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Abstract 

A comparative semantic study is made of an element of the family of concurrent 
object-oriented programming languages. Particular attention is paid to two notions: 
(i) dynamically evolving process structures, including a mechanism to name and re­
fer to processes and a means to create new processes, and (ii) reudez-vous between 
processes involving the sending and answering of messages and the induced execu­
tion of method calls. The methodology of metric semantics is applied in the design 
of operational and denotational semantics, as well as in the proof of their equiva­
lence. Both semantics employ domains which are determined as fixed points of a 
contracting functor in the category of complete metric spaces. Moreover, fruitful use 
is made of the technique of defining semantic meaning functions as fixed points of 
contracting higher-order mappings. Finally, syntactic and semantics continuations 
play a pervasive role. 

I Introduction 

\Ve shall present a comparative semantic study of a language of the COOP (concurrent 
object-oriented programming) variety. Particular attention will be paid to the following 
two phenomena 

- dynamically evolving process structures, including a mechanism to name and refer 
to processes and a means to create new processes; 

- a version of rendez-vous between processes involving the sending and answering of 
messages and the ensuing execution of method calls. 

The language we consider is a slightly simplified version of the language POOL - the 
parallel object-oriented language designed by America [Ame89]. Several semantic inves­
tigations of this language have appeared already: operational semantics ([ABKR86]), 
d<'notational semantics ([AilKR89)), and a comparison of these two ([Rut90b]). Cf. also 
[AR89a] for a somewhat streamlined version of parts of [ABKR86, ABKR89, Rut90b) 
- excluding the more difficult sections of the comparison -, and [AR90], where an im­
provement of POOL's denotational semantics which is organized in three layers (for 
statements, objects and programs) is described. The latter paper is intended as well as 
a contribution to the issue of the full abstractness of the POOL semantics. 

1Partia.lly supported by ESPRIT Basic Research Action 3020: Integration 
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The treatments in [ABKR89, Rut90b] are rather complex and demand much from the 
uninitiated reader. The first aim of the present paper is to provide a more comprehensible 
version of these investigations, with special emphasis on the comparative issues. Partly, 
this is achieved by a presentation in two stages, both dealing with dynamically evolving 
processes, but only in the second one with a. facility to name and refer to processes. 
Also, a careful tuning of the design of the operational and denotational definitions -
in particular by the systematic use of so-called syntactic and semantic continuations 
- results in a transparent view of the relationship between the two models. Maybe 
more importantly, we propose a substantial simplification in the way the rcndez-vous 
concept is handled. Firstly, the operational semantics rule for the rendez-vous is now 
appealingly simple and, secondly, some of the complexities in the denotational models of 
(ABKR89, Rut90b], in particular in the definition of the merge operator, are to a large 
extent avoided. Related to this we find that the equation determining the domain used in 
POOL's denotational semantics is essentially simplified in our approach. (In the domain 
equation P = F(P), F(P) has no more subterms of the form (P --+ · · ·). See Section 2 
for background on this.) In addition, the somewhat extraneous use of the denotational 
meaning function Vas part of the intermediate operational semantics in [Rut90b] is no 
more necessary. 

The second aim of our paper is to provide a case study in the use of metric semantics. 
Let us first devote a few words to it:; basic principles. Consider two computations p1 , 

pz. A natural distance d(pi,p2) may be defined in terms of the notion of initial segment 
p(k) of p - roughly, that part of p consisting of the first k steps (if present, otherwise p 
itself). Now we put d(pi,p2) = rn, where n is the length of the longest common initial 
segment of PI and P2 (i.e., n = sup{ k I P1 (k) = pz(k)} ). Details vary with the form of 
the pi, P2· If computations are given as words (finite or infinite sequences of atomic 
actions), we take the standard notion of prefix; if p 1 , P2 are trees, we use truncation at 
depth k for p(k). Other kinds of computations, e.g. involving function application, may 
be accommodated as well. 

Complete metric spaces (ems 's) have the characteristic property that Cauchy se­
quences always have limits; this motivates their use for a smooth handling of infinite 
behaviour. In addition, each contracting function f : (lvl, d) --+ (M, d), for (lvl, d) a 
ems, has a unique fixed point (by Banach's theorem; see Section 2 for the definition of 
contracting). Uniqueness of fixed points may conveniently be exploited in a variety of 
situations: 

Firstly, it has brcn shown that cms's may be used to solve domain equations of the 
form 

P = F(P) (1.1) 

or, rather, (P, d) !:?! F(P, d), with (P, d) the ems to be determined, !:?! isometry, and F a 
mapping (functor) built from given cms's (A, dA), the unknown (P, d), and composition 
rules such as 0 (disjoint union), x (cartesian product),--+ (function space), and Pc1(-), 
Pea(•) (the power sets of all closed or compact subsets of ·). See [BZ82], [AR.89b] for 
mathematical details. As an advantage over the more usual cpo framework when used 
to solve (1.1) we mention that the notions of closed and, especially, compact subset arise 
Yery naturally for (the meanings of) many programming constructs. In a cpo setting, 
one has to choose between the Plotkin-, Smyth-, and Hoare powerdomains (cf. [GS90) 
for definitions), and it may not be so readily seen how to motivate a choice among these 
on the basis of a programming (rather than a mathematical) intuition. 
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Secondly, both denotational (V) and operational (0) semantics may be obtained as 
fixed points of (contracting) higher-order mappings, say '1t and <!>. For 'D this is fairly 
traditional: in fact, it subsumes the classical fixed point treatment of recursion. For O it 
is less standard: Starting from a transition system T in the familiar Plotkin SOS style, 
one may assemble all transitions for a given program 11" into a meaning 0(11"). Here the 
choice as to what kind of domain is used as range for 0 (e.g. linear time, branching time 
(cf. [BBKM84, BMOZ88]) or bisimulation, interleaving or noninterleaving ([BW90]), 
failure set semantics (cf. [Rut89])) is a. separate decision, in most cases independent of 
the design of T. Maybe the most important advantage of this way of defining 0 as 
fiz(il!) is that is suggests a quite natural method to establish (*) 0 = V, viz. by proving 
that V = iJ!(V), whence the desired result follows by Banach's theorem (this important 
proof method is due to [KR90], cf. also [BM88]). Elsewhere ([Rut89, HBR90]) it is 
discussed how (*) may be strengthened to certain full abstractness results. Recently, 
investigations have begun concerning the possibility of obtaining V 'automatically' from 
a given transition system T. In restricted cases this is indeed possible ([Rut90a]), and it 
is an interesting problem how this idea may be generalized. We make one further remark 
on metric vs. cpo semantics: In the latter, one either uses least fixed points, and then 
has to impose additional conditions to cope with infinite behaviour (e.g. closedness and 
boundedness of [MV88]), or one resorts to greatest fixed points and then continuity may 
be problematic (see e.g. [Par81]). In the metric framework, once contractivity is satisfied 
- which is mostly the case - infinite behaviour fits in quite naturally. 

Thirdly, unique fixed points may be used to define various semantic operators. In 
elementary settings, it is no problem to define e.g., sequential or parallel composition. 
However, if additional features such as infinite behaviour, possibly infinite alphabets, or 
rendez-vous as part of parallel composition are involved, it is non-trivial how to give 
rigorous definitions of such operations, and higher-order techniques again turn out to be 
quite useful. 

The present investigation is, partly, a companion to [BV91]. Whereas in that paper 
we concentrate on so-called uniform language notions (the atomic actions are uninter­
preted or schematic, and there arc no individual variables), we here study a nonuniform 
(interpreted) language with full-fledged presence of individual variables and non-trivial 
expressions. The latter necessitate the use, besides of (syntactic and semantic) statement 
continuations, as well of (syntactic and semantic) expression continuations (in the form 
proposed in [AB88]). Since in the uniform case certain well-definedness arguments are 
more perspicuous, we shall occasionally refer below to [BV91] when in need of a justi­
fication of some well-defincdness property. 'Ve refer as well to [BV91] for references to 
papers where we have used metric semantics for (parallel) logic programming (LP). In 
[Eli91], metric semantics have been described for a language which exhibits, besides the 
COOP notions studied here, as well LP-like notions such as clausal resolving of goals and 
backtracking. 

We conclude this introduction with a brief overview of the contents of the paper. 
Section 2 is primarily devoted to a concise presentation of the main ideas concerning 
the solution of domain equations over (i.e., in the category of) complete metric spaces. 
In Section 3 we develop comparative semantics for a language ( lpp ) with 'parallel 
processes', here to be taken as a dynamically growing system of statements executing in 
parallel and communicating through (a skeleton version of) the rendez-vous concept. In 
Section 4 we add to these notions the facility to name and refer to processes, together 
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with certain refinements of the rendez-vous. The resulting language we call Cpo , a 
language with 'parallel objects'. Both for Cpp and .Cpo we exhibit operational a.nd 
denotational semantics. We prove that 0 = 'D, for £pp in some detail and for Cpo 
in outline, in Section 5. Here we find the pay-off from our earlier efforts to obtain a 
transparent correspondence between the two models, in that the proof of 0 = 'D is 
largely syntax-directed, and does not require particular ingenuity. 

