
CCS for 00 and LP

J.W. de Bakker*

Centrum voor Wiskunde en Infonnatica, Postbus 4079, NL-1009 AB Amsterdam
& Vrije Universiteit Amsterdam

E.P. de Vink

Department of Mathematics and Computer Science,
Vrije Universiteit Amsterdam, De Boelelaan 1081, NL-1081 HY Amsterdam

ABSTRACT We illustrate the design of comparative continuation semantics for object-oriented and logic program­
ming languages by three case studies dealing with process creation, backtracking and rendez-vous. Operational
and denotational semantics involving syntactic and semantic continuations are proposed, and their equivalence is
shown. For the rendez-vous concept, we present a somewhat streamlined version of our earlier work on the
semantics of the parallel object-oriented language POOL. Throughout, the metric framework is exploited, and
(unique fixed points of) contracting functions are used pervasively.

*Partially supported by ESPRIT BRA Integration

1. INTRODUCTION

We shall present a selection of the work we have performed in recent years on the semantics of object­
oriented (00) and logic programming (LP) languages, in particular focusing on their control flow. As a
unifying theme, we have singled out the use of continuation semantics. Moreover, we systematically
compare operational and denotational models. Altogether, we shall be concerned with Comparative
Continuation Semantics for 00 and LP.

To position the present paper with respect to our earlier work, we start with a bit of history on the

general framework we have developed. Since 1981, the Amsterdam Concurrency Group (ACG) has been
investigating control flow semantics, with special emphasis on concurrency notions, and employing

metric topology as main tool. The key observation explaining the relevance of the metric approach is the

following: Consider two computations p 1, p 2 • A natural distance d (p 1 , p 2) may be defined by putting
d(p 1, p 2) = rn where n (=df sup { k: p 1 (k) = p 1(k) }) is the length of the longest common initial seg­
ment of p 1 and p 2 . Details vary with the form of the p i. p 2. If computations are given as words (finite

or infinite sequences of atomic actions), we take the standard notion of prefix; if p 1, P1 are trees, we use

truncation at depth k for p (k). Other kinds of computations, e.g. involving function application, may be
accommodated as well.

Complete metric spaces (cms's) have the characteristic property that Cauchy sequences always
have limits; this motivates their use for smooth handling of infinite behaviour. In addition, each con­

tracting function f: (M, d) -HM, d), for (M, d) a ems has a unique fixed point (by Banach's
theorem). Contracting functions f: (M 1, d 1) ~ (M 1 , d 2) bring points closer together: it is required

that, for some real a.e [0, 1), d 2(f (x), f (y)) :5 a. • d 1 (x, y). Uniqueness of fixed points may con­

veniently be exploited in a variety of situations.

In the paper [BZ82] we showed how to apply metric techniques to solve domain equations

IP= S1i (IP) (1.1)

2

or, rather, (IP, d) :: :J (IP, d), with (lP, d) the ems to be determined, = isometry, and ff a mapping built
from given cms's (A,dA), ... , the unknown (JP, d), and composition rules such as v (disjoint union), x
(Cartesian product), and :Pc0 (.) (compact subsets of·). Section 2 will provide more information on this

method.
In a series of papers, starting with [BZ82, BBKM84, BKMOZ86, BM88, BMOZ88], we developed

denotational (:lJ) and operational (IO) semantics for a number of simple languages with concurrency.
Here a denotational semantics :lJ for a language:£ is given as a mapping : :f ~ P1 (for some lP1 solving
(1.1) for a suitable :J), which is compositional and treats recursion through fixed points. <1J is a mapping :
:£ -t JP2, which is derived from some Plotkin-style transition system ([Pl83]), and which handles recur­
sion through syntactic substitution. Also, in the papers referred to, we encounter the contrasting themes
of linear time (LT, sets of sequences) versus branching time (BT, tree-like structures) semantic domains,
and of uniform (uninterpreted atomic actions) versus nonunijorm (interpreted actions) concurrency.

After an initial phase in which ACG developed the basic machinery of metric semantics, the group
directed its efforts towards concurrency in the setting of object-oriented and, subsequently, of logic pro­
gramming. In a collaborative effort with Philips Research Eindhoven, within the framework of a project
with substantial support from the ESPRJT programme, we designed operational and denotational seman­
tics for the parallel object-oriented language POOL, and investigated the relationship between the
respective models ([ABKR86, AB88, ABKR89, AR89a, B89, R9-0a]). Throughout these studies, fruitful
use was made of the metric formalism. Two further papers deserve special mention. In [AR89b], the
technique from [BZ82] for solving domain equations (1.1) was generalised and phrased in the category
of cms's. In [KR90], a powerful method was proposed to establish equivalences such as ro = :JJ, by (i)
de.fining l!J as fixed point of a contracting higher-order mapping <P (obtained from an appropriate transi­
tion system), and (ii) proving that ;JJ = <l>(.V). By Banach's theorem, <1J = :JJ is then immediate (cf. also
[BM88], where several more examples of the KR-method are treated).

Logic programming and some of its parallel variations were first studied by ACG in [B88, K88).
The paper [B88] proposed to investigate control flow in LP abstracting from the logical complexities (no
substitutions, refutations, etc.), and shows how the basic metric techniques apply as well to this, at first
sight rather remote, problem area. Related work includes [BK90, BoKPR90].

Since 1989, we have been pursuing the research directions as outlined above as part of the ESPRIT
Basic Research Action Integrating the Foundations of Functional, Logic and Object-Oriented Pro­
gramming. One of the tasks of this action is in particular devoted to the semantics of parallel 00 and LP.
Representative papers produced by it so far are [AR90, BoKPR91, JaMo90].

Now back to the aims of the present paper. We shall demonstrate the machinery of metric seman­
tics by the investigation of two case studies. From parallel 00 we take the notions of process creation
and rendez-vous between processes. From (sequential) LP we consider the backtracking notion of PRO­

LOG. In both cases we consider only the uniform or schematic version: the elementary actions remain
atomic and are not supplied with some form of interpretation as state (or substitution) transfonnation.
Also, both case studies serve as illustrations of more elaborate work reported elsewhere. The 00 notions
are based on our study of POOL as mentioned earlier; the LP part is an introduction to the paper [B88].

We conclude this introduction with an outline of the paper. In Section 2, we provide a brief sum­
mary of our metric tools, including a short discussion of the definition of suitable cms's as solution of
metric domain equations (1.1). In Section 3 we illustrate our techniques by means of the discussion of a
very simple language with as only notions elementary actions, sequential composition, nondetenninistic
choice, and recursion. (The reader may recognise here the control structure of context free grammars.)
Operational and denotational semantics - both of the LT and BT variety - are developed for this
language, and their equivalence is established. By way of preparation for the subsequent sections, the

3

treatment is based on (syntactic and semantic) continuations. In the next section we deal with process

creation. Compared with [BM88], some details missing there in the main equivalence proof have been

added. Section 5 is devoted to backtracking. Originating with [DeBr86], this notion has also been studied

extensively by De Bruin and De Vink, e.g. [BrVi89]. In this TAPSOFf 89 paper they also included a

study of PROWG's cut operator (using cpo rather than metric techniques). Our paper culminates in Sec­

tion 6 with the treatment of the rendez-vous construct. This is an abstracted (and considerably stream­

lined) version of the analysis of this notion in [ABKR89, R90a]. Firstly we propose a more convincing

operational semantics. Next, in the design of the denotational semantics (which avoids some of the intri­
cacies of [ABKR89] in the definition of the semantic parallel composition) and the ensuing equivalence

proof (() = :JJ) we exploit and advance the technique of using higher-order functions. Firstly, we provide a

simultaneous definition of :JJ and of the semantic operator(s) concerned. Secondly, we give an

equivalence proof based on the principle of [KR90] combined with a refined complexity measure.

Acknowledgement. We are much indebted to the members of the ACG for fruitful cooperation over the

years, especially to Pierre America, Arie de Bruin, Joost Kok, and Jan Rutten, co-authors of the papers to

which the present one serves as an introduction.

2. MATHEMATICAL PRELIMINARIES

This section is mainly devoted to a summary of the basic facts form metric topology which we need in

the sequel.

2.1 Notations

We use the phrase: let (x e)X be a set such that ··· to introduce a set X with variable x ranging over X
such that···. With !P(X) we denote the collection of all subsets of X, and with !Prc(X) the collection of all

subset of X which have property 1t. The notation f: X ~ Y expresses that f is a function with domain X
and range Y. If f: X ~ X and /(x) = x we call x a fixed point off If f has a unique fixed point, we

denote it by fix(/).

22 Metric spaces

DEFINITION 2.1 A metric space is a pair (M,d) with M a nonempty set and d a mapping
d: M x M ~ [O, l] (a metric or distance) that satisfies the following properties:

(i) 'rlx,y e M, d(x,y) = 0 <=> x = y

(ii) 'rlx,y e M, : d(x,y) = d(y,x)

(iii) 'rlx,y,z e M : d(x,z) !>: d(x,y) + d(y,z).
We call (M,d) an ultrametric space if the following stronger version of property (iii) is satisfied:

(iii)' 'rlx,y,z e M : d(x,z) !>: max{ d(x,y),d(y,z) } .

DEFINITION 2.2 Let (M,d) be a metric space, let (xi)i=0 (or (xi)i for short) be a sequence in M.
a. We say that (xi)i is a Cauchy sequence whenever we have 'rle>03N e JN V n ,m>N: d(xn,Xm)<e.

b. Let x e M. We say that (x;); converges to x and call x the limit of (x;)i whenever we have

'rle>03N e JN'r/n ~N: d(x,xn)<e. Such a sequence we call convergent. Notation: limi-+oo xi =x.

c. The metric space (M,d) is called complete whenever each Cauchy sequence converges to an ele­

ment of M.

