
RENDEZ-Vous WITH METRIC SEMANTICS

J. \V. de Bakker1

CWI, Postbus 4079, NL--1009 AB Amsterdam
& Vrije Universiteit

E.P. de Vink
Department of Mathematics and Computer Science, Vrije Universiteit

De Boelelaan 1081a, NL-1081 HV Amsterdam

Abstract

A comparative semantic study is made of an element of the family of concurrent
object-oriented programming languages. Particular attention is paid to two notions:
(i) dynamically evolving process structures, including a mechanism to name and re­
fer to processes and a means to create new processes, and (ii) reudez-vous between
processes involving the sending and answering of messages and the induced execu­
tion of method calls. The methodology of metric semantics is applied in the design
of operational and denotational semantics, as well as in the proof of their equiva­
lence. Both semantics employ domains which are determined as fixed points of a
contracting functor in the category of complete metric spaces. Moreover, fruitful use
is made of the technique of defining semantic meaning functions as fixed points of
contracting higher-order mappings. Finally, syntactic and semantics continuations
play a pervasive role.

I Introduction

\Ve shall present a comparative semantic study of a language of the COOP (concurrent
object-oriented programming) variety. Particular attention will be paid to the following
two phenomena

- dynamically evolving process structures, including a mechanism to name and refer
to processes and a means to create new processes;

- a version of rendez-vous between processes involving the sending and answering of
messages and the ensuing execution of method calls.

The language we consider is a slightly simplified version of the language POOL - the
parallel object-oriented language designed by America [Ame89]. Several semantic inves­
tigations of this language have appeared already: operational semantics ([ABKR86]),
d<'notational semantics ([AilKR89)), and a comparison of these two ([Rut90b]). Cf. also
[AR89a] for a somewhat streamlined version of parts of [ABKR86, ABKR89, Rut90b)
- excluding the more difficult sections of the comparison -, and [AR90], where an im­
provement of POOL's denotational semantics which is organized in three layers (for
statements, objects and programs) is described. The latter paper is intended as well as
a contribution to the issue of the full abstractness of the POOL semantics.

1Partia.lly supported by ESPRIT Basic Research Action 3020: Integration

28

The treatments in [ABKR89, Rut90b] are rather complex and demand much from the
uninitiated reader. The first aim of the present paper is to provide a more comprehensible
version of these investigations, with special emphasis on the comparative issues. Partly,
this is achieved by a presentation in two stages, both dealing with dynamically evolving
processes, but only in the second one with a. facility to name and refer to processes.
Also, a careful tuning of the design of the operational and denotational definitions -
in particular by the systematic use of so-called syntactic and semantic continuations
- results in a transparent view of the relationship between the two models. Maybe
more importantly, we propose a substantial simplification in the way the rcndez-vous
concept is handled. Firstly, the operational semantics rule for the rendez-vous is now
appealingly simple and, secondly, some of the complexities in the denotational models of
(ABKR89, Rut90b], in particular in the definition of the merge operator, are to a large
extent avoided. Related to this we find that the equation determining the domain used in
POOL's denotational semantics is essentially simplified in our approach. (In the domain
equation P = F(P), F(P) has no more subterms of the form (P --+ · · ·). See Section 2
for background on this.) In addition, the somewhat extraneous use of the denotational
meaning function Vas part of the intermediate operational semantics in [Rut90b] is no
more necessary.

The second aim of our paper is to provide a case study in the use of metric semantics.
Let us first devote a few words to it:; basic principles. Consider two computations p1 ,

pz. A natural distance d(pi,p2) may be defined in terms of the notion of initial segment
p(k) of p - roughly, that part of p consisting of the first k steps (if present, otherwise p
itself). Now we put d(pi,p2) = rn, where n is the length of the longest common initial
segment of PI and P2 (i.e., n = sup{ k I P1 (k) = pz(k)}). Details vary with the form of
the pi, P2· If computations are given as words (finite or infinite sequences of atomic
actions), we take the standard notion of prefix; if p 1 , P2 are trees, we use truncation at
depth k for p(k). Other kinds of computations, e.g. involving function application, may
be accommodated as well.