Acknowledgements We owe much to Pierre America, the designer of the POOL language, 
and to Jan Rutten who, jointly with Pierre, was responsible for laying its semantics foun­
dations. Jan Rutten also pointed out the need for articulating the notion of resumption 
in the present paper. We arc indebted to Joost Kok for his contributions to the semantic 
studies of POOL, and, in general, to the members of the Amsterdam Concurrency Group 
for providing an e:x."Pert and stimulating forum for discussion on our ongoing research. We 
thank Franck van Breugcl for detailed reading of an earlier version of our paper leading 
to various improvements. 

2 Mathematical preliminaries 

2.1 Notations 

We use the phrase "let (x E)lvf be such that ... " to introduce a set 111 with variable x 
ranging over M such that .... We use 'Pr(-) for the collection of all subsets of · which 
have property 'If, We use f : X --. Y to define a function f with domain X and range 
(or codomain) Y. If X = Y and x E X is such that f(x) = x, we call x a fixed point of 
f. If f has a unique fixed point we denote it by Jn(!). For (x E)lvf any set, we use x as 
a notation for a list (or vector) over M, with k ~ 1 elements. 

2.2 Domain equations 

As mathematical domains for our semantics we use complete metric spaces satisfying a 
so-called reflezive domain equation of the following form: 

P ~ F(P) 

(The symbol ~ is defined below; it says that there is a bijection from P to F(P) that 
respects the metric defined on the spaces.) Here F(P) is an expression built from P 
and a number of standard constructions on metric spaces {also to be formally introduced 
shortly}. A few examples are 

P ~ AU (Bx P) 

P ~ AU 'Pc0 (B x P) 

P ~ AU(B-.P) 

(2.1) 
(2.2) 
(2.3) 

where A and B are given fixed complete metric spaces. In (BZ82] it is first described 
how to solve these equations in a metric setting Roughly, the approach amounts to the 
following: In order to solve P ~ F(P) they define a sequence of complete metric spaces 
(Pn)n by: Po =A and Pn+l = F(Pn), for n>O, such that Po ~ P1 \'.; • • •• Then they take 
the metric completion of the union of these spaces Pn, say P, and show: P ~ F(P). In 
this way they are able to solve equations (2.1), {2.2) and {2.3) above. 
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There is one type of equation for which this approach does not work, na.mely, 

P !?! AU(P2.G(P)) (2.4) 

in which P occurs at the left side of a function space arrow, and G(P) is an expression 
possibly containing P. This is due to the fact that it is not always the case that Pn ~ 
F(Pn)· 

In [AR89b] the above approach is generalized in order to overcome this problem. The 
family of complete metric spaces is made into a category C by providing some additional 
structure. (For an extensive introduction to category theory we refer the reader to 
[Mac71].) Then the expression F is interpreted as a functor F : C - C which is (in 
a sense) contracting. It is proved that a generalized version of Banach's theorem (see 
below) holds, i.e., that contracting functors have a fixed point (up to isometry). Such a 
fixed point, satisfying P ~ F(P), is a solution of the domain equation. 

We shall now give a quick overview of these results, omitting many details and all 
proofs. For a full treatment we refer the reader to [AR89b). V\Te start by listing the basic 
definitions and facts of metric topology that we shall need. We assume the following 
notions to be known (the reader might consult [Dug66] or [Eng89]): metric space, ultra­
metric space, complete ( ultra-)metric space, continuous function, closed set, compact set. 
In our definition the distance between two elements of a metric space is always between 
0 and 1, inclusive. 

An arbitrary set A. can be supplied with a metric d.4., called the discrete metric, 
defined by 

{ 0 if x = y 
d,i(x,y) = 1 if x-=/= y 

Now (A, dA) is a metric space (it is even an ultra-metric space). 
Let (M1,d1) and (M2,d2) be two complete metric spaces. A function f: .M1---+ M2 is 
called non-expansive if for all x, y E M1 

A function f : J..11 -+ lt-12 is called contracting (or a contraction) if there exists an <:<l 
such that for all x, y E J..11 

(Non-expansive functions and contractions are always continuous.) 
The following fact is known as Banach's theorem: Let (M, d) be a complete metric 

space and f : JvI -+ _U a contraction. Then f has a unique fixed point, that is, there 
exists a unique x EM such that f(x) = x. This x can be obtained by taking the limit 
of r(xo) for any arbitrary Xo EM (where J0 (y) = y and r+1(y) = f(r(y))). 

We call M1 and M2 isometric (notation: M1 !?! M2) if there exists a bijective 
mapping f : M1 -+ M 2 such that for all x, y E M1 

Definition 2.1 Let (M, d), (Mi, d1), ... , (Mn, dn) be metric spaces. 
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1. We define a metric dF on the set M1 _,.. 1112 of all functions from M1 to 1.12 as 
follows: For every / 1, h E .M1 _,.. kf2 we put 

This supremum always ex-ists since the values taken by our metrics are always 
between 0 and 1. 

2. With M1 0 · · · 0 Mn we denote the disjoint union of M1, ... , lvln, which can be 
defined as {1} x M 1 U · · · U {n} x Mn. We define a metric du on M1 0 · · · 0 Mn as 
follows: For every x,y E.M10···0 Mn, 

d (x ?)={ dj(x,y) ifx,y~{j}x.Mj,l~j~n 
U ' Y 1 otheI'Wlse 

If no confusion is possible we often write U rather than 0. 

3. We define a metric dp on the Cartesian product M1 x · · · x l1In by the following 
clause: For every (xi, ... ,xn), (y1, ... ,yn) E lv/i X • • • X 1.fn, 

4. Let Pc1(M) = { X: X ~ M /\ X is closed}. \Ve define a metric dH on Pc1(M), 
called the Hausdorff distance, as follows: For every X, Y E Pc1(M), 

dJJ(X, Y) = max{sup{d(x, Y)}, sup{d(y,X)}} 
.:EX yEY 

where d(x,Z) = inf.rez{d(x,z)} for every Z ~ lvf, x E kf. (\Ve use the convention 
that sup0 = 0 and inf0=1.) The spaces Pco(M) = {X ~ M /\X is compact} and 
Pn.(M) = {X s;;; MAX is non-empty and compact} are supplied with a metric by 
taking the restriction of d If. 

5. For any real number f with O<t: ~ 1 we define 

id(((M,d)) = (M,d') 

where d'(x, y) = f • d(x, y), for every x and yin M. 

Proposition 2.2 Let (M,d), (Mi,d1), ... ,(Mn,dn), dF, du, dp and dH be as in Defi­
nition 2.1 and suppose that (M, d), (lvl1, d1 ), ••• , (Mn, dn) are complete. Then 

{lvf1 _,.. M2, dp) 

(M1 O···OMn,du) 

(M1 x · · · x Mn,dP) 
('Pct(M), dll ), ('Pco(M), du), (Pnc(M), du) 

idl((M,d)) 

(a) 

(b) 

(c) 

(d) 

(e) 
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are complete metric spaces. If (Af, d) and (Mi, d;) are all ultra-metric spaces, then so are 
these composed spaces. (Strictly speaking, for the completeness of Jvl1 -+ M 2 we do not 
need the completeness of M1. The same holds for the ultra-metric property.) 

Whenever in the sequel we write lvfi -+ .IH2, M1 0 · · · 0 A1n, 11-fi x · · · x Mn, Pc1(M), 
Pc0 (M), P,.c(Jo.,f), or id.(Jvl), we mean the metric space with the metric defined above. 

The proofs of Proposition 2(a), (b), (c), and (c) are straightforward. Part (d) is 
more complex. It can be proved with the help of the following characterization of the 
completeness of (Pc1(M), du). 

Proposition 2.3 Let (Pc1 (M), du) be as in Definition 1. Let (X;)i be a Cauchy sequence 
in Pc1(M). We have 

_lim X; = {Jim x; : x; EX;, (xi)i a Cauchy sequence in M} 
l-+00 1-00 

Proofs of Propositions 2.2(d) and 2.3 can be found in, for instance, [Dug66] and [Eng89]. 
The proofs arc also repeated in [BZ82]. The completeness of Pc0 (M) is proved in [Kur56]. 

·Vi.re proceed by introducing a category of complete metric spaces and some basic 
definitions, after which a categorical fixed point theorem will be formulated. 

Definition 2.4 Let C denote the category that has complete metric spaces for its objects. 
The arrows i in Care defined as follows: Let M1, .M2 be complete metric spaces. Then 
M 1 -+' M2 denotes a pair of maps Jvl1 <=±) M 2 , satisfying the following properties: 

1. i is an isometric embedding, 

2. j is non-expansive, 

3. j ~ i = idM,. 