DEFINITION 2.3 Let (M 1,d1), (M2,d2) be metric spaces.

a. We say that (M l>dl) and (M 2,d2) are isometric if there exists a bijection f: M 1 -+ M 2 such that

4

'efx,y e M 1: d 2(f(x),f(y)) = d 1 (x,y). We then write M 1 = M 2·

b. Leto:~ 0. With M 1 ~a M 2 we denote the set of all functions /from M 1 to M 2 that satisfy the fol­

lowing property: V x,y e M 1: d 2 (f (x),f (y)) '5. rx·d 1 (x, y) . Functions in M 1 4 1 M 2 we call non

distance increasing (ndi), functions in M 1 ~a M 2 with 0 '5. o:< 1 we call contracting.

THEOREM 2.4 (Banach' s fixed point theorem) Let (M,d) be a complete metric space (ems, for short).

Then there exists x e M such that
(i) f(x) = x (x is a fixed point of!»
(ii) 'Vy e M: f(y) = y ~ x = y (x is unique),

(iii) 'Vxo EM: limn-too r<xo) = x where r+1(xo) = f(jn(Xo)), f 0<xo) =xo.

DEFlNITION 2.5 A subset X of a metric space (M,d) is called compact whenever each sequence in X has

a subsequence that converges to an element of X.

Each compact set X is closed (i.e., each Cauchy sequence in X converges to an element of X). The main

role of the compactness property for our purposes is based on the theorems of Kuratowski ([Ku56]) and

Michael ([Mic51]). The former states that the space of compact subsets (equipped with a suitable

metric) of a complete space is itself complete. The latter is useful for showing the well-definedness of

certain semantic operators (such as Definition 4.10; for more details on these issues which are somewhat

glossed over in our paper cf. [Br91]).

DEFINITION 2.6 Let (M,d), (M 1,d 1), (M z,d2) be metric spaces.

a. We define a metric dp on M 1 ~ M 2 as follows: for every f 1.f 2 e M 1 ~ M 2.

dp(j1,fz)=sup{ dz(/1(x),fz(x)). For rx~O the setM1 ~o: Mz is a subset of M 1 ~M2 , and the

metric on M 1 ~o: M 2 can be obtained by taking the restriction of the corresponding dF.

b. With M 1 CM 2 we denote the disjoint union of M 1 and M 2 , which can be defined as

{ l} XM1 v { 2} XM2. We define a metric on M1 vM2 as follows: for every x,y E M1 vM2.

du(x,y) = dj(x,y) if x,y e { i } x Mi, i=l or 2, d;(x,y) = 1 otherwise.

c. We define a metric dp on M 1 x M 2 by the following clause

dp((x1,xz),(Y1.Y2))=max{ d1(x1.Y1),d2(x2.Y2)).

d. Let 5' nc(M) = { X <;;;;. M I X is compact and nonempty) . We define a metric dH on :P nc (M), called

the Hausdorff distance, as follows: For every X,Y e 5'nc(M),

dH(X,Y) = max{ SUPxex{ d(x,Y)), SUPyer{ d(y,X))) where d(w,Z) = inf,EZ{ d(w,z)), for every

Z~M.weM.

In 5' co(M) = (X k MI X compact) we also have the empty set as an element. We define dH as

above but extended with the following case: If X '# 0 then dH(X, 0) = dH(0 ,X) = I.

e. Let rx ~ 0. We define ida,(M,d) = (M,rx·d).

THEOREM 2.7 Let (M,d), (M 1.d1) (M z,d2). dp, dH, dp and dH be as in Definition 2.6, and suppose that

(M,d), (M 1,d 1) (M 2.d2) are complete. We have that
a. (M 1 ~M2,dF),(M 1 ~aM2,dp),

b. (M1 uMz,du).

c. (M 1 xM 2,dp),

d. (5'nc(M),dH). (5'co(M),dH)

are complete metric spaces. If (M,d) and (M;.Ji). i=l ,2, are ultrametric spaces then these composed
spaces are again ultrametric.

The proof of Theorem 2.7, parts a, b, c are straightforward. Part d is more involved. It can be proved

5

with the help of the following characterisation:

THEOREM 2.8 Let (:'Pc0 (M),dH) be as in Definition 2.6. Let (X1)1 be a Cauchy sequence in :'Pc0 (M). We
have /im1 X1 = { lim1 x1 I x1 E X1 "(x1)1 a Cauchy sequence in M } .

The proofs of Theorem 2.7d and Theorem 2.8 are due to Kuratowski ([Ku56]), as a generalisation of a
similar result for closed subsets, see e.g. [Ha48].

The following alternative definition of the Hausdorff distance is sometimes convenient:

LEMMA 2.9 Let dH(X,Y) = in/(e I 'v'x E x3y E Y: d(x,y)<e, 'v'y e Y3x e X: d(y,x)<E). Then

dH =dH.

We conclude this subsection with the important

THEOREM 2.10 (Michael) Let X E :'P co(:'P co(M)). Then UX E :'P co(M).

2 .3 Sets of sequences

Let A be a finite alphabet, and let A"" = A * u Aro consist of the set of all finite and infinite words over A.
We define metrics on A and A 00 in

DEFINITION 2.11
a. On A we define the discrete metric dA: for all x,y E A, dA (x,y) = 0 if x = y, dA (x,y) = 1 otherwise.
b. Let, for x e A 00

, x(n) denote the prefix of x of length n, if length(x) ~ n, and x otherwise. We put
d(x,y) = z-sup[n I x(n) = Y (n) l with the convention that 2--<» = 0.

We have

LEMMA 2.12
a. (A"" ,d) is a complete ultrametric space.
b. :'P nc<A 00 ,dH) is a complete ultrametric space.
c. Let,for X E 5' nc<A ""), X(n) = { x(n) I x EX) . Then dH(X,Y) = 2-sup(n I X(n) = Y(n) l

The space S'nc(A "")will be used extensively in the sequel.

2.4 Domain equations

In [BZ82], [AR89b], a method has been developed to determine complete (ultra)metric spaces as solu­
tions of domain equations of the form

lP = Jli(lP)' (2.1)

where ;} is a functor (on a category of cms's) satisfying certain conditions. Natural examples of :J are
obtained by building it in terms of the operations on metric spaces encountered in Definition 2.6. We
shall restrict ourselves here to the discussion of only one example of (2.1). For the general theory we
refer to [AR89b]. Several more intricate examples may be encountered in [ABKR89], [AR90].

We shall be concerned with (lP,d) - or ll', for short, - solving the domain equation

ll' = {Po } v :'Pc0 (A X idv.,(IP)). (2.2)

Elements p in lP are usually called processes. The equation (2.2) assumes the discrete metric on {p 0 }

(consisting of the nil process Po only) and on A, and, moreover, the various metrics (for u, x, :Pco• id'h)
as defined earlier. As a consequence, the metric don (the non-nil processes in) ll' equals the Hausdorff

6

metric dH induced by the following metric d on A x lP:

d({a1.P1).(a2,p2)) = 1/2d(p1.P2 ifa1=a2

:::: 1 otherwise .
The metric dH may, alternatively, be characterised by

d (p) 2-sup(nl p,(n)=pz(n)}
H l•P2 =

where p (n), the truncation of process pat depth n, is defined by Po(n):::: po, and, for p * p 0 , p (0) = 0,

p(n+l)= ((a,p'(n))i (a,p')Ep).
A process p E lP can be viewed as a tree-like object. It is either the nil process (which terminates

normally) or the empty set (which models abnormal termination or deadlock), or it consists of a

nonempty set of pairs (a,p') which represent all possible steps a that a process p can take (each fol­

lowed by its resumption p', itself another process). In a picture, a process p(.: Po. 0) may be drawn in

a tree-like fashion:

, where each Pi is either Po. 0 or another such 'tree'. Each 'tree' is commutative, absorptive (the suc­

cessors of any node form a set rather than a multiset) and compact.

EXAMPLES

1. Po. 0, { {a i. { (az,po),{ a3,PO) I)). { {a 1. ((a2.PO) }), {al• ((a 3,po))) } .

2. The process p determined by p=limiPi• Pi+1={(a1.P;),(a2,pi)l (note that p satisfies

p = [(a 1.P),(a2•P)). This p may be depicted as

3. Let us, informally, define the operation of sequential composition o : IP x IP~ IP by putting:

Pt 0 pz is the process obtained by replacing, in p 1, all 'leaves' Po by p2. Now let p be defined as

the process satisfying p=[(a,p 0) } u (p 0 { (a,po) }). Since p is compact (hence closed), it must

include the infinite branch { (a, { { a, ···) })) .

Po a

Po a

(Warmerdam has shown (personal communication) that the operation of sequential composition

7

sketched above is not well-defined if processes are only required to be closed and infinite alphabets

are allowed.)

We conclude with two more remarks on processes.

REMARK Let us call two processes Pi.P2 bisimilar if there exists a bisimulation R such that P1RP2·

Here a bisimulation is a relation on IP x IP satisfying

(i) lipoRporpRpothenp=po

(ii) lip1RP2 and (a,p')epi, then there exists (a,p")e p 2 such thatp'Rp".

(iii) If p 1RP2 and (a,p") e P2 then there exists (a,p') e p 2 such thatp'Rp".

Now an important property of the domain IP is the fact that two processes are bisimilar iff they are equal.

For more information about processes and bisimulation cf. [BeK87], [Ru90b].

REMARK LT (sets of sequences) - domains may as well be obtained as solution of (systems ot) domain

equations. Let lP1 = { (£}) u 5' nc (A+ u A (J)). This domain (which is almost as 5' nc (A~) of Subsection

2.3, the only difference being that, for p e !Pi. if£ e p, then p = (e)) is isometric to IP2 which is (the first

component of) the solution of the system of equations

IP = {Po} u 5' nc(<l2)

<Q = Pou (Ax id0(<Q))

Po = {E)

(2.3)

This way of defining JP1 in terms of the isometric IP2 may bring out the (dis)similarities between the

BT-domain IP (solving equation (2.2)) and the LT-domain IP1 (or JP2).