Complete metric spaces (ems 's) have the characteristic property that Cauchy se­
quences always have limits; this motivates their use for a smooth handling of infinite
behaviour. In addition, each contracting function f : (lvl, d) --+ (M, d), for (lvl, d) a
ems, has a unique fixed point (by Banach's theorem; see Section 2 for the definition of
contracting). Uniqueness of fixed points may conveniently be exploited in a variety of
situations:

Firstly, it has brcn shown that cms's may be used to solve domain equations of the
form

P = F(P) (1.1)

or, rather, (P, d) !:?! F(P, d), with (P, d) the ems to be determined, !:?! isometry, and F a
mapping (functor) built from given cms's (A, dA), the unknown (P, d), and composition
rules such as 0 (disjoint union), x (cartesian product),--+ (function space), and Pc1(-),
Pea(•) (the power sets of all closed or compact subsets of ·). See [BZ82], [AR.89b] for
mathematical details. As an advantage over the more usual cpo framework when used
to solve (1.1) we mention that the notions of closed and, especially, compact subset arise
Yery naturally for (the meanings of) many programming constructs. In a cpo setting,
one has to choose between the Plotkin-, Smyth-, and Hoare powerdomains (cf. [GS90)
for definitions), and it may not be so readily seen how to motivate a choice among these
on the basis of a programming (rather than a mathematical) intuition.

29

Secondly, both denotational (V) and operational (0) semantics may be obtained as
fixed points of (contracting) higher-order mappings, say '1t and <!>. For 'D this is fairly
traditional: in fact, it subsumes the classical fixed point treatment of recursion. For O it
is less standard: Starting from a transition system T in the familiar Plotkin SOS style,
one may assemble all transitions for a given program 11" into a meaning 0(11"). Here the
choice as to what kind of domain is used as range for 0 (e.g. linear time, branching time
(cf. [BBKM84, BMOZ88]) or bisimulation, interleaving or noninterleaving ([BW90]),
failure set semantics (cf. [Rut89])) is a. separate decision, in most cases independent of
the design of T. Maybe the most important advantage of this way of defining 0 as
fiz(il!) is that is suggests a quite natural method to establish (*) 0 = V, viz. by proving
that V = iJ!(V), whence the desired result follows by Banach's theorem (this important
proof method is due to [KR90], cf. also [BM88]). Elsewhere ([Rut89, HBR90]) it is
discussed how (*) may be strengthened to certain full abstractness results. Recently,
investigations have begun concerning the possibility of obtaining V 'automatically' from
a given transition system T. In restricted cases this is indeed possible ([Rut90a]), and it
is an interesting problem how this idea may be generalized. We make one further remark
on metric vs. cpo semantics: In the latter, one either uses least fixed points, and then
has to impose additional conditions to cope with infinite behaviour (e.g. closedness and
boundedness of [MV88]), or one resorts to greatest fixed points and then continuity may
be problematic (see e.g. [Par81]). In the metric framework, once contractivity is satisfied
- which is mostly the case - infinite behaviour fits in quite naturally.

Thirdly, unique fixed points may be used to define various semantic operators. In
elementary settings, it is no problem to define e.g., sequential or parallel composition.
However, if additional features such as infinite behaviour, possibly infinite alphabets, or
rendez-vous as part of parallel composition are involved, it is non-trivial how to give
rigorous definitions of such operations, and higher-order techniques again turn out to be
quite useful.

The present investigation is, partly, a companion to [BV91]. Whereas in that paper
we concentrate on so-called uniform language notions (the atomic actions are uninter­
preted or schematic, and there arc no individual variables), we here study a nonuniform
(interpreted) language with full-fledged presence of individual variables and non-trivial
expressions. The latter necessitate the use, besides of (syntactic and semantic) statement
continuations, as well of (syntactic and semantic) expression continuations (in the form
proposed in [AB88]). Since in the uniform case certain well-definedness arguments are
more perspicuous, we shall occasionally refer below to [BV91] when in need of a justi­
fication of some well-defincdness property. 'Ve refer as well to [BV91] for references to
papers where we have used metric semantics for (parallel) logic programming (LP). In
[Eli91], metric semantics have been described for a language which exhibits, besides the
COOP notions studied here, as well LP-like notions such as clausal resolving of goals and
backtracking.