(We sometimes write [i,j] for L.) Composition of the arrows is defined in the obvious 
way. 

We can consider Jvl1 as an approximation to lvl2: In a sense, the set Af2 contains more 
information than Jvfi, because M 1 can be isometrically embedded into 1112. Elements in 
lvl2 are approximated by elements in Af1• For an element m2 E lvf2 its (best) approx­
imation in M1 is given by j(m2). Clause 3 states that M2 is a consistent extension of 
Mi. 

Definition 2.5 For every arrow .M1 -+' Af2 in C with l = [i,j] we define 

8(L) = dM2 -+Mi (i oj,idM2 ) ( = sup {dM2 (i oj(m2),m2)}) 
m2E.M2 

This number can be regarded as a measure of the quality with which M2 is approximated 
by M 1: the smaller 8(L), the better M2 is approximated by M1. 

As a category-theoretic equivalent of a contracting function on a metric space, we 
have the following notion of a contracting functor on C. 

Definition 2.6 \Ve call a functor F : C -+ C contracting whenever the following holds: 
There exists an e, with 0 $ e<l, such that, for all D -+' EEC, 

8(F(t)) $ t: • 8(L) 
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We can now state the analogue of Banach's theorem. (Cf. [Mac71] for the notions of 
convergence and direct limit: 

Theorem 2.7 Let F be a contracting functor F : C -+ C a.nd let Do -+'° F(Do) E C. 
Let the sequence (Dn, Ln)n be defined by Dn+l = F(Dn) and Ln+l = F(Ln) for all n ~ 0. 
This sequence is converging, so it has a direct limit (D, ('Yn)n)· We have D !:!! F{D). 

Let us now indicate how this theorem can be used to solve Equations {2.1) to {2.4) above. 
We define 

Fi (P) = AU id112(B x P) 

F2(P) = AU 'Pc0 (B x id112{P)) 

F3(P) = .4 U (B-+ id112(P}) 

(2.5) 
(2.6) 
(2.7) 

If the expression G(P) in Equation {2.4) is, for example, equal to P, then we define F4 
by 

(2.8) 

Note that the definitions of these functors specify, for each metric space (P, dp ), the 
metric on F(P) implicitly (see Definition 2.1). 

Now it is easily verified that F1, F2, F3, and F4 are contracting functors on C. 
Intuitively, this is a consequence of the fact that in the definitions above each occurrence 
of P is preceded by a factor id1t2 • Thus these functors have a fixed point, according to 
Theorem 2.7, which is a solution for the corresponding equation. (\Ve often omit the 
factor id112 in the reflexive domain equations, assuming that the reader will be able to 
fill in the details.) 

In [AR89b] it is shown that functors like F1 to F4 have unique fixed points (up to 
isometry). The results above hold for complete ultra-metric spaces too, which can be 
easily verified. 

3 Parallel Processes 

3.1 Introduction 

We study the language £;,, of 'parallel processes', with particular attention for the 
programming notions of process creation and rendez-vous. In Section 4, we shall extend c,, to the language £,0 of 'parallel objects', the essence of the extension being the 
ability to name and refer to processes. 

In Lpp we firstly find several conventional and simple programming constructs: 
assignments, sequential composition, conditionals, and the while statement. Also, a 
simple block construct introducing initialized (for convenience) local variables is included. 
Moreover, simple expressions (terms over some signature) appear. Three more advanced 
notions are furthermore considered: 

- Process creation: Assuming that already n(;::: 0) processes are active (i.e. executing 
in parallel), the effect of the statement new(s) will be to create an n + 1-st process, 
with body s, to be executed in parallel to the n already active processes. (Note 
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that no other form of parallel execution, in particular no form of syntactic 'II', is 
present in £PP . ) 

- Rendez-vous: This appears in the following 'skeleton' version: V\!e introduce so 
called methods m, m (with r'h = m), together with an accompanying declaration d 
which assigns to each ma statement d(m) = s. Synchronized execution of m and m 
in two parallel processes results firstly in the execution of s, and, thereafter, in the 
resumption (in parallel) of the two remaining statements ('continuations') following 
m and iii, respectively. (The effect of mjm = s(= d(m)) should be compared with 
similar rules cjc = T (in CCS) or alb = c (in ACP), the essential difference being 
that, contrary to s, Tor care atomic.) In Section 4, we shall dress up this skeleton 
with some further notions: transmitting parameters, returning a resulting value, 
and identifying, by the sender, of the receiving component. 

- Expressions with side-effects: We introduce here a simple version of side-effects, in 
order to motivate the mechanism of (syntactic and semantic) expression continua­
tions. Again, a more interesting setting will be provided in Section 4. 

3.2 Syntax 

Throughout our paper, we use a self-explanatory BNF-like notation fur syntactic defini­
tions. We start with the introduction of four basic sets 

• (x E)!Var , a countable set of individual variables 

• ( o:, (:3 E) Cons , a countable set of constants 

• (rji E)Func , a countable set of function symbols (each with some arity ~ 1) 

• ( m E ).M, a finite set of method names. On 111, a mapping -=- : 111 -+ M, satisfying 
m = m, is given. (Since it is customary to consider only finite systems of declara­
tions, d's domain Jvf is assumed to be finite. Mathematically, there are no obstacles 
to dealing with infinite M.) 

A program 1C' = (d, s) in the language Lpp consists of .a declaration din Declpp and a 
statement s in Statpp. A declaration is a mapping from M to Statpp· Statements are 
conventional (see above), or have the form of the process creation new(s) or of a method 
call m. Expressions (in ExpPP) arc conventional, or exhibit a side-effect, in the form of 
(s;e): an expression which first executes the statements, and then executes e. 

Definition 3.1 (syntax for Lpp ). 

a. s( E Stal.pp) x := e Im I (s1; s2 ! if e then s1 else s2 fi I 
whilee dos od I new(s) I begin varx := e; send 

b. e(E Exppp) ::= a: Ix I rfi(i!) I (s;e) 

c. (d E)Declpp = JI _, Statpp 

d. 7r(E Lpp) (d, s) 
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3.3 Operational semantics 

The operational semantics for .c,,,, is derived from a transition system T,,,, . Transitions 
are built using so-called syntactic continuations, which we use in two varieties: 

• (r E)SySCo , the syntactic statement continuations 

• (g E)SyECo , the syntactic expression continuations. 

The design of these two classes has been motivated partly by our wish to obtain a smooth 
operational semantics for £,,,, , partly by the desire to obtain a tractable link with the 
semantic continuations which play a key role in the denotational semantics. 

Definition 3.2 (syntactic continuations) Let Ebe a new symbol, standing for 'termi­
nation'. 

a. r(E SySCo) ::= EI (s: r) I (e: g) I (r1 1 r2) I r<a/x> I 
if {3 then r1 else r2 fi I g(a) 

b. g( E SyECo ) ::= >.a:.r 

The continuations (s : r) and (e : g) are of a. sequential nature. They should be read as 
'executes and continue with r', or 'evaluate e, pass its value to g, and continue with the 
result', respectively. Nex-t, (r1, r2) denotes (interleaved) parallel execution of r1 a.nd r2. 
The if - then-else - fi construct a.nd g(a) should be clear. The construct r<o:/x> 
will play a role in elaborating an assignment. Syntactic expression continuations were 
first used in this way in [AB88]. 

For the definition of T,,,, , we need the following' basic definitions: 

Definition 3.3 

a. Let (ex, {3 E)V = Z U { tt,ff} U ·· be the set of basic values. v· is assumed to include 
at least the integers and the truth values tt, ff. Other basic values may be added, 
if desired. We find it convenient to use the same variables to range over Vandover 
the set of constants C. 

b. Let, for rp a function symbol with arity k, ~be some element of Vk-+ V. 

c. Let (u E):E = IVar -+ l/ denote the set of states. 

d. Let the auxiliary set (r E)T be defined as T =:EU M. 

e. Let r[a/ {3] denote the result of syntactically substituting the constant ex for the 
constant fJ in r. 

f. Let u[a/x] denote the state which satisfies 

u[o:/x](y) = { ,.. o:(y) ~ff x ~ y 
v 1 x r y 

We are now ready for 

Definition 3.4 (transitions and transition systems) 
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a. A transition is a five-tuple 

in SySCo x :E x Declpp x SySCo x T. For (3.1) we usually write 

b. A transition system T is a finite set of rules of the form 

<r1,u1>-+d <r~,r1>,···,<rn,O"n>-+d <r~,rn> 
<r, u>-+d <r', r> 

(3.1) 

for some n ~ 0. Such a rule should be read as: if we can establish (using T) that 
the n premises are satisfied, we may infer that the conclusion holds. If n = 0, we 
have an axiom, written simply as <r, u>-+d <r', r>. 

c. Rules which share the same (list of) premise(s) may be combined into one rule 
(with more than one consequence). 

d. In a transition <r, u>-+d <r', r> we shall usually suppress mentioning the d. No 
confusion will arise, since transitions are always to be taken with respect to one 
fixed d. 

e. A rule of the form 
<ri, a>-+d <r, r> 
<r2,a>-+d <r,r> 

will be abbreviated to <r2, a>-+o <r1,u> or even to r2 -+o r1. (Read: in order 
to execute r 2 , find out how to execute r 1• The 'O' expresses that this requires zero 
'steps'.) 

f. Each transition system T determines a relation 'R which is defined as the least 
relation (here subset of SySCo x :E x Declpp x SySCo x T) satisfying the given 
axioms and rules. 