3. BASIC CONTROL FLOW

As a means to introduce our techniques in an elementary setting, we use a very simple language featur­

ing elementary actions, sequential composition, nondeterministic choice, and recursion. We baptize this

language ::fer: a program in :Let has the same expressive power as a context free grammar (generating

languages with finite and infinite words). For ::let we shall introduce operational ((I)) and denotational

(2J) semantics, both of the linear time (LT) and branching time (BT) variety (for the latter one also uses

the name bisimulation semantics). Throughout, we shall use (syntactic and semantic) continuations. For

the present language this is convenient but not essential. Our reason for employing these techniques here

is to prepare the way for their use in the three remaining sections, where continuations are indeed cru­

cial. Recursion will be handled by fixed point techniques, in particular through fixed point of contract­

ing functions. We present two alternatives, one based on fixed points of environment transformations,

the other defining the denotational meaning function 2J itself as fixed point of a contracting higher-order

mapping '¥. The operational semantics (f) will - both for the LT and BT case - be derived from a

Plotkin-style transition system 5. A contracting higher-order mapping <I> will be associated with 5, and

the operational semantics (f) - which may be viewed as a means to collect all steps determined by 5 for a

given program - is obtained as fixed point of this <I>. Moreover, we shall prove - following the approach

of [KR90] - that :IJ (or, technically, a related function involving ;JJ) is as well a fixed point of Cl>, thus

obtaining (f) = 2J as a corollary. (Incidentally, for the LT-setting this yields a new proof of Nivat' s

equivalence result described in [Ni77,78], which in tum generalises the classical Chomsky­

Schutzenberger theorem for (finitary) context free languages.)

Altogether :Let - though itself a language without advanced control flow notions - will be used as a

8

tool to illustrate the convenience and power of the metric framework in control flow semantics.

3.1 Syntax

Throughout the paper we use a self-explanatory BNF-like not.ation for synt.actic definitions. We st.art

with the introduction of two basic syntactic sets:

• (a e) A, the alphabet of elementary actions,
• (x e) PV ar, the alphabet of procedure variables.

DEFINITION 3.1

a. The class (s e) :lef of statements is given bys ::=a I x I s 1 ; s2 I s 1 + s2 .
b. The class (g e) :e!t of guarded statements is given by g : := a I g ;s I g 1 + g 2.

c. The class (d e) Declcf of declarations consists of mappings d: PVar -+ .'£~.
d. A program is a pair (d,s).

REMARK The guardedness (or 'Greibach') condition ensures that the execution of each procedure body
(each d(x), for x e PVar) starts with the execution of an element.ary action (rather than of another pro­

cedure variable). Technically this condition yields contractivity of an associated function (Lemma 3.15e

or 3.17f).

EXAMPLES Take PVar = (x }, A= (a,b,c, ... }, and write x ~ g for d(x) =g. Possible programs are:
(x {:: a;x+b, c;.x) (with intended meaning caO> +ea* b), or (x $:: a;.x;b+c, x) (with intended meaning

{ a11cb 11 I n 2'!: 0 } u { aO) }). The construct (x ~ x;b+a , x) is not a program, since x;b+a e: .'l~t·

In this and subsequent sections we shall extensively use both syntactic and semantic continuations. The

former - to be introduced here - are to play a role in the operational semantics definitions, and the latter
in the denotational ones.

DEFINITION 3.2 Let Ebe a new symbol (standing for termination). The class (r e) R of syntactic con­

tinuations is given by r ::=El (s;r) where s e .'lcf.

Parentheses in (s;r) will often be dropped when no ambiguity arises.

32 LT-operational semantics

We first introduce the complete metric space which will be used as range for the operational semantics:

DEFINITION 3.3

a. Let (u, v e) A 00 =<if A* u A 0l, where A is the alphabet from Subsection 3.1. (A 00 , d) is the ems as
introduced in Section 2. Let · be the operation of prefixing on A x A 00

, defined by a ·U =dt au.
b. Let (.p e) lP = 5'11c(A 00

) be the family of all nonempty compact subsets of A 00 , equipped with the

Hausdorff metric dn with respect to the metric d of part a. Let a ·p = { a ·u I u e p } .

The operational semantics 0 mapping programs to elements from 1P will here and subsequently be given

based on a laheled transition system ff. ff determines a transition relation 9l which is given as the least

relation satisfying (in the natural way) these axioms and rules.

DEFINITION 3.4 The transition system 5ct and associated relation :Ref are given as follows:

a. A transition is a four-tuple (ri.a,d,r2) in R x A x Declet xR; we usually write it as r 1 -?~ r 2 •

b. The axiom and rules of fief are as follows:

• a;r -?~ r (el.action)

•

•

•

g;r -+~ r
---,d(x)=g
x;r -+~ r
s1;(s2;r)-+~ r

(s1;sz);r-+F

s;r -+~ r
(s+S);r -+~ r
(s"+s);r -+~ r

9

(recursion)

(seq.comp)

(choice)

CONVENTION 1. Rules with the same premise and different conclusions are combined in a self­
explanatory notation. Cf. the choice rule. 2. In the notations -+~, the subscript d will sometimes be

suppressed. 3. Instead of r 1 -+~ r2 e :Ref, we simply write r 1 -+~ r 2 when :Ref (or its successors in sub­
sequent sections) is understood.

LEMMA 3.5 5cf fa finitely branching, i.e.,for each r, the set { (a,r') I r -+0 r'} is.finite.

PROOF Direct from the definition of ff cf· c

In the technical arguments in this and subsequent sections (in particular in establishing (() = :IJ) we shall

often use (i) an auxiliary relation '-*' between syntactic continuations and (ii) the complexity c,(r),
where c,: R -+JN.

DEFINITION 3.6 We define the relation"""* to hold between ri. r 2 if there is a rule (in the corresponding
transition system) of the form

r2 -+a r
r1 -+a r

The relation r 1 -* r 2 may be read as: in order to execute r 1 , find out how to execute r 2. Next, we

introduce the complexity of the elements in R and :lcf :

DEFINITION 3.7
a. c,: R -+ lN is given by c,(E) = 0, c,(s;r) = c5 (s).
b. Cs: :l.cf-+ lN is given by cs(a) = 1, Cs(x) =Cs(d(x)) + 1, Cs(s 1; s2) = Cs(s 1) + 1,

Cs(S 1 +s2) = Cs(s i) + cs(sz) + 1.

We have

LEMMA3.8

a. c,, Cs are well-defined.

b. If r1 --» r2 then c,(r 1)>c,(r2).
PROOF Well-definedness of Cs is proved by induction on the syntactic complexity of first g then s. Part
b is clear form the definitions. c

We now define the mapping (()d: R -+ 1P as fixed point of a higher-order function Cf.ld which maps mean­

ings to meanings:

DEFINITION 3.9 Let Fe R -+IP. The mapping <l>d: (R-+ IP)-+ (R-+ IP) is given by

10

4.>d(F)(E) = {£},

4.>d(F)(r) = U{ a·F(r') I r -+~ r' }, if r #:-E.

LEMMA3.10
a. 4.>d)(F)(r) is nonempty and compact for each F. r.
b. lf>d is contracting in F.
PROOF Part a follows from the fact that 5ct is finitely branching (Lemma 3.5); part bis direct from the
definition of 4.>d and elementary properties of the Hausdorff metric. a

At last, we are ready to define

DEFINTI10N 3.11
a. (!Jd = fix<.4.>d)·
b. O(d,s) = Od(s;E).

33 BT-operational semantics

Only minor changes have to be made in the definitions of the previous subsection to obtain the BT­
operational semantics. Let us use the superscript b to indicate the BT-variant of the various definitions.
Thus, we shall define Q) 3 : :tcf-+ JPb, etc. The main step is the change in the range over the operational
semantics (now IPb rather than IP):

DEFINITION 3.12 Let JPb be the ems which solves the domain equation (2.2):

P= {po} v5>c0 (A xid¥.z(IP)).

For more information on 1Pb we refer to Subsection 2.4. We proceed with the definition of(!) /l. There
are no changes in 5 cf (or 5?.ct). The only change we adopt is in the definition of (the new) QJ $:

DEFINITION 3.13 Let Fe R -+ 1Pb. The function 4.>ff: (R -+ IPb)-+ (R -+ pb) is given by
4.>$(f)(E) = Po,

l'b$(F)(r) = { (a,F(r')} I r -+~ r' }, if r #:-E.

Note the crucial difference between the second clause in this definition, and that of Definition 3.9, where
U{ a·F(r') I •·· } is used. In the latter, outcomes a·p 1 , a·p 2 • ·•• are set-theoretically united to yield
the result a·(p 1 v p2 u ...), whereas in the present domain outcomes (a,p 1), (a,p2), ···are collected
into the (compact) set { (a,p 1) , { a,p2) , •·· } , rather than united in the form { (a,p 1 u P2 u ···) } !
A simple example may clarify the situation: Od(a1:(a2+a3)) = 1Dd((a,;a2)+Ca1;a3)) = { a1a2,a1a3 },
whereas O$(ai:(a2+a3)) = {(ai.{(a2.Po>.(a3,po)})} and O$((a1:a2)+(a1;a3)) =
{ (a 1. { (a2,Po) }), (a i. { (a3,po) }) }.

3.4 Denotational semantics

We devote most of this subsection to the development of the LT-denotational semantics for i:ct; at the
end of it, we discuss what variations are required to obtain a BT-denotational model. We shall employ
semantic continuations as counterpart of the earlier syntactic ones. Also, we shall provide two ways of
handling recursion, one through (fixed points of) environment transfonnations, the second one using
another (besides l'bd) higher-order mapping form meanings to meanings.

We start with the introduction of the set of environments (T) e) Env = PVar -+ IP -+ IP. In the fol­
lowing (and many subsequent) definitions we suppress most of the parentheses. If deemed necessary,
they may be restored on the basis of the types of the mappings involved.