We conclude this introduction with a brief overview of the contents of the paper.
Section 2 is primarily devoted to a concise presentation of the main ideas concerning
the solution of domain equations over (i.e., in the category of) complete metric spaces.
In Section 3 we develop comparative semantics for a language (lpp) with 'parallel
processes', here to be taken as a dynamically growing system of statements executing in
parallel and communicating through (a skeleton version of) the rendez-vous concept. In
Section 4 we add to these notions the facility to name and refer to processes, together

30

with certain refinements of the rendez-vous. The resulting language we call Cpo , a
language with 'parallel objects'. Both for Cpp and .Cpo we exhibit operational a.nd
denotational semantics. We prove that 0 = 'D, for £pp in some detail and for Cpo
in outline, in Section 5. Here we find the pay-off from our earlier efforts to obtain a
transparent correspondence between the two models, in that the proof of 0 = 'D is
largely syntax-directed, and does not require particular ingenuity.

Acknowledgements We owe much to Pierre America, the designer of the POOL language,
and to Jan Rutten who, jointly with Pierre, was responsible for laying its semantics foun­
dations. Jan Rutten also pointed out the need for articulating the notion of resumption
in the present paper. We arc indebted to Joost Kok for his contributions to the semantic
studies of POOL, and, in general, to the members of the Amsterdam Concurrency Group
for providing an e:x."Pert and stimulating forum for discussion on our ongoing research. We
thank Franck van Breugcl for detailed reading of an earlier version of our paper leading
to various improvements.

2 Mathematical preliminaries

2.1 Notations

We use the phrase "let (x E)lvf be such that ... " to introduce a set 111 with variable x
ranging over M such that We use 'Pr(-) for the collection of all subsets of · which
have property 'If, We use f : X --. Y to define a function f with domain X and range
(or codomain) Y. If X = Y and x E X is such that f(x) = x, we call x a fixed point of
f. If f has a unique fixed point we denote it by Jn(!). For (x E)lvf any set, we use x as
a notation for a list (or vector) over M, with k ~ 1 elements.

2.2 Domain equations

As mathematical domains for our semantics we use complete metric spaces satisfying a
so-called reflezive domain equation of the following form:

P ~ F(P)

(The symbol ~ is defined below; it says that there is a bijection from P to F(P) that
respects the metric defined on the spaces.) Here F(P) is an expression built from P
and a number of standard constructions on metric spaces {also to be formally introduced
shortly}. A few examples are

P ~ AU (Bx P)

P ~ AU 'Pc0 (B x P)

P ~ AU(B-.P)

(2.1)
(2.2)
(2.3)

where A and B are given fixed complete metric spaces. In (BZ82] it is first described
how to solve these equations in a metric setting Roughly, the approach amounts to the
following: In order to solve P ~ F(P) they define a sequence of complete metric spaces
(Pn)n by: Po =A and Pn+l = F(Pn), for n>O, such that Po ~ P1 \'.; • • •• Then they take
the metric completion of the union of these spaces Pn, say P, and show: P ~ F(P). In
this way they are able to solve equations (2.1), {2.2) and {2.3) above.

31

There is one type of equation for which this approach does not work, na.mely,

P !?! AU(P2.G(P)) (2.4)

in which P occurs at the left side of a function space arrow, and G(P) is an expression
possibly containing P. This is due to the fact that it is not always the case that Pn ~
F(Pn)·

In [AR89b] the above approach is generalized in order to overcome this problem. The
family of complete metric spaces is made into a category C by providing some additional
structure. (For an extensive introduction to category theory we refer the reader to
[Mac71].) Then the expression F is interpreted as a functor F : C - C which is (in
a sense) contracting. It is proved that a generalized version of Banach's theorem (see
below) holds, i.e., that contracting functors have a fixed point (up to isometry). Such a
fixed point, satisfying P ~ F(P), is a solution of the domain equation.

We shall now give a quick overview of these results, omitting many details and all
proofs. For a full treatment we refer the reader to [AR89b). V\Te start by listing the basic
definitions and facts of metric topology that we shall need. We assume the following
notions to be known (the reader might consult [Dug66] or [Eng89]): metric space, ultra­
metric space, complete (ultra-)metric space, continuous function, closed set, compact set.
In our definition the distance between two elements of a metric space is always between
0 and 1, inclusive.