Next, we give the definition of the transition system Tpp which will be used to obtain 
the operational semantics CJ for CPP • 

Definition 3.5 (transition system 'Tpp for Cpp ) The rules in Tpp are organized in 
groups, for easier structuring. This grouping is not part of the formal system itself. 

s-ru.les 

• zero-step 

(x:=e):r -+o 

( s1 ; s2) : r -+o 

if e then s1 else s2 fi : r -+o 

new(s) : r -+o 

<begin var x := e; send: r,a> -+o 

e: >.a.(r<a/x>) 

s1 : (s2 : r) 

e : >..j3.if j3 then s1 : r else s2 : r fi 

(s: E,r) 

<(x := e;s): r<u(x)/x>,u> 
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•axioms 

<m: r,a> -+ <r,m> 
<whileedosod:r,a> -+ 

<e : >.,B.if f3 then (s; while e dos od) : r else r fi., u> 

e-rules 

• zero-step 

a : >..f3.r -o r[a/ ,6] 
</>(e1i ··,ek): g -o e1: .A/31.(e2: · · (e1c: >.fh.~(fh, ··,/h.:): g) · ·) 

(s;e):g -o s:(e:g) 

• axioms 

r-roles 

• zero-step 

• axioms 

<x: g,u>-+ <u(x): g,u> 

if tt then r 1 else r2 fi -+o r1 

if ff then r1 else r2 fi -o r2 

<r<a/x>,u>- <r,u[a/x]> 

• rules for parallel execution 

Explanation 

<r,cr>-+ <r',r> 
<(r,f),a>-+ <(r',f),r> 
<(r,r),o»- <(f,r'),r> 

<r1, r;>- <r', m>, <r2, r;>- <ru, iii> 
---------------, d(m) = s 

<(r1,r2),u>-+ <s: (r',r"),a> 

(interleaving) 

( rendez-vous) 

(assignment): evaluating x := e amounts to first evaluating e, and transmitting the 
result a to the continuation which will eventually arrange that x is set to a. 

(new): the body sis supplied with the termination continuation E, and set in parallel 
to r (which itself may consist of several continuations in parallel) 
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{begin •• end): evaluate x := e; s, and next reset x to the value (O'(x)) it had upon 
block entrance 

(m): the method m is stored, available for subsequent use in in the rendez-vous rule 

(if>(t)): the arguments ei, •• , e1c are evaluated from left to right, yielding (31, •• ,{J1c; the 
interpretation ~ of <P is then applied to these {Ji, •• , f31c 

(r<a/x>): this handles the assignment of a to x, resulting in q(a/x] 

(interleaving): the usual interleaving rule for parallel composition 

(rendez-vous): in case r 1 and r 2 can make an m and m-step, respectively, the rendez­
vous succeeds, sis executed, and the execution continues with that of (r', r"). (See 
also the remark at the end of Section 3 for a possible refinement of the rule.) 

We next discuss how to assemble all successive steps prescribed by Tp 11 for some program 
(d, s) into one result <?(d,s). Crucial here is the definition of the range P of the mapping 
('.): .C1111 -+ P. We shall determine Pas solution of a domain equation (in the category 
of complete metric spaces, cf. Section 2), viz. 

P = {Po} U (E-+ 'Pca((E UM) x P)) (3.2) 

Equation (3.2) may be understood as follows: Each clement p in P (to be called a process 
as well, but now a mathematical, and not a programming, entity) is either the nil-process 
po, or it is a function in E-+ 'Pea(·) which, when supplied with a state u as argument, 
yields an element X of Pea(·), i.e. a compact subset of (:EUM) x P. Thus, the elements 
of p(u) = X are' of the form <u' ,p'> or <m,p'>. The first possibility delivers a next 
state u', together with a so-called resumption p'. This resumption tells us what to do 
next: In the operational or denotational setting this will be determined by the syntactic 
or semantic continuation, respectively. A second possibility for an element X is a pair 
<m,p'>; here m results from a method call, and p' is as before. The rendez-vous rule 
resolves synchronized method calls. However, one-sided method calls which have not 
synchronized with their partner will leave such a pair <m,p'> as a trace in the result. 

The domain P is used in the next definition which introduces (the intermediate) <?d 
as fixed point of a contracting higher-order mapping (of meaning functions to meaning 
functions) ~d· To understand the structure of the definition, the reader should look at 
Lemma 3.7.c. This is the result in the form which is most intuitive, and to justify it we 
employ the -I>d-mapping. 

Definition 3.6 Let FE SySCo -+ P. 

a. We define ~d : (SySCo -+ P) -+ (SySCo-+ P) by putting 

lf?d(F)(E) 
-I>d(F)(r) 

= Po 
= ,\q.{<T,F(r')> I <r,u>-+ <r',7">}, 

where -+ is determined by Tp 11 • 

for r # E 
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We have 

Lemma 3.7 

a. <T1d(F)(r) E P for each F, r. 

b. <I>d is contracting in F. 

c. Od(E) = Po 
Od(r) = ..\a.{<r,Od(r1)> I <r,u>-+ <r',r>}, for r # E 

Proof 

a. Follows from the fact that 'Tpp is finitely branching, i.e. for each r , a, we have 
l{(r',r) I <r,o»-+ <r',r>}l<oo. 

b. Clear by the definition of <I>d(F), in particular by the <r, .. >-step in its definition. 

c. Immediate by the definitions of <I>d and Od. 0 

Remark The domain P has rather more structure than is usual for an operational seman­
tics. We use the same P for our denotational definitions in the next subsection; the proof 
that 0 = V (in Section 5) will considerably profit from it. On the other hand, it is not 
difficult to use the same 7,,p to obtain a much simpler (i.e., less structured) operational 
meaning, say O*: Lpp -+ P*. Let 8 be a new symbol (standing for deadlock), and let 
:E6 = :E* U :E"' U 'E* · { 8}, i.e., the set of all finite sequences over :E, possibly postfixed by 
8, and all infinite sequences over :E. We put 

and define o; to satisfy 

Od"(E) = ,\a.{ e} 

{ 
,\u. LJ{ £T1 .O;i(r')(u') I <r, u>-+ <r', u'>} 

Od(r) = if the above set { ·} =f:. 0 
{ t5} otherwise 

for r-::/= E. 

Od(r) exhibits three essential differences with Cd(r). Firstly, it has lost the branching 
structure of the latter. Next, steps <r, u>-+ <r', m> do not contribute to the result 
(whence the possibillity that the set { ·} might be empty). Thirdly, the resumptions have 
disappeared (instead of <u',p'> we now simply employ p'(u')). As a consequence, Odis 
not compositional. In particular, no relationship of the form Od(r1 , r2) = o;(r1) II 0;7(r2) 
holds. 

3.4 Denotational semantics 

We shall define the denotational semantics V for .Cpp in terms of the auxiliary semantic 
mappings Id and £d: 

Id : Stalpp-> SeSCo-> P 
£d : ExpPP-+ SeECo _, P 
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Here (p E)P is as in Section 3.3, SeSCo =df P is the set of semantic statement continua­
tions, and SeECo =df (f E)V - P is the set of semantic expression continuations. The 
definition of the semantic parallel composition operator 'II' will be supplied in Definition 
3.9. 

Definition 3.8 (denotational semantics for Cpp ) 

a. Id(x := e)(p) = £d(e)(>.a.>.u.{ <u[a/x),p>}) 
Id(m)(p) = >.u.{ <m,p>} 

Id(s1; s2)(p) = Ia(s1)(Id(s2)(p)) 
Id(if e then s1 else s2 fi)(p) = £d(e)(>.,B.if .B thenid(si)(p) else Id(s2)(p) 6.) 
Id( while e do s1 od)(p) = 

>.u.{ <u, £d(e)(>.,8.if ,8 thenid(s1)(Id(while e do s1 od)(p)) else p fi)} 
Id(new(s1))(p) = Id(si)(po) II p 

Id(begin var x := c; s1 end)(p) 
= >.u.Id(x := e; s1 )(>.C1.{ <iT[u(x)/x],p>} )(u) 

b. Ed(a)(f) = f(a) 
Ed(x)(f) = >.u.{ <u, f(u(x))>} 

Ed(lfi(e1, • .,ek))(f) 
= ed(e1 )(>.,81 .... £d(ek)(>.f3k.f(~(/31, .• , f3k))) .. ·) 

ed(s; e)(f) = Id(s)(ed(e)(f)) 

Some explanations may help. 