11

DEFINITION 3.14 (denotational semantics for :lcf" first definition)
a. The mapping:!: :lcf ~ Env ~ IP ~ IP is given by

:Ja11p = a·p

:!X'llP = TJXP

:J(s1 :s2)1lP = :!s1 TJ(:fs2TJP)

:f(s1 +s2)1lP (Y's1 TIP) u (Y's21lP).
b. ~: Env ~ Env is given by HdTJ = :Ax.Y'd(x)11.
c. TJd=fu(Hd),.2J(d,s)=Y's11d{e}.

The above definitions are justified in

LEMMA 3.15

a. :i'STJEIP~ 1 1P.
b. :Is e Env~ 1 IP ~1 IP.

c. Y' g T] E IP~* IP

d. :lg e Env ~*IP~* IP.
e. Hd e Env ~* Env.
f. .2J(d,x) = .2J(d,d(x)).
PROOF Simpler than that of lemma 4.13 and therefore omitted. a

We next turn to the definition of .2J as fixed point of a higher-order mapping:

DEFINITION 3.16 (denotational semantics for :t.cf. second definition)

a. Let Fe :£.cf ~IP ~1 IP. The function 'I'd: (:£.cf ~IP ~1 IP)~ (:lcf ~IP ~1 P) is defined as fol­
lows:

'l'dF ap = a·p

'¥dF x p = '¥ dF d(x)p

'l'dF(s 1; s2)P = '¥dFs 1 (F s2p)

'l'dF (s1 +s2)P ('l'dFs1 p) u ('l'dFs2p).
b. Y'd =fzx('l'd); .2J(d,s) =Y'ds {e}.

The above definition is justified in

LEMMA3.17 LetF,Fi.F2e:£<f~IP~1 1P,p,p1>p2e IP.

a. ~d F sis well-defined for each F, s.
b. For all g. d('¥ d F g p 1 • 'I'd F g P2) S. l/z d(p i.P2).
c. As part b, with s replacing g.
d. For all g, d('¥dF1 g, 'l'dF2g) S. l/zd(Fi.F2).
e. As part d, with s replacing g.
f. 'I'd e (:£cf ~IP ~1 IP)~* (:£cf ~IP ~1 IP).

PROOF Simpler than that of Lemma 5.12 and therefore omitted. a

Comparing Definitions 3.14 and 3.16, and using the uniqueness of the fixed point :Id, we easily obtain

that, for all s, Y'd s = :! s Tld· Thus, we see that there are (at least) two ways of defining the denotational

semantics 5J via fixed point techniques. This will allow us in subsequent sections to adopt the most

appropriate definition technique. (e.g., in Section 4, the method based on a higher-order 'I'd does not
work, due to lack of contractivity for 'I'd!)

12

No more than a small adjusnnent is necessary to obtain the BT-denotational meaning: introduce IPb
as before (Subsection 3.3), replace in the definitions of (the types of)::! or \f' d the domain lP By !Pb, and
keep all clauses in the definitions, apart from the first ones (in Definition 3.14.a and Definition 3.16.a)
where a ·p is replaced by ((a,p) } . This seemingly small variation is sufficient to handle the new range
for :l)b: Instead of sets of sequences now 'trees' are delivered, and no further measures are required to
handle the semantic operators corresponding to the respective syntactic constructs.

3.5 V and :tJ are equivalent

The stated equivalence result holds for V and :n as well as for V b and :n b. We shall present the former,
leaving the negligible variations to obtain the latter to the reader.

We first introduce the mapping &d: R -t IP relating syntactic and semantics continuations:

DEFINITION 3.18
Sd(E) = {E},

6°d(s;r) = .J"sTtd8d(r) (=::fds&d(r)).

LEMMA 3.19 lfr 1 -t) r2 then 6'a(r1) = 6'a(rz).
PROOF Clear from the definitions. o

The key idea as to how to relate ([) and :n is contained in the next lemma (a simple example of the tech­
nique first introduced in [KR90}):

LEMMA 3.20 cl>d(8d) = 8d.
PROOF We show that, for all r, cl>a(6'a)(r) = &d(r) using induction on c,(r). A typical case is r = x;r'.

cl>d(&d)(x;r')

= (def. cl>d) U{ a·&d(P) I x;r' -t~ r)
= (def. fief) u{ a·&dcPJ I g;r' -t r l

(ind.) &d(g;r')

(Lemma 3.19) Sd(x;r'). o

COROLLARY 3.21 ([)d =&d.
PROOF Both {{)d and 6'd are fixed points of the contraction cl>d. o

Finally we have

THEOREM 3.22 V = 2J.
PROOF V(d,s) = ([)d(s;E) = &d(s;E) =Yds {E} = :lJ(d,s). o

4. PROCESS CREATION

Processt creation occurs in parallel languages such as, e.g. the parallel object-oriented language POOL
([A89, AR89a]). A dynamically evolving configuration of processes which may refer to each other
through (pointer) variables results from execution of such a program, and the creation of a new process
is a central programming concept in this setting. We study here (as everywhere in our paper) a
schematic (i.e. variableless) version, abstracting from the pointer structure. What remains is, at each

t The programming concept of 'process' has nothing to do with the mathematical notion of a
process pin a domain IP.

13

moment, a set of n ;;:: 1 processes executing in parallel. Process creation here amounts to the addition of
an n + 1-st process to this set, together with the initiation of its execution. For some more details on this
notion at this abstract level we refer to [AB88]; full details are supplied in [ABKR89, AR89a, AR90].
(In Sections 4 and 5 we shall only be concerned with LT-semantics; BT returns in Section 6.)

4.1 Syntax

Let (a,b,c,d e) A and (x,y e) PVar be as in section 3. We introduce the language :I.pc which extends :l.cf
with the new(s) construct for process creation.

DEFINITION 4.1

a. The class (s e) :£pc of statements is given by

s::=al xl s1;szl s1+s2\ new(s).
b. The classes (g e) ;tic, (h e) :£~c are given by

g : := h I g 1 ; g 2 I g 1 + g 2 \ new(g) .

h ::=a I h; s I h 1 +h2 .
c. The class (de) Dec/pc has elements d: PVar -7 :£$c·
d. A program is a pair (d,s).

REMARKS

a. The new(s) construct serves to create a new process with body s. For example, executing
new(a;new(b);c);d will result in parallel execution of a;new(b);c and of d, to be denoted (for the
purposes of this explanation only) by (a;new(b);c) II d. Performing an a-step results in the
remainder program (new(b);c) II d which may evolve, in tum, to the program b II c II d. Note that
the parallel operator II is not itself in the syntax of the language (see also the remark at the end of
Section 4), but used here only to sketch its intended semantics in familiar terms. Precise definitions
will follow.

2. In a procedure declaration such as d(x) = new(a);x, execution of the body new(a);x may start with
execution of x (since new(a);x has the same effect as a II x). In order to avoid such unguarded
behaviour, the auxiliary h is employed.

The syntactic continuations (r e) R are now given in

DEFINITION 4.2 r ::=E \ (s;r)I (r1,r2).

Execution of (r 1, r 2) will be defined in such a way that it amounts to the parallel (here taken in the inter­
leaved sense) execution of r 1 and r 2. It will be convenient to adopt, throughout this section, the follow­

ing

CONVENTION We shall always identify (E,r) and (r,E) with r.

4.2 Operational Semantics

(u, v e) A 0°, (p E) lP, a ·u, a ·p are as in Section 3. Transitions are again fourtuples in

R x A x Dec/pc x R, with Rand Deel pc as given in Subsection 4.1. The transition system :!pc (and asso­
ciated relation :'Rpc) is given in

DEFINITION 4.3

• (el. action), (recursion), (seq. comp.) and (choice) are as in Definition 3.4.

•

•

(s;B, r) -+~ r
new(s);r -+~ r

r1 -+~ r2

(rl>r) -+~ (r2,r)

(r,r1) -+~ (r,r2)

14

The definition of ()d and IV proceeds in the same way as in Section 3:

DEFINITION 4.4 Let Fe R -+ 1P, and let <tld: (R -+ J>) ~ (R -+ lP) be given by
4>d(F)(E) = {e}.

<l>d(F)(r) = u{ a·F(r'): r ~~ r' }, if r '# E,

where r -+~ r' e fllpc·

LEMMA4.5
a. il>d(F)(r) is nonempty and compact for each F, r.

b. il>d is contracting in F.
PROOF As usual. c

DEFINITION 4.6
a. lr)d =fix(<l>d).

b. IO(d,s) = IOd(s;E).

DEFINITION 4.7 r 1 ~ r 2 is as in Definition 3.6 (but now with respect to !lpc).

(new)

(par.comp.)

The definition of the complexity l: R-+ lN is now more involved. I is given as a pair I= (k,c), where
k(r) counts the number of unguarded occurrences in r of a procedure variable, and c(r) gives a cenain
fonn of syntactic complexity of its argument r. (Note that the defmition here differs from that of Defini­
tion 3.7!) We order the I-complexity by putting (kl>c 1) -< (k2,c2) if either k 1 < k2 or k 1 = k2 and
Ct <C2.

DEFINITION 4.8
a. k: R -+JN is given by k(E) = 0, k(ri.r2) = k(r 1) + k(r2). k(a;r) = 0, k(x;r) = 1 + k(r), k((s 1 ; s1);r)

= k(s1;(s2;r)), k((s1 +s2);r) = max{ k(s 1 ;r), k(s1;r) }, k(new(s);r) = k(s;E) + k(r).

b. c: R-+JN is given by c(E)=O, c(rx.r2) = c(r1)+c(r2). c(a;r) = l+c(r), c(x;r) = l+c(r),

c((s1 ;s2):r) = l+c(s1;(s2;r)), c((s1+s2);r) = l+c(s1;r)+c(s2;r), c(new(s);r) =
1 + c(s;E) + c(r).