An arbitrary set A. can be supplied with a metric d.4., called the discrete metric,
defined by

{ 0 if x = y
d,i(x,y) = 1 if x-=/= y

Now (A, dA) is a metric space (it is even an ultra-metric space).
Let (M1,d1) and (M2,d2) be two complete metric spaces. A function f: .M1---+ M2 is
called non-expansive if for all x, y E M1

A function f : J..11 -+ lt-12 is called contracting (or a contraction) if there exists an <:<l
such that for all x, y E J..11

(Non-expansive functions and contractions are always continuous.)
The following fact is known as Banach's theorem: Let (M, d) be a complete metric

space and f : JvI -+ _U a contraction. Then f has a unique fixed point, that is, there
exists a unique x EM such that f(x) = x. This x can be obtained by taking the limit
of r(xo) for any arbitrary Xo EM (where J0 (y) = y and r+1(y) = f(r(y))).

We call M1 and M2 isometric (notation: M1 !?! M2) if there exists a bijective
mapping f : M1 -+ M 2 such that for all x, y E M1

Definition 2.1 Let (M, d), (Mi, d1), ... , (Mn, dn) be metric spaces.

32

1. We define a metric dF on the set M1 _,.. 1112 of all functions from M1 to 1.12 as
follows: For every / 1, h E .M1 _,.. kf2 we put

This supremum always ex-ists since the values taken by our metrics are always
between 0 and 1.

2. With M1 0 · · · 0 Mn we denote the disjoint union of M1, ... , lvln, which can be
defined as {1} x M 1 U · · · U {n} x Mn. We define a metric du on M1 0 · · · 0 Mn as
follows: For every x,y E.M10···0 Mn,

d (x ?)={ dj(x,y) ifx,y~{j}x.Mj,l~j~n
U ' Y 1 otheI'Wlse

If no confusion is possible we often write U rather than 0.

3. We define a metric dp on the Cartesian product M1 x · · · x l1In by the following
clause: For every (xi, ... ,xn), (y1, ... ,yn) E lv/i X • • • X 1.fn,

4. Let Pc1(M) = { X: X ~ M /\ X is closed}. \Ve define a metric dH on Pc1(M),
called the Hausdorff distance, as follows: For every X, Y E Pc1(M),

dJJ(X, Y) = max{sup{d(x, Y)}, sup{d(y,X)}}
.:EX yEY

where d(x,Z) = inf.rez{d(x,z)} for every Z ~ lvf, x E kf. (\Ve use the convention
that sup0 = 0 and inf0=1.) The spaces Pco(M) = {X ~ M /\X is compact} and
Pn.(M) = {X s;;; MAX is non-empty and compact} are supplied with a metric by
taking the restriction of d If.

5. For any real number f with O<t: ~ 1 we define

id(((M,d)) = (M,d')

where d'(x, y) = f • d(x, y), for every x and yin M.

Proposition 2.2 Let (M,d), (Mi,d1), ... ,(Mn,dn), dF, du, dp and dH be as in Defi­
nition 2.1 and suppose that (M, d), (lvl1, d1), ••• , (Mn, dn) are complete. Then

{lvf1 _,.. M2, dp)

(M1 O···OMn,du)

(M1 x · · · x Mn,dP)
('Pct(M), dll), ('Pco(M), du), (Pnc(M), du)

idl((M,d))

(a)

(b)

(c)

(d)

(e)

33

are complete metric spaces. If (Af, d) and (Mi, d;) are all ultra-metric spaces, then so are
these composed spaces. (Strictly speaking, for the completeness of Jvl1 -+ M 2 we do not
need the completeness of M1. The same holds for the ultra-metric property.)

Whenever in the sequel we write lvfi -+ .IH2, M1 0 · · · 0 A1n, 11-fi x · · · x Mn, Pc1(M),
Pc0 (M), P,.c(Jo.,f), or id.(Jvl), we mean the metric space with the metric defined above.

The proofs of Proposition 2(a), (b), (c), and (c) are straightforward. Part (d) is
more complex. It can be proved with the help of the following characterization of the
completeness of (Pc1(M), du).

Proposition 2.3 Let (Pc1 (M), du) be as in Definition 1. Let (X;)i be a Cauchy sequence
in Pc1(M). We have

_lim X; = {Jim x; : x; EX;, (xi)i a Cauchy sequence in M}
l-+00 1-00

Proofs of Propositions 2.2(d) and 2.3 can be found in, for instance, [Dug66] and [Eng89].
The proofs arc also repeated in [BZ82]. The completeness of Pc0 (M) is proved in [Kur56].

·Vi.re proceed by introducing a category of complete metric spaces and some basic
definitions, after which a categorical fixed point theorem will be formulated.