• s = x := e: e is evaluated, the result is passed on to the expression continuation 
f = >.0:. ···,and eventually a change of state - setting x to a - is performed, and 
f then continues (resumes) with p 

• s = m: the pair <m,p> will play a role in the definition of II· 
• s =while e do s1 od: A (silent) step is performed, leaving u unchanged, and then 

e is evaluated and the usual conditional for the while statement is given. Note that 
Id( while ... od) returns on the right-hand side. To turn this into a well-defined 
formula, we should in fact define Id as a (unique) fixed point of some higher-order 
contraction '1td. (Details of a related case can lie found in [BV91].) 

• s = new(s1): Id(s1) is supplied with the nil-continuation po, and executed in 
parallel with the already present continuation p. Note that Id uses II; below, we 
shall see that II uses Id. A comment on this follows later. 

• s = begin ... end: this amounts to executing the assignment and then the state­
ment sll and after that resetting x to the value u(x) it had upon entrance of the 
block. Thus, it mimicks the operational rule. 

• e = x: As in 'Tpp , a silent step is performed, and then the value u(x) is passed on 
to the expression continuation f. 

'Ve proceed with the definition of the parallel composition operator. Let X, Y range 
over "Pco(T X P). 

Definition 3.9 Let Pl, P2 E P. 
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a. Pl II P2 = ..\er.((p1 (er) lJ.. P2) U ~(a) lJ.. pi) U (p1 (er) la P2 (er)) 

b. X IL p = { <r,p' II p> I <r,p>E X} 

c. X la Y = { <u,Id(s)(p' II p'')> I <m,p'>E X, <m,p">E Y and d(m) = s} 

In executing p 1 II p2 for argument u, one either makes a simple step from the left- or 
right operand (this yields interleaved execution), or the two outcomes X = Pi (a) and 
Y = p2(a) communicate (in X Jcr Y) by a rendez-vous of the two steps <m,p'> in X and 
<m,p"> in Y. This leads to the evaluation of Id(s), for s = d(m), with continuation 
p' II p11 • The circularity in this definition, viz. II defined in terms of (lJ.. and la- defined 

in terms of) II and Id, and Id defined in terms of II, may be circumvented by using a 
simultaneous higher-order mapping (in two arguments), and defining <Id, II> as unique 
fixed point of this mapping. Considerable detail about this approach is supplied in 
[BV91}; therefore, we omit this here. 

Finally, we put 

Definition 3.10 'D(d, s) = Id(s)(po). 
In Section 5 we shall prove 

First Main Theorem For each 11" in Cpp , 0(11") = 'D(7r). 

Remark Though the rendez-vous rule (and the corresponding denotational definitions) 
yield precisely all successful computations, one might argue that it induces too many 
deadlock possibilities: Consider, e.g., the situation that d(m) = m', and that r 1 = (m: 
E,m': E), r 2 = m: E. Since <r1 ,a>-+ <(E,m': E),m> and <r2 ,a>-+ <E,m>, we 
may infer that <(r1,r2),u>-+ <m': (E, rn': E),a>. As a consequence, in the result 
<m' : (E, m' : E), er>, a rendez-vous between m' and rn' is no longer possible (since m"s 
partner m' is not accessible in a parallel component, but has been 'hidden' to occur after 
m'). Thus, an extra deadlock possibility has arisen which should have been avoided. 
A way out of this problem is the introduction (taken from [ABKR89]) of a separation 
between so-called dependent and independent resumptions. This works as follows: Right­
hand sides of transitions are now of the form <r', er'> or <r', <r", m>>. Here r1 is the 
independent resumption which may continue independently of the success of the rendez­
vous involving m, and r" is the dependent resumption which may resume only after the 
rendez-vous for m has taken place. The induced modifications in Tpp are 

• <m: r,u>-+ <E,<r,m>> 

• (revised rendez-vous rule) 

<r1 ,u>-+ <rL <r~', m>> <r2,u>-+ <r~, <r~, m>> 
<(ri,r2),er>-+ <(s: (rf,rq),(r~,rD},a> d(m) = s 

Also, in the interleaving rule we now take r E I.: U (SySCo x M). As a consequence, 
only the independent resumption (r') in <r', <r", m>> is involved in interleaving steps. 
Next, in the definition of P we replace the M x P term by M x P x P. Finally, we 
change the definition of 4>d(F)(r), for r '# E, to read 

<Pd(F)(r) =..\er. {<a',F(r')> I <r,a>-+ <r',u'>} U 
{<rn,F(r"),F(r')> I <r,a>-+ <r',<r",m>>}, 
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with '-+'with respect to the amended Tpp • 
As to the denotational definitions, we impose the following changes: 

• change in P as just given 

• change in definition of Id: Id(m)(p) =.ha{ <m,p,PO>} 

• change in definition of II: 

X lL P = { <a,p' II p> I <a,p'>E X} U {<m,p",p' II p> I <m,p",p'>E X} 
X 10' Y = {<u,Id(s)(p}' llp~) llP~ llP2> I <m,p~,p!>E X, <m,p~,p2>E Y,d(m) = s} 

\Ve leave to the reader to work out the required modifications in the equivalence proof 
of Section 5. 

4 Parallel objects 

4.1 Introduction 

The language .Cpo extends £pp with a mechanism to name and re/er to processes. 
Such a named process will from now on be called an object. It includes an 'active' part -
comparable to the sin the new(s) construct of Section 3 - and a declarative part. In the 
declarative pa.rt we find the information on how a method name m is to be supplied with 
a method body µ, here taken in the form of a parametrized expression >.x.e. Individual 
variables may now refer not only to values such as integers or truth values (together 
called V in Section 3), but as well to (the names of) objects. To be precise we replace V 
by 

(a,(3,-y E)Obj = SObj U ObjN 

where SObj, the set of standard objects, takes over the role of V', and ObjN is the set 
of object names. Objects are created as instances of a class: the relevant information 
about a class c is contained in the declaration d(c). This is a pair <d(c)i, d(c)2>, where 
d(c)1 E M -+ Meth tells us how each method name m is provided with a method 
µ E Meth as its body (i.e., d(c)i(m) = µ), and d(c)2 E Stat,,0 is the statement (the 
'process' of Section 3) execution of which is initiated (in parallel to the already existing 
objects) at the moment new(c) is executed. In other words, each execution of new(c) 
results in the creation of one more object as instance of class c, and all these objects are 
executing the (same) body s (determined by c's declaration) in parallel. The execution 
of new(c) furthermore involves the creation of a new name, say a', which is used to 
identify the newly created object (instance of c). Normally, this name will be stored in 
some individual variable (occurring in the creating object), for later reference. 

The snapshot in Figure 1 of a creating a: and created a:' may help (see next page). 
This picture assumes that d(c)i(m') = µ', ... , and that d(c)2 = s'. Details on how the 
new name o/ is to be determined follow in Section 4.3. The picture also reflects that 
individual variables (from now on rather callr.rl instance variables) are 'private' to the 
objects. Private variables are not accessible from other objects. In fact, the only way in 
which objects may interact is by the sending and receiving of messages. This takes place 
by an extended version of the rendcz-vous mechanism. Instead of the earlier synchronized 
execution of m and rrt occurring in two parallel processes (leading to the execution of 
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a reference as result of(l) . a.', object created by new(c) 

decl. part 

body 

m~µ-;". .. 
x·;y, ... 

... ·· "· .·· · . . ·· ·. . . 

.,.. _____________ _ 
s: 

x ;~et) new(c) 

·. 

m'~µ', ... 
x', y', ... ._ ____________ _ 
s': ... 

Figure 1: Two Objects 

decl. part 

body 

parallel processes (leading to the execution of the body s = d(m) associated with m), we 
now have the following concept, execution of which is described in a number of steps: 

1. a statement answer(m), when occurring in the body of an object (named, say, by 
object name a) indicates willingness to execute the methodµ (associated with the 
method name m in the declaration of the class of which a is an instance) upon 
request; 

2. a so-ea.lied send-expression e!m(e), when occurring in the body of an object (named, 
say, by object name /3) is executed as follows: 

• the value of the expression e is determined, resulting in the object /i next 

• the Yalues of the expressions ei, •• , e1c are determined from left to right, result­
ing in /i, .. , 'Yki 

• a request for execution of the method associated ·with method name m by the 
object name "1 is issued 

[Step 2 takes place in parallel to Step 1 ]; 

3. in case the issue of this request synchronizes with the execution of the answer 
statement an.swer(m) as meant under 1 (implying that a= -y), and assuming that 
µ. = >..i.e!, next 

4. the values 'Yi, .. , "fie are assigned to the (formal parameters, i.e., the) instance vari­
ables x1, .. , x1c, the expression e' is evaluated, the Xi are reset to their earlier values 
{which they had just before the assignment), and the result a is returned to that 
position in object {3 where the value of e!m(e) is required; 

5. execution is resumed with the parallel execution (in a) of the statement following 
answer(m) and (in (3) with the construct following e!m(e). 
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All through the execution of 1. to 5., further parallel objects (different from o or {J) will 
continue independently with their own activities. The only 'waiting' involved is (in o) 
for completing the evaluation of the method µ , and (in (3) for the returning of the value 
a. 