LEMMA4.9
a. k(h;r)=O,k(g;r)Sk(r).

b. Ifr1 --* r2 then l(r1) > l(rz).
PROOF Part a is shown by induction on the syntactic complexity of first h, then g. Part b is direct from
the definitions. c

43 Denotational semantics

Before proceeding with the definitions of the various meaning functions, we first define the operator II :
lP x IP-+ JP, which shuffles the elementary actions in its (possibly infinite) arguments p 1, p 2 yielding

the resultp 1 II P2· Note that II only occurs in the semantics of :fpc· We shall define II as fixed point of a

15

higher-order mapping. This technique, which may seem somewhat overdone in the present setting, is
applied firstly to handle finite and irifinite arguments in one go, and secondly to prepare the way for the
definitions in Section 6, where a higher-order definition for (a more involved version of) II seems essen­
tial.

DEFINITION 4.10

a. Let cp e JP x JP ~ 1 JP. We define the mappings
'1. (JP x JP ~1 IP)~ (IP x JP ~1 IP)

co, (1Px JP~ 1 JP) ~ (A 00 xA 00 ~I JP)

'111 (JPx IP ~1 lP) ~ (lPx lP ~1 JP)
as follows:

O,($)(p1.P2) = u{ ro,(<l>)(u,v)I u e Pi. v e P2}

ro,(cp){E,v) = { v)

co,($)(au,v) = a·cp({u),{v))

n 11 <<l>><P1iP2> = n. {cp)(p 1.P2> u n. m<P2.P 1 >

b. 11 =fu(0 11), lL ='2,(11).

EXAMPLE Let a 00 be the infinite sequence of a's. Then a 00 II b = { a 00) u (a* ba 00). Note that the
'unfair' outcome aCll (b never got its turn) is included in the result.

LEMMA4.11
a. All operators in Definition 4.10 are well-defined. 0 0 , ro,, Q II are contracting in <j>.

b. P1ilp2=(P1 ll..p2)u(p2 U.pi).
PROOF Part a follows by Michael's theorem; part b is direct from the definitions. CJ

The denotational mappings are collected in the next definition. We draw attention to the clause dealing
with new(s). Also, the meaning of a procedure variable is handled in the customary way through
environments.

DEFINITION 4.12
a. :I: :lpc ~ Env ~ JP ~ JP is given by

::laTtp = a•p

.ixTtp = TIXP

.i(s1:s2)Ttp = ::ls1T1(Y's2T1P)

Y'(s1 +s2)T1p = (Y' S1 TIP) u (:I S2 TIP)

Y'new(s)TtP = (Y' s 11 (E}) II p
b. Hd: Env ~ Env is given by

~TIX= Y'(d(x))11

c. 11d:: fix(Hd), 9J(d,s) = Y' s 11d {e}.

The justification of this definition follows in

LEMMA4.13
a. Y'sl)e IP~1 JP.
b . .iseEnv~1 JP~1 1P.
c. ::lh11eJP~*JP.

16

d. ::I he Env -/12 IP ~!h IP.

e. ::lg11e B'~1 IP.
f. ::lg e Env ~*IP ~1 IP.
g. H,.i e Env ~Y.i Env.
PROOF We exhibit a few selected subcases. Throughout, we argue by induction on the syntactic com­

plexity of the statements concerned.

c. Case h = h';s.

d(::l(h';s)'TIPI• .:f(h';s)'11P2)
= d(.:fh 111(.:fs11pi),.:fh'11(Ys11pz))

$ (ind.) ¥2d(Y'S1'JP1 ,::IS11pz)
$ (part a) ¥2d(p1 ,pz).

d. Take p arbitrary, case h = h';s.

d(::l(h';s)rt1P, .:f(h';s)112P)
$ (def. :J, d an ultrametric)

max{ d(::I h' 111 (::Is 111p),.:fh'111 (Y' s '112 P)) (*) ,

d(Y' h' 111 (y s 112p)'yh'112 (.:f s T12 p) (**) l
$ ¥2d(11 1,T]2),since

(*)

$ (partc) V;id(:Js111p,Ys11zp)
$ (part b) V;id(111, 112), and

(**)

$ (ind.) ¥2 d (111 ' 112).
e. Case g = new(g').

d(.J"new(g') TIP 1 , .:fnew(g') 11 P2)
d((.J" g' TI { e}) II p 1 , (.:f g' 11 (e}) II p 2)

s; (II ndi) d (p 1 , p 2). a

4.4 (f) and :/J are equivalent

Let Bd: R ~ lP be given in

DEFINITION 4.14
&d(E) = {e},

8a(s;r) = .:f s 11d 8d(r),

8d(ri.r2) = 8d(r1) II Bd(r2).

LEMMA 4.15 If r 1 ~ rz then 8d(r 1) = Bd(rz).
PROOF Clear by the definitions. Observe that the (par.comp.) rule does not contribute to the---* relation.
a

LEMMA 4.16 «l>d(Bd) =&d.
PROOF We prove that, for all r, <I>d(8d)(r) = 8d(r) by induction on l(r). We exhibit two subcases:
Caser=x;r'.

4>d(8d)(x;r')

= U{ a.Bd(T) I x;r' ~~ r)
(definition 'ipc) U{ a.8d("F) I g;r' ~~ r}

= 4>d(8d)(g;r')

(ind.) 8d(g;r')

17

= (Lemma 4.15) Bd(x;r').

Case r = (r 1.r2).
~d(Bd)(r 1>r2)

= U{ a.Bd(r) I (r 1.r2) ~~ r}

= (def. 5pc) U{ a·8d(r',r2) I r 1 ~~ r' } u (synun.)
= (def. Bd) U{ a·Bd(r') II 8d(r2): r 1 ~~ r' v (symm.)
= (def. l) U({ a.Bd(r') : r 1 ~~ r'} IL 8d(r2)) v (symm.)
= (prop. l) (U }a.Bd(r'): r1 ~~ r'}) IL 8d(r2) v (symm.)
= (def. ~d) (~d(8d)(r1) l 8d(r2))v(symm.)
= (ind.) (Bd(r 1) IL 8d(r2)) u (symm.)
= (def.11) 8d(r1)il 8d(r2)
= (def. Bd) 8d(r1,r2). o

It is now immediate that

THEOREM 4.17 Q) = ::IJ.

PROOF By Lemma 4.16 and Banach's fixed point theorem 2.4, QJd = Bd. QJ = ::lJ now follows as in the
proof of Theorem 3.22. o

We conclude this Section 4 with a

REMARK The programming concept of process creation has been modeled in terms of the semantic 11-
operator (from Definition 4.10). As a natural consequence of this, one may want to compare :£cf with the
language :£sh which extends :£cf with the syntactic merge operator (i.e. which has syntaxis s (e :£sh) ::=a
I x I s 1; s2 I s 1 +s2 I s 1 II s2. and derived definitions). Now a somewhat surprising result of Aalbers­
berg and America (personal communication) is that :£pc and :£sh are incomparable: Assuming the natural
semantics for :£sh (relating the syntactic II to the semantic II), we have that there exists a program in :£pc

without an equivalent program in :£sh• and vice versa. We have thus falsified a conjecture stating that the
new-construct may as well be expressed in terms of the merge operator. The nontrivial counter examples
as mentioned involve combined use of recursion and process creation or merge. One final point: con­
tinuation semantics does not fit well with merge. We do not know how to provide a clause for
::f (s 1 II s2) llP in terms of::! s l llP 1 and::! s21lP2 for some suitable continuations PI, P2·

5. BACKTRACKING

Our next language, :£br• has as characteristic feature failure (in the form of the atomic fail statement) and
backtracking (expressed bys 1 as2). The nondeterministic choices 1 +s2 has disappeared; recursion and
sequential composition remain. In order to executes 1 as 2, we assume two kinds of syntactic continua­
tions, viz. the success continuation rand the failure continuation t. Execution of ((s 1 cs2);r): t is per­
formed by executing s 1 with success continuation rand failure continuation (s2;r): t. If somewhere in
the execution of s 1 we encounter failure, we continue with the execution of (s2;r): t. If not, we continue
with execution of r: ((s2;r): t).

In the papers [B88, BrVi89, Vi90] we have shown how to apply this construct to model the back­
tracking feature of PROLOG. The present model being logicless, in the papers just cited (cf. also [BK90])
we also discuss how to interpret the atomic actions and how to instantiate the procedure variables in such
a way that the usual PROWG semantics in terms of computed answer substitutions is obtained. More­
over, in [B88, BrVi89] it was also shown how the simple backtracking formalism to be presented below

18

may be extended with a continuation semantics for the cut operator.

5.1 Syntax

Let (a e) A, (x e) PVar be as usual. We shall from now on be somewhat more succinct in the various
definitions and lemmas.

DEFINITION 5.1
a. s(e.tb1)::=al xl fall! s1:s2l s1cs2.

b. g (e .tt) ::=a I fall I g;s I g1 cgz.

c. d (e Declbr) is a mapping d: PVar -+.:t&1; a program is a pair (d,s).

DEFINITION 5.2
a. r (e R) ::=El (s;r)

b. t (e T) ::= fl (r:t)

fis short for ran. Parentheses will be omitted when convenient. We do not identify t and E:t !

5.2 Operational Semantics

Since the behaviour of an .:ebi-program is deterministic, single sequences rather than sets of those are
now delivered. For consistency in notation, we use in this section p to range over IP =df Ag' =df
A* u A*· c5 u A (I). Here A*· c5 denotes the set of all finite sequences over A, with c5 postfixed. We
define the operator • of concatenation on IP as follows:

DEFINITION 5.3 Let ell range over IP x IP -+1 JP.

a. .Q: (JPX P-+1 P)-+ (JP xJP -+1 JP) is given by .
0 0 $Ep = p

0.$8p = 8

0 0 •ap'p = a·•p'p

b. 0 =fix(D..).