Definition 2.4 Let C denote the category that has complete metric spaces for its objects.
The arrows i in Care defined as follows: Let M1, .M2 be complete metric spaces. Then
M 1 -+' M2 denotes a pair of maps Jvl1 <=±) M 2 , satisfying the following properties:

1. i is an isometric embedding,

2. j is non-expansive,

3. j ~ i = idM,.

(We sometimes write [i,j] for L.) Composition of the arrows is defined in the obvious
way.

We can consider Jvl1 as an approximation to lvl2: In a sense, the set Af2 contains more
information than Jvfi, because M 1 can be isometrically embedded into 1112. Elements in
lvl2 are approximated by elements in Af1• For an element m2 E lvf2 its (best) approx­
imation in M1 is given by j(m2). Clause 3 states that M2 is a consistent extension of
Mi.

Definition 2.5 For every arrow .M1 -+' Af2 in C with l = [i,j] we define

8(L) = dM2 -+Mi (i oj,idM2) (= sup {dM2 (i oj(m2),m2)})
m2E.M2

This number can be regarded as a measure of the quality with which M2 is approximated
by M 1: the smaller 8(L), the better M2 is approximated by M1.

As a category-theoretic equivalent of a contracting function on a metric space, we
have the following notion of a contracting functor on C.

Definition 2.6 \Ve call a functor F : C -+ C contracting whenever the following holds:
There exists an e, with 0 $ e<l, such that, for all D -+' EEC,

8(F(t)) $ t: • 8(L)

34

We can now state the analogue of Banach's theorem. (Cf. [Mac71] for the notions of
convergence and direct limit:

Theorem 2.7 Let F be a contracting functor F : C -+ C a.nd let Do -+'° F(Do) E C.
Let the sequence (Dn, Ln)n be defined by Dn+l = F(Dn) and Ln+l = F(Ln) for all n ~ 0.
This sequence is converging, so it has a direct limit (D, ('Yn)n)· We have D !:!! F{D).

Let us now indicate how this theorem can be used to solve Equations {2.1) to {2.4) above.
We define

Fi (P) = AU id112(B x P)

F2(P) = AU 'Pc0 (B x id112{P))

F3(P) = .4 U (B-+ id112(P})

(2.5)
(2.6)
(2.7)

If the expression G(P) in Equation {2.4) is, for example, equal to P, then we define F4
by

(2.8)

Note that the definitions of these functors specify, for each metric space (P, dp), the
metric on F(P) implicitly (see Definition 2.1).

Now it is easily verified that F1, F2, F3, and F4 are contracting functors on C.
Intuitively, this is a consequence of the fact that in the definitions above each occurrence
of P is preceded by a factor id1t2 • Thus these functors have a fixed point, according to
Theorem 2.7, which is a solution for the corresponding equation. (\Ve often omit the
factor id112 in the reflexive domain equations, assuming that the reader will be able to
fill in the details.)

In [AR89b] it is shown that functors like F1 to F4 have unique fixed points (up to
isometry). The results above hold for complete ultra-metric spaces too, which can be
easily verified.

3 Parallel Processes

3.1 Introduction

We study the language £;,, of 'parallel processes', with particular attention for the
programming notions of process creation and rendez-vous. In Section 4, we shall extend c,, to the language £,0 of 'parallel objects', the essence of the extension being the
ability to name and refer to processes.

In Lpp we firstly find several conventional and simple programming constructs:
assignments, sequential composition, conditionals, and the while statement. Also, a
simple block construct introducing initialized (for convenience) local variables is included.
Moreover, simple expressions (terms over some signature) appear. Three more advanced
notions are furthermore considered:

- Process creation: Assuming that already n(;::: 0) processes are active (i.e. executing
in parallel), the effect of the statement new(s) will be to create an n + 1-st process,
with body s, to be executed in parallel to the n already active processes. (Note

35

that no other form of parallel execution, in particular no form of syntactic 'II', is
present in £PP .)

- Rendez-vous: This appears in the following 'skeleton' version: V\!e introduce so
called methods m, m (with r'h = m), together with an accompanying declaration d
which assigns to each ma statement d(m) = s. Synchronized execution of m and m
in two parallel processes results firstly in the execution of s, and, thereafter, in the
resumption (in parallel) of the two remaining statements ('continuations') following
m and iii, respectively. (The effect of mjm = s(= d(m)) should be compared with
similar rules cjc = T (in CCS) or alb = c (in ACP), the essential difference being
that, contrary to s, Tor care atomic.) In Section 4, we shall dress up this skeleton
with some further notions: transmitting parameters, returning a resulting value,
and identifying, by the sender, of the receiving component.