This brief sketch of the informal semantic of Lpo should suffice here. More extensive 
explanations are contained in various studies on POOL semantics ([ABKR.86, ABKR.89, 
Rut90b, AR89a, AR90]. We have aimed at including, in Cpo , of all essential features of 
POOL. Concepts not treated are 

• temporary variables (in addition to instance variables) and the object nil; 

• the conditional answer statement, and an answer statement of the form 
answer(m1, .. , mk), k ~ 1; 

• the method call (not as part of a rendez-vous); 

• a few special cases of expressions; 

• (a full treatment of) the standard objects. 

Apart from the last item, the missing features can be dealt with without undue effort, 
by small extensions of the present definitions. Standard objects are more difficult since 
they are not, by nature, compact (cf. [Rut90b] for more information on this). 

4.2 Syntax 

The syntax for Cpo may be inferred from that of Lpp , as amended in the light of the 
extensions outlined above. Note that the new- and block constructs have been moved 
from the class of statements to that of expressions. 
The following basic sets a.re used 

• (x E)IVar, a countable set of (individual or) instance variables 

• (m E)../llJ, a finite set of method names 

• (o, (3, I E)SObj, the syntactic set of standard objects (to be identified later with the 
semantic set of standard objects including the integers, truth values, and maybe 
more) 

• ( c E) Class , a finite alphabet of class names. 

We have no more use for the set Fune . Finiteness of ../III and Class is, as before, postu­
lated in order to avoid declarations with infinite domain. 

Definition 4.1 (syntax for Lpo ) 

a. s(E Stat,,0 ) .. - x := e I answer(m I (s1; s2) I if e then s1 else s2 fi I 
while e do sod 

b. e(EExpp0 ) •• - alxle!m(e)lnew(c)i(s;e)lbeginvarx:=e;eend 

c. (d E)Declp0 = Class -+ ((M -+ Meth) X Stat,.0 ) 

d. µ(E Meth) .. - >.x.e 
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e. ir(E Cpo) •. - (d,new(c)) 

In clause e., we see that the execution of a program starts with the creating of a first 

object as instance of some (initial) class c. 

4.3 Operational semantics 
As before we base the operational semantics on a transition system, now named T,,o • 
This will involve a somewhat extended notion of state, as well as an adapted notion of 
a, possibly labeled, syntactic continuation. 

We begin with the introduction of the sets of objects and states. 

Definition 4.2 

a. (a,{J,7 E)Obi = SObi U ObiN 
Here SObj is the set of standard objects, and ObjN is a (not further specified) set 
of object names. 

b. (u E)E = (IVar -+ Obj -+ Obj) x 'P/in ( Obj ). 

c. The functions new : 'PJin (Obi ) x Class --+ ObjN and class : ObiN --+ Class will 
be introduced below. 

d. The notation u[.B/x,a] abbreviates <u1[u1 (x)[,B/a]/x], u2>: u is changed such that 
u[/3/x, a](:i:)(a) now equals /J; elsewhere u is not changed. 

A state is a pair u = <u1,u2>. For a given instance variable x and object name er, 
u1(:i:)(a) tells us the current value of x (in object er). Note that the 'same' :z: will 
have, in general, a different value u1(:c)(a) in some other object a. Furthermore, u2 E 
'PJin (Obi ) consists of a finite subset of Obj which may be read as the collection of 

all objects currently active. (If one so desires, one may consider some or all of the 
standard objects (for integers, truth values and the like) as already active and supplied 
with suitable standard methods. These issues are dealt with at length in [ABKR.89], 
(Rut90b], and are not further treated here.) The function new delivers, for a. current set 
of active objects {(E 'P/in (Obi)) and class c, a new name new(e,c) not in{, which 
may be used to name a new instance of class c. The function class determines, for each 
object name er, the class c = class(a) of which a is an instance. 
We proceed with the definition of the various continuations. 

Definition 4.3 

a. (r E)SySCo is the set of syntactic statement continuations given by 

r EI (s: r) I (e: g) I r<er/x> I g(a) I if f3 then r1 else r2 :fi I 
</3,m,~>: g. 

b. (g E)SyECo is the set of syntactic expression continuations given by 

g .. - Aa.r I g<a/:c> Ix 
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c. (p E)LSySCo is the set of labeled syntactic statement continuations given by 

p .. - «:t,r> I (p1,p2) I a: x I <{3,p> 

d. (x E)LSyECo is the set of labeled syntactic expression continuations given by 

x .. - <a,g>l(x,p)l(p,x) 

Anticipating the denotational semantics, we already mention that each p will correspond 
to some (mathematical) process in P, and each x to some function in Obj -t P. Whereas 
<a, r> should be rea.d as: haver executed by object a, the construct a : x has as intended 
meaning that the object a is passed as argument to (the function which is the meaning 
of) X· The construct e : x (special case of e: g) is normally evaluated by some object, say 
/3. The value of the expression e is determined (with respect to /3); eventually, its value, 
say -y, is passed on to x (which itself may be a labcled construct, e.g., <a,g>). The 
construct </3, p> is auxiliary; the role of /3 is (eventually) no more than to be thrown 
away. 

Below, we shall make extensive use of pairs <p,u> - to be read as: execute the 
la.beled continuation p with state u as argument. We adopt the convention that, in such 
a pair, p is always consistent with respect to u. This requires, by definition, that all 
a appearing as labels in p a.re element of u2 (the set of currently active object names). 
Here we say that 

• a appears as label in <a,r> or <a,g> 

• if a appears as label in p, pi, P2 or g, then a appears as label in (Pi.P2), (p,x) , 
(x,p), e :g or </3,p>. 

A transition is a five-tuple (written in the arrow notation of Section 3) of one of three 
forms 

• <p,u>-td <p',u'>, 

• <p,u>-d <p', <a,m>>, 

• <p,u>-d <x,</3,m,P>>. 

The first possibility reflects a 'normal' step, the second results from an answer statement: 
<a, m> indicates that object 0t is willing to execute the method named by m, and the 
third results from a send expression, asking object /3 to execute m with parameters P, 
with a result to be returned, upon completion of the method execution, to X· A transition 
rule has the general form as described in Section 3. Rules of the form 

<p1,u>-d ··· 
<p2,u>-d ··· 

with··· standing for the same pair, will again be abbreviated to <p2,u> -to <piiu>, 
or even to p2 -to p1. If p2, p1 a.re of the form <a, r2 >, <a, r1 >, respectively, we further 
simplify the notation to read r2 -to r1. 

We next present 

Definition 4.4 (transition system T,0 for C,,0 ) 



a-rules 

• zero-step 
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(:c := e) : r -o e: )..cr..(r<o:/:c>) 
(s1;s2): r -o s1: (s2: r) 

if e then s1 else s2 fi : r -o e : )../3.if f3 then s1 : r else s2 : r fi 

• axioms 

<<o:,answer(m): r>,u> - <<o,r>, <o:,m>> 
<<cr.,whileedosod,a> -

e-rules 

• zero-step 

<<cr.,e: >.{3.if ,8then s: while edo sod: r else rfi>,u> 

o: : g -+o g(a) 
{s;e):g -+o s:{e:g) 

e!m(ei, .. , e1c) : g -+o e: )..,8.{e1 : )..,81-(· · · 
e1c : )..f3i..( <{3, m, /31, .. , /31c>: g) · · ·)) 

<<a, begin var i := e; e end: g -+o 
<<a, ((:c1 := e1; .. ; :i:1c := e1c); e) : g<u1 {:ci)(o)/:i:1> .. <u1 (:i:1c){o)/:c1c>>,u> 

• axioms 

<<o,:i:: g>,u> - <<o,cr1(:c)(a): g>,u> 
<<a,new(c):g>,cr> -+ <(<a,{3:g>,<f3,s:E>),u'> 

T 1 p, x-ruJes 

• zero-step 

• axioms 

if tt then r1 else r2 fi -+o r1 
if ff then r1 else r2 fi -+o r2 

()..o.r}(,8) -+o r[/3/o] 
g<cr./:c>(,8) -o g(f3)<oi/ :c> 

<a,g>(f3) -o <cr.,g(/3)> 
(x, p)(fJ) -+o (x(/3)),p) 
(p, x)(f3) -+o (p, x(/3)) 

</3,p> -+o p 

<<a,</3,mJJ>: g>,u>-+ <<a.,g>, <{3,m,ii>> 
<<o, r<f3/:c>>,u>- <<er., r>,u[,B/x,o]> 