Thus,'•' is the usual concatenation with, in addition, the property that 8op = 8.
Transitions are four-tuples in T x A x Declbr x T, written as t -+~ t'. The transition system 5br (and

associated transition relation 9lb1) is given in

DEFINITION 5.4

• (a;r):t -+~ r:t (el.action)
(g;r):t -+~ t

• _, d(x)=g (recursion)
(x;r):t -+~ t

t-+~ i
(failure) •

(fall;r):t -+~ t

(sds2;r)):t -+~ t
• (seq.comp.)

((s 1 :s2):r):t -+~ t

•
(s 1 ;r):((s2;r):t) -+~ t

({s 1 cs2);r):t -+~ t
(backtrack)

19

With 5bt we associate the usual~ relation:

DEFINITION 5.5
a. t 1 -lo) t 2 if th~re is a rule in 5 bt of the form

t2 --?~ t

t1 --?~ t

~ * is the reflexive and transitive closure of -lo).

b. We say that t terminates if, for some t', t ~ * E:t'. Also, t fails if t -1) * f.

For the syntactic constructs from ::fb1, R, T we define a complexity measure which is a slight extension of

that introduced in Section 3:

DEFINITION 5.6 The mappings c1 : T --7 IN, Cr: R --7 JN' are given by

a. Cr(f) = 0, c1(r;t) = c,(r) + c1(t).

b. c,(E) = 0, c,(s;r) = Cs(s).

c. Cs(a)= Cs(fail) = 1, Cs(X) = c,(d(x)) + 1, Cs(S 1; s2) = Cs(S 1) + 1, Cs(S 1 os2) = Cs(S I)+ Cs(S2) + L

LEMMA5.7

a. c1, c,, Cs are well-defined.

b. /ft1 ~ t2 then c1(t1) > c1(t2).

c. For each t, either t terminates, or t fails, or t -?a t' for some a, t'.

PROOF Well-definedness of c1, c, is clear. Well-definedness of cs follows by induction on the syntactic

complexity of first g. then arbitrary s. Part b. is clear from the definitions, part c uses induction on c1(t).

[J

We are now ready for

DEFINITION 5.8 Let F range over T --7 JP. The mapping <l>d : (T --7 lP) --7 (T --7 lP) is given by
<t>d(F)(t) = £, if t terminates ,

<t>d(F)(t) = o, if t fails,

a-F(t'), if t ~~ t'.

We have the usual

LEMMA 5.9 <t>d(F)(t) is well-defined for each F, t. Also, <l>d is contracting in F.

PROOF Easy. D

The operational semantics for :ibt is given in

DEFINITION 5.10
a. rod= fzx(Cf>d).
b. !D(d,s) = (l)d((s;E): f).

5.3 Denotational semantics

To prepare the way for a related definition in Section 6, we now vary the denotational definition fonnat

by replacing the use of (fixed points of) environments by the use of (Yd as fixed point of) a higher-order

mapping'¥ d· (Recall that both approaches were already used for the simple language ::fct.of Section 3.)

We use as semantic success continuations functions $in IP --71 JP, and as semantic failure continuations

20

elements pin JP. Moreover, we shall use F to range over :lbr -7 (lP -71 lP) -7 (IP -71 lP).

DEFINITION 5.11
a. The function 'Pd: (.ib1 -7(lP-71 IP)-t(lP-t1 IP)) -7 (.:t'b1-t(Il'-71 lP)-t(IP-t1 lP)) is

given by

'PdF a <l>P = a·<j>p

'PdF x <l>P = 'PdF d(x)$p

'PdFfail<j>p == p

qi d F (s 1 ; s 2) <I> p = qidp s1 (F s2 <j>)p

qidF (s1 cs2)$p == qidp s1 l)>(qidp s2 <j>p).

This definition is justified by

LEMMA 5.12 Let<)>, <1>1, <1>2 E lP -t1 "JP, p, p I• P2 E lP.

a. '</g: d('PdF g <l>P1' l:f'dF g$p2) sd(p1 .p2).

b. As a, with s replacing g.

c. '</g:d('PdF g <\>1, d('PdF g <\>2) s 1hd(<\>1, <\>2).

d. As c, with s replacing g.

e. 'v'g:d(qidF1g,qidF2g)s1hd(F1 ,F2).
f. As e, with s replacing g.

g. '¥ d E (.ib1 -7 (lP -t1 "JP) -7 (lP-t1 lP)) -7!-'l (:ibr -7 (lP -71 lP) -7 (IP -t1 lP)).

PROOF We present a few typical subcases.

a.

d('¥ d F fail <I> p I ' '¥ d F fail <I> pz)

d(p 1, P2);

d('¥dF(g;s)<l>P1, 'PdF (g;s)<\>P2)

d('PdF g(F s$)p1, ,'PdF g(F sl)>)p2)

s (the ind. hyp. applies since F s <I> E IP -71 JPO d(p 1 , p 2).

b. All cases are similar to part a, but for the case s = x, which follows by part a.

e. Choose some <j>, p. We consider the case g;s:

d('PdF1 (g;s)<!>p, \J'dF2(g;s)<\>p)
s (def., d an ultrametric)

max{ d(qi d F 1 g (F 1 s <I>) p , lf' d Fi g (F 2 s <!>) p) (*),

d(qi d F 1 g (F 2 s <)>) p, lf' d F 2 g (F 2 s <!>) p) (**) },

(*)

s (partc) 1hd(F 1 s<!>,F2s$)
s 1hd(F1 ,Fz),

(**)

s (ind.) 1h ·d(F 1 , F 2). Cl

5.4 (/)and 5.J are equivalent

We define functions 8d and !Jd relating syntactic and semantic success and failure continuations, respec­

tively.

DEFlNITION 5.13

a. The function Sd: R ~ (1P ~1 1P) is given by
8d(E) = 'Ap.e,

8d(s;r) = Yd(s)&d(r).

b. The function :Jd: T ~IP is given by
fid(f) = B,

:Jd(r:t) = 8d(r) :Jd(t) .

LEMMA5.14
a. If t1--+> t2 then :Jd(t1) =fid(t2).

b. :Jd((a;r) :t) = a·:Jd(r: t); :Jd(E:t)=e.

PROOF We exhibit one typical case for part a:
:Jd((s 1 cs2);r:t)

8d((s1 cs2);r);Jd(t)

= Y(s1 cs2)8d(r):Jd(t)

= Ydsl 8d(r)(Ys2 8d(r)!'Jd(t))

=

Next we have the usual

LEMMA 5.15 cl>d(8d) = :Jd.

21

PROOF We show, employing induction on c1(t), that cl>d(!Jd)(t) = !Jd(t), for all t. CJ

THEOREM 5.16
a. QJd = !Jd.
b. Q} =:D.
PROOF As usual. a

6. RENDEZ-VOUS

In this section we investigate (a schematic kind of) the rendez-vous programming construct as occurring
in ADA [ANS830] or POOL. The version studied here extends the communication mechanism of CCS
[Mi80] in the following way: Whereas in CCS synchronised execution of the actions c, c in two parallel
components results in the execution of a 't-step (as expressed by the equation c I c = 't), in our language
:lrv we extend the class of elementary actions with methods m, m (which thus occur in pairs as well),
together with an extension of the declaration map d which now also maps each m (and m) to an associ­

ated statement d(m) (= d(m)) as body. The intended execution of this construct is as follows: Imagine
two parallel components ri. r 2 , the first ready to execute m;r', and the second ready to execute m;r". A
successful communication will then result in the execution of d(m);(r',r"). Thus, the procedure body
d(m) associated with m is executed first; after its completion, the parallel execution of r' and r" is
resumed.

Following the plan to discuss key features of the language POOL, we embed the rendez-vous
notion in a language with process creation. Since the denotational meaning of an element in :lrv now
involves (in the new(s) case) the semantic operator II which in tum - by the argument as just given -
involves the communication operator I calling for the denotational meaning of d(m), it may become

apparent to the reader that we are confronted with a more complex situation than that encountered

22

earlier: We shall have to design a simultaneous higher-order definition for the denotational meaning
function and for the semantics II-operator.

One further point to mention in this introduction is that we shall employ a branching time semantic
domain (elsewhere often called a bisimulation-model): The need for a BT-domain arises - just as for
CCS - from the possible deadlock behaviour of an .irv-program: We want to distinguish between the
meaning of a1;(a2 +m) and (a1;a2)+(a1;m) since, in the presence of a parallel m, their deadlock
behaviour differs.

A final word on the relationship with [R90a]: We have designed here a BT-operational model
which is self-contained (expressed only in terms of the familiar transition system formalism). In [R90a],
the (intermediate) operational BT-semantics involves as well an application of the denotational meaning
function. Compared with [ABKR89], the approach adopted here is more demanding since continuations
are passed as arguments of function (necessitating the solution of a domain equation of the form

1P = ... (1P -+ ... >-·-> ' (6.1)

and the introduction of both dependent and independent resumptions appears to be required. In the
present setting dealing with a skeleton-version of the rendez-vous construct we have managed to avoid
these complexities. We are optimistic that the method to be described below will work as well in a set­
ting for the rendez-vous with individual variables, parameters, and a resulting value to be returned.

6.1 Syntax

Let (a e) A and (x e) PVar be as usual, and let (me) M be a set of method names. Let 7: M-+ M be a

mapping such that iii = m. Let e range over A u M.

DEFINITION 6.1
a. s(e.irv)::=el xl si;szl s1+s2J new(s),

g(e.if,,)::=hl xl g1;g2J g1+g2I new(g),
h (e.:t'I;,) ::=a I h;s I h1 +h2.

b. (de) Deel,.,, consists of mappings d = (d 1,d2). where
di: PVar-+.i~, d2: M -+:£~.

such that dz(m) = d2(~). For simplicity, we drop indices on d when no confusion is expected.
c. Programs are as usual.

'REMARKs
1. Note that the syntax for h involves a, not e. For guarding purposes, method names have the same

role as procedure variables.
2. The codomain for d2 is :t/!v rather than .ifv (or .irv)· This is motivated by our wish to have contract­

ing functions in the semantic definitions (cf. Subsection 6.3).

