =O, .. ,c, that fact will not change until/rame[(eJJ is replaced by a fresh frame of a new 
operation by Xe. After framenell is removed by Xe, it takes at least l concurrent write, 
c - 2 complete writes, and the create part of a cth write by Xb, to "fade out" the currently 
most recent frame and its SHOOT array containing the "killing bits" for e. Namely, Xb 
keeps c frames and it replaces the older frames first. A first concurrent write of Xb can 
change the SHOOT array in the current frame, the c - 2 complete writes by Xb replace the 
c -2 oldest frames, and the create part of the cth write by Xb modifies the SHOOT array 
of the remaining frame. In case Xb reads, the shooting bits are not changed at all. Sup
pose Xb has shot e at least i times. Now in step R/W 1 of Algorithm 3, if a sees both 
frame[[eJJ and i killing bits in a SHOOT array of Xb, then a concludes that e is shot i 
times. If a only sees frame[[e]] but did not see i killing bits in the SHOOT array of any of 
the c frames of xb, then xb has written at least c - 1 writes, at least c - 2 of which com
plete, after frame[[eJJ is removed and hence after a sees frame[[e]]· Therefore, Xb shoots a 
at least c - 2 times before 'Tz and a must detect this and abort at step R/W2.0 of Algo
rithm 3 since c -2>cl2 for large enough c: contradiction D 

Acknowledgements 

We thank John Tromp for helping with a rigorous presentation based on the method 
presented in this paper. His involvement resulted in several improvements. Moreover, he 
implemented the new algorithms in C. By extensive testing simulated asynchronous runs, 
several candidate algorithms were eliminated, and parameters were optimized. The elegant 
result, with unambiguous low-level code algorithms and rigorous proofs of correctness, is 
reported in [L1V], which forms the definitive version of this paper. We thank Amos 
Israeli for discussions on an early version of the present paper. 

References 

[AKKV] B. Awerbuch, L Kirousis, E. Kranakis and P.M.B. Vitimyi, "A proof technique 
for register atomicity", In: Proc. 8th Conf. Found. Software Techn. & Theoret. Comp. 
Sci., Lecture Notes in Computer Science, Vol. 338, pp. 286-303, Springer Verlag, 1988. 

[BI] B. Bloom, "Constructing Two-writer Atomic Registers," IEEE Transactions on Com
puters, 37(1988), pp. 249-259 

[BP] J.E. Burns and G.L. Peterson, "Constructing Multi-reader Atomic Values From Non
atomic Values'', Proc. 6th ACM Symp. on Principles of Distributed Computing, pp. 222-
231, 1987. 

[DS] D. Dolev and N. Shavit, Bounded concurrent time-stamp systems are constructible, 
Extended Abstract, January 9, 1989. (To appear in STOC-89.) 

[He] M.P. Herlihy, "Impossibility and Universality Results for Wait-Free Synchroniza
tion", Proc. PODC, 1988. 

[IL] A. Israeli and M. Li, "Bounded Time-Stamps", Proc. 28th IEEE Symp. on Founda
tions of Computer Science, pp. 371-382, 1987. 

[LTV] M. Li, J. Tromp, and P.M.B. Vitanyi, "How to share concurrent wait-free vari
ables", Centre for Mathematics and Computer Science, Amsterdam, March 1989, submit
ted. 

[LV] M. Li, P.M.B. Vitanyi, "A very simple construction for atomic multiwriter register'', 
Techn. Rept. TR-01-87, Aiken Computation Laboratory, Harvard University, November 
1987. 



505 

[KKV] L.M. Kirousis, E. Kranakis, P.M.B. Vitimyi, "Atomic Muhireader Register", Proc. 
2nd International Workshop on Distributed Computing, Amsterdam., J. van Leeuwen (ed.), 
Lecture Notes in Computer Science, Vol. 312, pp. 278-296, 1987. 

[La] L. Lamport, "On Interprocess Communication Parts I and II", Distributed Comput
ing, Vol. I, 1986, pp. 77-101. 

[LT) N. Lynch and M. Tuttle, Hierarchical correctness proofs for distributed algorithms, 
Proc. 6th ACM Symposium on Principles of Distributed Computing, 1987. 
[NW] R. Newman-Wolfe, "A Protocol for Wait-free, Atomic, Multi-Reader Shared Vari
ables", Proc. 6th ACM Symp. on Principles of Distributed Computing, pp. 232-248, 1987. 
[PB] G.L. Peterson and J.E. Burns, "Concurrent reading while writing II: the multiwriter 
case", Proc. 28th IEEE Symp. on Foundations of Computer Science, pp. 383-392, 1987. 
[Pe] G.L. Peterson, "Concurrent reading while writing", ACM Transactions on Program
ming Languages and Systems, vol. 5, No.l, 1983, pp. 46-55. 
[Sc] R. Schaffer, On the correctness of atomic multi-writer registers, Tech. Rept. 
MIT!LCS/TM-364, MIT Lab. for Computer Science, June 1988. 

[SAG] A.K. Singh, J.H. Anderson, M.G. Gouda, "The Elusive Atomic Register Revisited", 
Proc. 6th ACM Symp. on Principles of Distributed Computing, pp. 206-221, 1987. 

[Vi] Vidyasankar, Converting Lamport's Regular Register to an atomic register, Informa
tion Processing Letters, 28(1988), pp. 287-290. 

[VA] P.M.B. Vitimyi and B. Awerbuch, "Atomic Shared Register Access by Asynchronous 
Hardware", Proc. 27th IEEE Symp. on Foundations of Computer Science, pp. 233-243. 
(Errata, Ibid., 1987.) 