• rules for parallel execution 
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<p,u>-+ <p',u'> 
<(p,p),u>-+ <(p7,p),u1> 
<(p,p),u>-+ <(p,p'),u'> 

(interleaving) 

and similar rules with <a,m> replacing u', or with x' replacing p' and </3,m,iJ> 

replacing u' 
(rendez-vous) 

<(pi,p2 ),u>-+ </3, begin var x := f3;e end: (x', p")>,u> 

where d(class(/3)) 1(m) = >.x.e 

Explanation. Most of the rules should be clear as refinement of those of 7,.,, . We 
emphasize that (even when no object label a is explicitly written) all calculations take 
place as part of named objects: eventually, all access to variables is through the function 
application u1 (x)(a) in the axiom for <<a,x: g>, u>. The answer statement executed 
in a determines a step <a, m>; the send expression e!m(e) evaluates e and ei, .. , ek 

from left to right, and makes a step involving the outcome </3,m,<P1, .. ,(3k>>. The 
new(c) expression determines a new object name f3 (on the basis of the current set of 
names u2 and the class name c), and initiates execution of <{3, s : E>, where s, the 
body of class c, is retrieved from d(c)2. In the rendcz-vous of pi, P2, where P1 may make 
a send-step <x',</3,m,iJ>> and P2 a (corresponding) answer step <p",</3,m>>, the 
body of the method µ = >.x.e associated with m in the declaration is, after appropriate 
initialization with the parameters /J, executed, and the result is eventually passed back 
to x'. (If desired, one may refine the rendez-vous rule by the introduction of dependent 
and independent resumptions, cf. the remark at the end of Section 3.) 
We next discuss how to use T,, 0 to determine 0 for C,,0 • First, we introduce the 
domain P which serves as range for 0. Corresponding to the three kinds of right-hand 
sides of a transition (viz. <p',u'>, <p',<a,m>>, <x,<{3,m,P>>), it is natural to 
define P as solution of the equation 

P ={po} U (:E-+ Pc0 (:E X P U 

Obj x M x P U Obj x M x Obj * x ( Obj -+ P))) 

Using this P, we define 0 as fixed point of a contracting higher order operator ~d based 
on T,,0 • Since we now deal with transitions yielding both <p', .. > and <x', .. > results, 
we introduce cpd as an operator on pairs of meaning functions F =<Fi, F2>: 

Definition 4.5 

a. Let F1 E LSySCo -+ P, F2 E LSyECo -+ Obj -+ P, and let <i>d have the type 
cpd : (LSySCo -+ P) x (LSyECo -+ Obj -+ P) -+ 

(LSySCo -+ P) x (LSyECo -+ Obj -+ P), 
where <i>d(F1,F2) =df <F1,F2> is given as 
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F1 (p) = p0 if all r occurring in p are equal to E, and otherwise 

F1 (p) =>..a. {<a', F1 (p1)> I <p, a>-+ <p', u'>} U 
{<</3,m>,F1(p')> I <p,a»-+ <p',</3,m>>} U 

{ <</3,m,/h, F2(x 1)> I <p,a>-+ <x', </3,m,/J>>} 

and 

F2 (x) = >..a.p0 if all r occurring in x arc equal to E, and otherwise 

' I I I } F2(x) = >..a.,\a. {<cr',F1(p )>I <a: x,u>-+ <p ,<1 > u 
{ <<.B,m>, F1(p1)> I <a: x,a>-+ </, <!3, m>>} u 
{ <</3, mJJ>,F2(x')> I <a:: x, u>-+ <x', <{3, m, ft>>} 

b. Od = fix(<l>d)i, O(d,new(c)) = Od(<a,s : E>), where a = new(0,c), and 

d(c)2 = s. 

Thus, in order to execute (d,new(c)), the first instance of c is named by a - obtained 
when the set of active objects is still empty - and execution of the body of this object 
(given in the declaration of c) is initiated. 

4.4 Denotational semantics 

Similar to what we did in Section 3, we define the intermediate denotational mappings 

Id : Statpo -+ Obj -+ P -+ P, 
&d: Exppo-+ Obj -+ (Obj -+ P)-+ P. 

Let f range over Obj -+ P. 

Definition 4.6 (denotational semantics for lpp ) 

• statements 

Id(x := e)(a)(p) = t:d( e) (o:)(>..,B.>.a.{ <a[f3 /x, a],p>}) 
Id(m)(a:)(p) = ,\a.{ <<a:, m>,p>} 

Id(s1;s2)(a)(p) = Id(si)(a)(Id(s2)(a:)(p)) 
Id(if e then s1 else s2 fi.)(a)(p) 

= t'd( e) (>..f).if (J then Td(s1 )(a )(p) else Id( s2) (a )(p) fi) 
Id( while e dos od)(a)(p) = ,\er.{ <u, Ed(e )(a) (>.(3. 

if /3 then Id(s)(a)(Id(while e dos od)(a)(p)) else p fi)>} 

• expressions 

ed(/3)(a)(J) = f((J) 
t:d(x)(a)(J) = ..\a.{ <a,f(cr1(x)(a))>} 

ed(s;e)(a)(J) = Id(s)(a)(£d(e)(o:)(f)) 
Ed( e!m( t) )(a)(!) = £ d( e) (a) (>../3.( £d( e1) ( o:) (.\/31.( · · · 

Ed(ek)(o:)(>..~k-Aa.{ < <,8, m, j3>, f >}) · · ·)))) 
£d(new(c))(o:)(J) = >..a.{ <a', f ((3) 11 Td(s )(j3)(po)>} 

where f3 = new(o-2,c), u' = <a1 ,a2 U {,B}> and d(c)2 = s 
£d(begin var x := e; e end)(a)(J) = 
>.a.Ed(x := e; e)(a)(>..,6.>.cr.{ <u[u1 (x)(Q()/xi] · · · [a1 (xk)(cx)/xk], f(f3)>} )(o-) 
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The '11'-operator used in the clause for new(c) is defined in 

Definition 4.7 Let p1,P2 E P, X,Y E 'Pc0 (·). We put 

where 
XII P = { <a,p' II p> I «r,p'>E X} U 

{<<o:,m>,p' llP> I <<a,m>,p'>E X} U 
{<</3,m,iJ>,f II p> I <</3,m,iJ>,f>E X} 

f II P = Aa.(f(a) II p) 

X la Y = { <u, £d(begin var x := /J; e end)(/3)(! 11 p') I 
<</3, m,iJ>, f>E X, </3, m,p'>E Y 
or vice versa, and d{class(/3))1(m) = Ax.e} 

As in Section 3, the above definitions are circular in that £d depends on the definition 
of II, and II depends on the definition of £d. We again refer to [BV91] for a rigorous 
definition of a comparable problem. (In the present setting, contractivity of the relevant 
higher-order operator follows easily from the <u', ... >step in the clause for £d(new(c)) 
and the <a, ... > step in the clause for X la Y.) Also, the definition of Id is not well­
formed since it is circular in the case of the while statement. This problem as well may 
be dealt with by the familiar argument. 

We are, at last, ready for the final 

Definition 4.8 The denotational meaning V: .Cpo -t P is given by 

V(d,new(c)) = Id(s)(a)(po), 

where a= ncw(0, c) and s = d(c)2. 
In Section 5, we shall sketch the proof of the 

Second Main Theorem For each 7r E .Cpo , 0(7r) = V(7r). 

5 Equivalence of 0 and V 

We shall provide a detailed presentation of the proof that CJ and V coincide on .Cpp • 

For Cpo , we shall only outline the main ideas. 
We start with the equivalence proof for Cpp • We assume the various definitions from 
Section 3; in addition we give several further definitions which will link the syntactic 
continuations r to their denotations involving semantics continuations. 

Definition 5.1 The mappings 

Rd : SySCo -t P 
9 d : SyECo -t V -t P 

are given as follows 
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a. 

'Rd(E) = Po 
°Rd(S: r) = Id(s)('Rd(r)) 
'Rd(e: g) = £d(e)(9d(g)) 

'Rd(r1, r2) = 'Rd(r1) II 'R.d(r2) 
'R.d(if {3 then r1 else r2 fi) = if ,B then 'R.d(ri) else 'Rd(r2) fi. 

'R.a(r<a/x>) = .XO-.{<a[a/x], 'Rd(r)>} 
'Rd(g(a)) = 9d(g) (a) 

b. 

We now state a central lemma relating the transition system 'Tpp and the 'Rd-function: 

Lemma 5.2 Ifr1 -+o r2 then 'Rd(r1) = 'Rd(r2). 
Proof In all the cases this is immediate by the definitions of 'Tpp and of 'R.d. D 

Ne..xt, we introduce complexity measures on SySCo and SyECo (and on Stal.pp, Exppp), 
which will play a role in an inductive argument in the proof of the key theorem below. 