Syntactic continuations are as in Section 4:

DEFINITION 6.2 r (eR) ::= E I (s;r) I (r i.r2).

Again, we identify (E,r) and (r,E) with r.

23

6.2 Operational semantics

Transitions are four-tuples in R x (A u M) x Declrv x R, written as r 1 ~d r2.

DEFINITION 6.3 :'lrv and associated !Rrv are given by
a. All axioms and rules as in :'!pc of Section 4, with e replacing a.

b. In addition, the rule

r 1 ~m r', r2 ~iii r" , h ;(r',r") ~e r
~~~~~~~~~~~~-,d(m)=h 

(r i.r2) ~e r 
.. (rendez-vous) 

The relation ~ is as in Section 4 (the rendez-vous case will obtain special treatment below). The com­
plexity definition is slightly amended: 

DEFINITION 6.4 The complexity l = ( k, c ) for r E R is as m Section 4, with the addition that 
k(m;r) = l + k(r), and c(m;r) = l + c(r). 

Again we have 

LEMMA6.5 
a. k(h;r) = 0, k(g;r) ~ k(r). 

b. lfr1 ~ r2 then l(r2) > /(r2). l:J 

As semantic domain we use here the complete metric space IP which satisfies the domain equation 

IP= {Po} v :Pco< (A u M) x id,,,(IP)) (6.2) 

Here Po is the nil-process - modeling the nil action. Also, from Section 2 we recall that (6.2) is actually 
an equation in (complete) metric spaces. 

Let F range over R ~IP. We give the usual 

DEFINITION 6.6 <Pd: (R ~IP)~ (R ~IP) is given by 

<l>d(F)(E) = Po, 

4.>d(F)(r) = { ( e,F(r')) I r ~d r' } , if r :f. E. 

REMARK See also Definition 3.13 and the comments following it. 

DEFINITION 6.7 ([)d =fix( <Pd), ([)(d,s) = ([)d(s;E). 

The ID as just given yields branching time (BT) results; moreover, it preserves m-steps which have not 
synchronised with a corresponding m. For example, ([)(d, (a+m);E) = { (a.po), ( m,po) } . The main 
advantage of this([) is that it equals the denotational ;JJ. On the other hand, it is possible to define a linear 
time ID' which, in addition, suppresses m-steps in the result. The details are as follows: 
Let lP' =<U':Pnc(As ). The mapping ([)d: R -j> lP' satisfies 

(O~(E) = (E}, 

IDJ(r) = u{ e·Od(r') I r -j>d r', e EA } if r ;c E and{ e I r -j>d r', e EA ) :f. 0. 

ID J(r) = { o} , otherwise 
Here r -j>d r' is from :Rrv (but note that e may not be from M). Well-definedness of ({)d may be shown in 
the usual manner. Examples are 

iDJ(a1;(a2+m);E) = { a1a2 }. 



24 

(!Jd(((a 1;a2)+{a1;m));E)= { a1a2,a18 }. 
Furthermore, we may show that ffJd = abs 0 ffJd, where the abstraction mapping abs: IP -7 JP' firstly 
replaces a tree by the set of all its paths (thus collapsing the branching structure), and secondly omits all 
m· ... paths. We define abs to satisfy · 

abs(po) = (E}, 

abs(p) = u{e·abs(p')\ (e,p')ep,eeA }if{ei (e,p')ep,eeA }* 0, 
abs(p) = { o} , otherwise . 

This definition may be justified by the familiar higher-order argument. 

6.3 Denotational semantics 
We define the mutually dependent ::fa: :irv -7 lP -71 IP and II : IP x lP -7 1 lP as simultaneous fixed points 
of the higher-order'¥ d• Oa: 

DEF1NIT10N 6.8 LetF e :irv -71P -71 .IP, <!>e lP x IP -71 .IP. The mappings 
'Pd: (trv ~JP~1 .IP) x (IPXIP -71 IP) -7 (:/,rv ~ lP-71 lP), 
!:la : ( trv ~ IP ~ 1 IP) x ( lP x IP -71 IP ) -7 ( lP x lP ~ 1 IP ) 

are defined as follows: 

'PdFljiep 

'PaFljixp 

'PdF4>(s1 ;s2)P 

'PdF$(s1 +s2)P 

'P dF $new(s)p 

OdF4>PPo 

UaF <l>P1 P2 

where 

= 
= 
= 
= 
= 

{(e,p)} 

lf.laF<l>d(x)p 

lf.'dF4>s1 (F s2p) 

( 'l' a F $ s 1 p ) U ( 'l' d F <!> S2 P) 

0.dF <!>('l'dF $spo)P 

ndF <PPoP =p 

( o.:i F 4> p 1 P2) u (0.d F <P P2P I) u ( n~ F <Pp Ip 2)' if p !> P2 *Po 

O.'dF$P1P2 -· {(e,$(p')(p2))\ (e,p')ep1 }, 

01aF<l>P1P2 = V{ 'PdF ljih (lji(p')(p"))i 3m: ( m,p')e P1, ( m,p" )e P2, d(m) =h}. 

Moreover, we put (::fa, II)= fix( If.Id, O.d ), and :ll(d,s) = :!d s Po· 

ExPLANATION Using 'Pd(::fd .II)= Yd, Od(Y'd, II)= II. and putting lL = rl'd(.'f d, II ), I = nld( .'fa, II), we 
obtain the equalities 

Yanew(s)p (Ydspo)llp, 

PillP2 = (P1 ILp2)v(p2 ll.P1)u(p1I P2). 

P1I P2 = U{Yd(h)(p'llp")l 3m:(m,p')ep1,(m,p")ep2,d(m)=h }. 

Note that the last of these equations is the denotational counterpart of the operational rendez-vous rule. 
The terms p 1 IL P2 and p 2 IL p 1 in the second equation describe individual steps which do not lead to 
communication. 

A lemma justifying definition 6.8 now follows: 

LEMMA 6.9 For all relevant arguments: 
a. '¥a and nd are well-defined. 
b. d('¥JF1$1. 'PdF2 $2) ~d((F1>$1 ),(F2.<l>2 )). 



25 

c. d('f:'dF $hp1, 'f:'dF $hpz) :5 1h.d(P1>P2 ). 

d. d('f:'dF1$1h, 'l'dF2$2 h) :5 1h.d((F1,<l>1 ),(F2,<l>2 )). 

e. d(QdF1$1, OdF2<!>2) :5 1h.d((F1>cj>1 ),(F2,<l>2 )). 

f. d(<PdF1$1,'¥dF1<!>2):51h.d((F1,cj>1).(F2,$1)). 

PROOF We prove a few selected subcases. We use 1 or 2 to abbreviate ( F 1 , <j> 1 ) or ( F 2 , <1>2 ) . 

b. Take an arbitrary p; we consider the case s 1 ; s 2 . 

d('l'dl(s1 ;sz)p, 'l'd2(s1 ;sz)p) 
$ (def., d an ultrametric) 

max{ d('f:'d ls1 (F1 szp), 'I'd ls1 (F2s2p))(*), 

d( '¥ d ls 1 (F 2 szp), 'I'd 2 s 1 (F 2 szp) )(**) }. where 
(*) 

$ (ind.) d(F1szp,F2szp) 

$ d(F1 ,Fz) 

:5 d(l, 2), and 
(**) 

$ (ind.) d(l ' 2 ). 
c. Case h;s. 

d('f:'d 1 (h;s)p, '¥d2(h;s)p) 

$ (as usual) 

max{ d( 'I'd 1 h(F 1 s p), o/ d 1 h(F 2 s p)) (*) , d( 'I'd 1 h(F 2 s p), 'I'd 2 h(F 2 s p)) (**) ), 

(*) 

$ (partc) 1h.d(F1sp,Fzsp) 

$ 1h.d(F1,F2) 

$ d(l, 2). 
(**) 

:5 (ind.) 1h. d( 1 , 2 ). 
e. Let 1, 2 be as above; take arbitrary p 1. p 2. 

d( old 1p1 pz, old 2p 1 pz) 

d( u( 'I'd 1 h (<!>1 p'p")I 3m: ( m,p')e PI' ( m,p" )e P2' d(m) = h ), 
u{ 'l'd2h (<j>zp'p") I 3m: ( m,p')ep 1 , (m,p" )e P2, d(m) = h } ) 

:5 sup{ d('f:'d 1 h (cj>1 p'p"), 'I'd 2h (cjlzp'p"))I 3m: (m,p' )e PI, ( m,p" )e P2, d(m) = h} 

:5 sup{ max{ d( 'I'd 1 h (cj>1 p' p"), 'I'd 1 h ($1 p' p")) (*), 
d(o/dlh(cpzp'p"),'f:'d2h($2p'p"))(**)}}, 

(*) 

$ (part d) 1h. d( <1>1 , $2) 

$ l/id(l,2), 
(**) 

:5 (ind.) 1h. d( 1 , 2 ). 

REMARK Note how the proof for part e builds on part d which is stated for h only. This explains the 

earlier restriction that d (m) e .t~. 

6.4 ([) and ;JJ are equivalent 

We first define Bd in a similar way as in Section 4 (cf. Definition 4.14): 



DEFINITION 6.10 8d: R -7 lP is given by 
8d(E) = Po, 

8d(s;r) = .':fd(s)&d(r), 

8d(ri.r2) = 8d(r1) II 8d(r2). 

We have the usual 

LEMMA 6.11 Jfr 1 --'» rz then 8d(r1) = 8d(r2). 

PROOF Standard. o 

26 

In order to be able to obtain the main technical result (viz. <f>d(8d) = 8d, see Lemma 6.13), we need 

some auxiliary facts: 

LEMMA6.12 
a. If h;r1 _,,e rz, then e e A. 

b. lfr1 _,,m r1 thenk(r1) > k(rz). 

c. If (r1 ,rz) _,,e r has been obtained by an application of the rendez-vous rule, then 

l(ri.rz) > l(h;(r',r")). 

PROOF 
a. Clear by the definition of .:t:V. 
b. Induction on l(r 1). We consider a few typical subcases, depending on how r 1 -7 r 2 was obtained. 

(el.action) Then r 1 = m;r', r 1 = r', k(ri) = k(m;r') = 1 + k(r' > k(r') = k(r2). 

(recursion) Then r 1 is of the form x ;r and the rule 
g;r _,,m r1 

x;r-tm rz 

has been applied. Since k(x;r) = 1 +k(r) > k(r) ~ k(g;r), we have /(g;r) < l(x;r). By induction, 