Definition 5.3 The mappings II · llr : SySCo -+ N (and analogously II · 11 9 , II · II., 
II · !le) are defined by 

a. l!Ellr = 0, iis:rllr = lisJls + llrllr1 !le:gllr = lielle + llgllo, ll(rr,r2)1ir = 
II r1 \lr +II r2 llr, II r<a/x> llr = II T llr, II g(a) llr = II 9 lls +II a !le, 
II if {3 then r1 else r2 fi llr = max(li r1 llr, II r2 IJr) + 1. 

b. U>.a.rll9 =llrllr· 
c. II X :=ells =II X lie+ II e lie + 1, II m lls = 1, II S1; s2 lls = II S1 lls + II s2 lls + 1, 

II if e thens1 else s2 fi II.= II e lie+ (max(il s1 II., II s2 II.)+ 1) + 1, 
II while e dos od lls =II e lie+ II s lls + 1, II new(s) lls = II s lls + 1, 
11 begin var x := e; send lls = II x := e; s lls + 1. 

d. II a lie = II X lie = 1, II iP(e1, .. , ek) lie = 1 + II e1 lie + · · +II ek lie + 1, II s; e lie = 
II S lls +II e lie+ 1. 

It is not difficult to verify that 

Lemma 5.4 If r1 -+o r2 then II r1 llr> II r2 llr· 
Proof By the various definitions. Note, e.g., that II ef>(ei, .. , ek) lle = 1 + L:7=l II e; lie+ 1, 
but 11~(0:1,..,a:k) lie= 1, since ~(01,..,ak) is an element of V. D 
The main step leading to the proof that CJ = 1) on Cpp now follows. The key idea is 
to show (following a method from [KR90)) that the denotational mapping 'R..d is a fixed 
point of the contracting higher-order operator <I>d which we used earlier to define od. 
This then implies that Rd= ('.)d, from which ('.)=Vis immediate. 

Theorem 5.5 .Pd('Rd)(r) = 'R.d(r), for all r E SySCo. 

Proof Induction on II r llr· If r = E, the result is clear. We now discuss a selection of 
subcases for r, leaving the most difficult case that r = ( r1 , r 2 ) to the last. 



• r = (x := e) : r1 

• r = while e do sod : r 1 
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<Pd('R.d)((x := e): r1) 
= def. <I>d, def. Tpp 

<I>d('R.d)(e: >..a.r1 <a./x>) 
= ind. hyp. 

'R.d(e : >..a.r1 <a/x>) 
= Lemma 5.2 

'R.d((x := e) : ri). 

'1>d('R.d)((s1; s2): r1) 
= def. '1>d, dcf. Tpp 

'1>d('R.d)(s1 : (s2: r1)) 
= ind. hyp. 

'R.d ( s i : ( s2 : r1 ) ) 
= Lemma 5.2 

'R.d((s1;s2): r1) 

<I>d('R.d)(whileedosod: r1) 
= clef. <I>d, clef. Tpp 

>.u.{ <u, 'R.d(e : >..,B.if /3 then (s; while e dos od) : r1 else r1 fi)>} 
= clef. nd 

>.u{ <u, £d(e )(>..{3.if /3 then Id(s )(Id(while e do s od)('R.d(r1))) else 'R.d(r1) fi)>} 
= clef. Id 

Id( while e dos od)('R.d(r1 )) 
= clef. nd 

'R.d(while e dos od : r 1) 

r = (x: g) 
<I>d('R.d)(x : g) 

= def. <I>d, Tpp 
>.u.{<u,'R.d(u(x): g)>} 

= def. 'R.d 
Au.{ <u,£d(u(x))(9d(g))>} 

= def. £d 
Au.{ <u,9d(g)(u(x))>} 

= def. £d 
£d(x)(9d(g)) 

= def. nd 
'R.d(x: g) 



<Pd('R.4)(ri, r2)(u) 
= def. <.1>4 

54 

{<-r,'Rd(f)> I <(r1,r2),u>- <r,r>} 
= def. Tpp 

{ <r', 'R.d(r', r2)> I <r1, u>- <r1, r'>} U 
{ <r11 , 'Rd(r1, r11 )> I <r2, u>- <r", r">} U 
{ <u, 'R.d(s: (r', r"))> I <ri, u>-+ <r1, m>, <r2,u>-+ <r", m>,d(m) = s} 

= 
{ <r', 'R..d(r1)> I <r1, u>- <r', r'>} lL 'R..d(r2) U 

{<r",'R..d(r")> I <r2,u>-+ <r",r">l lL nd(ri) u 
{ <u,Id(s)('R.i(r') II 'R.i(r11 )}> I <ri, u>-+ <r1 , m>, <r2, o->-+ <r", m>,d(m) = s} 

= see below for (*) 
«Pd('R.d)(r1)(u) lL nd(r2) u <Pd('R.d)(r2)(u) lL 'R..d(r1) u 

(*)<I>d('Rd)(r1)(u) ICT <I>d('R..d)(r2)(u) 
= ind. hyp. 

n.l(r1)(a) 1L 'R..d(r2) u 'R..d(r2)(u) lL 'R.d(r1) u n.d(ri)(u) 10' 'R.d(r2)(11) 

= 

= 

where the step leading to (*) is justified a.s follows: 

= 
{ <o-,Xd(s)(p' II p11 )> I <m,p1>E cI>d('R..d)(r1)(0-), 

<m,p11 >E cI>d('R.d)(r2)(u), d(m) = s} 
= 

{ <u,Id(s)(p' II p11 )> I <m,p'>E { <r', 'R..d(r')> I <r1, u>-+ <r1 , r 1> }, 
<m,p">E { <r", 'R.d(r")> I <r2, u>-+ <r", r"> }, d(m) = s} 

= 
{ <u,Id(s)('Rd(r1) 11 nd(r"))> I <r1, a>- <r1, m>, <r2,u>-+ <r", m>,d(m) = s} 

Finally, we can prove 

First Main Theorem For 11' E .Cpp , 0(11') = 'D(11'). 

Proof O(d,s) =Od(s :E) ='Rd(s :E) =Id(s)(po) =V(d,s) 

0 

D 

Remark The above proof suggests that, once Tpp is in the 'right' form, and 1J and the 
semantic operators follow the structure of 'Tpp , then the proof that 0 = 'D follows more 
or less 'automatically', i.e., it may be completely syntax driven without an appeal to 
additional arguments. In [Rut90a], it has been established that this is indeed the case 
for transition systems (and associated V) of a restricted format. We conjecture that 
the approach of [Rut90a.] may be generalized to cover the present case as well. This 
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would require, more specifically, a better understanding of how continuations might be 
incorporated in the method of [Rut90a]. 

We next outline how the proof that 0 = 'D on .Cpo may be structured extending 
the above approach. We first provide the counterpart of Definition 5.1. 

Definition S.6 

a. The mapping Rd : SySCo -> Obj --> P is given by 

Rd(E) Po 

Rd(s: r)(a) = Id(s)(a)(Rd(r)(a)) 
Rd(e: g)(a) = Ed(e)(o:)(Qd(g)(a)) 

Rd(if f3 then r1 else r2 fi)(a) = if f3 then Rd(ri )(a) else Rd(ri)(a) fi. 

Rd(r<f3/x> )(a) = >.u.{ <u[f3/x, a], Rd(r)(a)>} 

Rd(g(f3) )(a) = 9d(9 )(a )(/3) 

Rd(</3, rn,/j>: g)(a) = >.o-.{ <</3, m,P>, 9d(g)(a)>} 

b. The mapping g d : SyECo -> Obj --> Obj --> P is given by 

9d(>.f3.r )(a) = A/.'Rd(r[J / f3])(a), / fresh 

9d(g<f3/x> )(a) = >.1.>.0-.{ <u[,B/x, a], 9d(g)(a)(J)> }, /fresh 

9d(x)(a) = Rd(X) 

c. The mapping Rd : LSySCo --> P is given by 

Rd(<a,r>) = Rd(r )(a) 

Rd(p1,p2) = Rd(P1) II Rd(p2) 

Rd(<f3,p>) = Rd(P) 

Rd(a: x) = Xd(X)(a) 

d. The mapping Xd : LSyECo - Obj - P is given by 

Again we have 

Xd(<a,g>) 

Xd(x,p) = 

Xd(p, x) = 

9d(g )(a) 

Xd(X) II Rd(P) 

Rd(P) II Xd(X) 

Lemma S.7 If r1 ->o r2 (with respect to Tp 0 ), then 'Rd(r1) = RJ(r2). D 

Similar to the proof of Theorem 5.5 (assuming an appropriate generalization of the 
complexity measures 11 • 11), we can now prove 

Theorem 5.8 if!d(Rd,Xd)(p,x) = <Rd(p),Xd(x)>. 
From this, the second main theorem follows directly: 

Second Main Theorem For 7f E .Cpo, 0(7r) = 'D(7r). 

D 

D 
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