l(g;r) > l(rz), and l(x;r) > l(r2) follows. 

(rendez-vous) By part a, this case cannot occur. 

c. Bypartb, ifr1 -tm r' andr2 _,,iii r"then k(r 1) > k(r') ~Oand k(r 2) >k(r") ~O. Hence k(r1,r2) > 
k(h;(r',r'')) = 0, and l(r 1 ,r2) > l(h;(r',r")) follows. 

We are now ready for 

LEMMA 6.13 For all r, <l>d(8d)(r) = 8d(r). 

PROOF We use induction on l(r). The interesting case is r = (r 1,r 2). We have 

1Pd(8d)(r 1.ri) 

= { { e,8d(r')) I r 1 -4' r' } IL 8d(r2).u ( <e,&d(r') ) I r2 -te r" } ll. 8d(r 1) u 

{ < e,8dlr.l >I r1 -tm r', r 2 _,,~f', h;(r',r") _,,. r l 
<f>d(8d)(r1) IL 8d(r2) u 4>d(8d)(r2) IL 8d(r2) u 

v{ 4>d(8d)(h;(r',r")) I r 1 _,,m r', r 2 _,,m r", h;(r',r") _,,. r l 
(ind.) 8d(r 1) IL 8d(r2) v 8d(r2) IL 8d(r2) u 

V{ Sd(h;(r',r")) I '1 _,,m r'' r1 -7m r", h;(r',r") _,,er} 
= (def. 8d, <l>d) 8d(r1) IL 8d(r2) v 8d(r2) IL 8d(r2) v 

V{ .'ld(h)(p'li p'')j (m,p')e <l>d(&d)(r1), ( m,p" )e <l>d(8d)(r2),d(m) = h} 

= (def.) 8d(ri) IL &d(r2)v8d(r2) IL 8d(rz)u <l>d(8d)(r1)! c:l>d(8d)(r2) 

= (ind., def II ) &d(r i) UdCr2) 

= (def. 8d) 8d(r i.rz). CJ 



27 

Finally, we conclude with our main 

THEOREM 6.14 For alls e :lrv, de Declrv, O(d,s) = :IJ(d,s). 

PROOF Follows from Lemma 6.13 by the familiar argument. a 

REFERENCES 

[A89] 

[AB88] 

P.H.M. America, Issues in the design of a parallel object-oriented language, Formal Aspects of 
Computing 1 (1989), pp. 366-411. 
P.H.M. America, J.W. de Bakker, Designing equivalent semantic models for process creation, 
Theoretical Computer Science 60 (1988) 109-176. 

[ABKR86] P.H.M. America. J.W. de Balcker, J.N. Kok, J.J.M.M. Rutten, Operational semantics of a parallel 
object-oriented language, 13th ACM Symposium on Principles of Programming Languages, St. 
Petersburg, Florida, January 13-15, 1986, pp. 194-208. 

[ABKR89] P.H.M. America, J.W. de Balcker, J.N. Kok, J.J.M.M. Rutten, Denotational semantics of a parallel 

[AR89a] 

[AR89b] 

[AR90] 

[ANS83] 

[B88] 

[889) 

object-oriented language, Information and Computation, Vol. 83, pp. 152-205, 1989. 
P.H.M. America. J.J.M.M. Rutten, A parallel object-oriented language: design and semantic foun­
dations, in J.W. de Bakker (ed.), Languages for Parallel Architectures: Design, Semantics, Imple­
mentation Models, Wiley Series in Parallel Computing (1989) pp. 1-49. 
P.H.M. America, J.J.M.M. Rutten, Solving reflexive domain equations in a category of complete 
metric spaces, Journal of Computer and System Sciences 39, (1989) 343-375. 
P.H.M. America. J.J.M.M. Rutten, A layered semantics for a parallel object-oriented language, 
CS-R9052, CWI, Amsterdam, 1990. 
ANSI. The Programming Language ADA Reference Manual, ANSI/Mll...-STD 1815A-1983, Vol. 
155, Springer, 1983. 
J.W. de Balcker, Comparative semantics for flow of control in logic programming without logic, 
Report CS-R8840, CWI, Amsterdam (1988), revised version to appear in Information and Computa-
tion. 
J.W. de Balcker, Designing concurrency semantics, in: Proc. llth World Computer Congress 
(G.X. Ritter, ed.), North Holland, 1989, pp. 591-598. 

[BBKM84] J.W. de Bakker, J.A. Bergstra, J.W. Klop, J.-J.Ch. Meyer, Linear time and branching time seman­

[BK90] 
tics for recursion with merge, Theoretical Computer Science 34 (1984) 135-156. 
J.W. de Balcker, J.N. Kok, Comparative metric semantics for Concurrent Prolog, Theoretical 
Computer Science 75 (1990), 15-44. 

[BKMOZ86] J.W. de Balcker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog, J.l. Zucker, Contrasting themes in the 
semantics of imperative concurrency, in Current Trends in Concurrency: Overviews and Tutorials 
(J.W. de Bakker, W.P. de Roever, G. Rozenberg, eds.), LNCS 224, Springer (1986) 51-121. 

[BM88] J.W. de Balcker, J.-J.Ch. Meyer, Metric semantics for concurrency, BIT 28, pp. 504-529, 1988. 
[BMOZ88] J.W. de Balcker, J.-J.Ch. Meyer, E.-R. Olderog, J.l. Zucker, Transition systems, metric spaces and 

[BZ82) 

[BeK87] 

ready sets in the semantics of uniform concurrency, Journal of Computer and Systems Sciences 36 
(1988), 158-224. 
J.W. de Bakker, J.I. Zucker, Processes and the denotational semantics of concurrency, Information 
and Control 54 (1982) 70-120. 
J.A. Bergstra, J.W. Klop, A convergence theorem in process algebra, Report CS-8733, CWI , 
Amsterdam, 1987. 

[BoKPR90] F.S. de Boer, J.N. Kok, C. Palamidessi, J.J.M.M. Rutten, From failure to success: Comparing a 
denotational and a declarative semantics for Horn Clause Logic, in Proc. of the international 
BCS-FACS Workshop on Semantics for Concurrency (M.Z. Kwiatkowska, M.W. Shields, R.M. 
Thomas, eds.), Workshops in computing, Springer (1990), 38-60. 

[BoKPR91] F.S. de Boer, J.N. Kok, C. Palamidessi, J.J.M.M. Rutten, The failure of failures: towards a para­

[Br91] 

[DeBr86] 

[BrVi89] 

digm for asynchronous communication, Report, CS-R91.., CWI, to appear. 
F. van Breugel, Comparative semantics for a real-rime programming language with integration, 
these Proceedings. 
A. de Bruin, Exercises in continuation semantics: jumps, backtracking, dynamic networks, PhD 
Thesis, Vrije Universiteit Amsterdam, 1986. 
A. de Bruin, E.P. de Vink, Continuation semantics for PROLOG with cut, Proc. TAPSOFr 89, 
Vo! I (J. Diaz, F. Orejas, eds.), LNCS 351, Springer, pp. 178-192, 1989. 

[Ha48] H. Hahn, Reelle Funktionen, Chelsea 1948. 
[JaMo90] J.-M. Jacquet & L. Monteiro, Comparative Semantics for a Parallel Contextual Programming 

Language, in Proc. North-American Logic Programming Conference (S. Debray, M. Hermenegildo, 



[K88] 

[KR90] 

[Ku56] 

[Mic51] 
[Mi80] 
[Ni77] 

[Ni78] 

[R90a] 

[R90b] 

[Vi90] 

28 

eds.) pp. 195-214, MIT Press, 1990 
J.N. Kok, A compositional semantics for Concurrent Prolog, in Proc. 5th Annual Symposium on 
Theoretical Aspects of Computer Science, Bordeaux, February 1988 (R. Cori, M. Wirsing, eds.), 
LNCS 294, pp. 373-388. 
J.N. Kok, J.J.M.M. Rutten, Contractions in comparing concurrency semantics, Theoretical Com­
puter Science 76, pp. 180-222 (1990). 
K. Kuratowski, Sur une methode de metrisation complete des certains espaces d' ensembles com­
pacts, Fundamenta Mathematicae 42 (1956), pp. 114-138. 
E. Michael, Topologies on spaces of subsets, Transactions of the AMS 71, 1951, pp. 152-182. 
R. Milner, A Calculus for Communicating Systems, LNCS 92, Springer, 1980. 
M. Nivat, Mots infinis engendres par une grammaire algabrique, RAIRO Informatique Theorique 
11 (1977) pp. 311-327. 
M. Nivat, Sur Jes ensembles de mots inftnis engendres par une grammaire algebrique, RAIRO 
Infonnatique Theorique 12 (1978), pp. 259-278. 
J.J.M.M. Rutten, Semantic correctness for a parallel object-oriented language, SIAM Journal on 
Computing 19, 1990, pp. 341-383. 
J.J.M.M. Rutten, Deriving metric models for bisimulationfrom transition system specifications, in 
Proc. IFIP TC2 Working Conference on Programming Concepts and Methods, North-Holland, 
1990, pp. 148-170. 
E.P. de Vink, Comparative semantics for Prolog with cut, Science of Computer Programming 13 
(1990), pp. 237-264. 