- Expressions with side-effects: We introduce here a simple version of side-effects, in
order to motivate the mechanism of (syntactic and semantic) expression continua­
tions. Again, a more interesting setting will be provided in Section 4.

3.2 Syntax

Throughout our paper, we use a self-explanatory BNF-like notation fur syntactic defini­
tions. We start with the introduction of four basic sets

• (x E)!Var , a countable set of individual variables

• (o:, (:3 E) Cons , a countable set of constants

• (rji E)Func , a countable set of function symbols (each with some arity ~ 1)

• (m E).M, a finite set of method names. On 111, a mapping -=- : 111 -+ M, satisfying
m = m, is given. (Since it is customary to consider only finite systems of declara­
tions, d's domain Jvf is assumed to be finite. Mathematically, there are no obstacles
to dealing with infinite M.)

A program 1C' = (d, s) in the language Lpp consists of .a declaration din Declpp and a
statement s in Statpp. A declaration is a mapping from M to Statpp· Statements are
conventional (see above), or have the form of the process creation new(s) or of a method
call m. Expressions (in ExpPP) arc conventional, or exhibit a side-effect, in the form of
(s;e): an expression which first executes the statements, and then executes e.

Definition 3.1 (syntax for Lpp).

a. s(E Stal.pp) x := e Im I (s1; s2 ! if e then s1 else s2 fi I
whilee dos od I new(s) I begin varx := e; send

b. e(E Exppp) ::= a: Ix I rfi(i!) I (s;e)

c. (d E)Declpp = JI _, Statpp

d. 7r(E Lpp) (d, s)

36

3.3 Operational semantics

The operational semantics for .c,,,, is derived from a transition system T,,,, . Transitions
are built using so-called syntactic continuations, which we use in two varieties:

• (r E)SySCo , the syntactic statement continuations

• (g E)SyECo , the syntactic expression continuations.

The design of these two classes has been motivated partly by our wish to obtain a smooth
operational semantics for £,,,, , partly by the desire to obtain a tractable link with the
semantic continuations which play a key role in the denotational semantics.

Definition 3.2 (syntactic continuations) Let Ebe a new symbol, standing for 'termi­
nation'.

a. r(E SySCo) ::= EI (s: r) I (e: g) I (r1 1 r2) I r<a/x> I
if {3 then r1 else r2 fi I g(a)

b. g(E SyECo) ::= >.a:.r

The continuations (s : r) and (e : g) are of a. sequential nature. They should be read as
'executes and continue with r', or 'evaluate e, pass its value to g, and continue with the
result', respectively. Nex-t, (r1, r2) denotes (interleaved) parallel execution of r1 a.nd r2.
The if - then-else - fi construct a.nd g(a) should be clear. The construct r<o:/x>
will play a role in elaborating an assignment. Syntactic expression continuations were
first used in this way in [AB88].

For the definition of T,,,, , we need the following' basic definitions:

Definition 3.3

a. Let (ex, {3 E)V = Z U { tt,ff} U ·· be the set of basic values. v· is assumed to include
at least the integers and the truth values tt, ff. Other basic values may be added,
if desired. We find it convenient to use the same variables to range over Vandover
the set of constants C.

b. Let, for rp a function symbol with arity k, ~be some element of Vk-+ V.

c. Let (u E):E = IVar -+ l/ denote the set of states.

d. Let the auxiliary set (r E)T be defined as T =:EU M.

e. Let r[a/ {3] denote the result of syntactically substituting the constant ex for the
constant fJ in r.

f. Let u[a/x] denote the state which satisfies

u[o:/x](y) = { ,.. o:(y) ~ff x ~ y
v 1 x r y

We are now ready for

Definition 3.4 (transitions and transition systems)

37

a. A transition is a five-tuple

in SySCo x :E x Declpp x SySCo x T. For (3.1) we usually write

b. A transition system T is a finite set of rules of the form

<r1,u1>-+d <r~,r1>,···,<rn,O"n>-+d <r~,rn>
<r, u>-+d <r', r>

(3.1)

for some n ~ 0. Such a rule should be read as: if we can establish (using T) that
the n premises are satisfied, we may infer that the conclusion holds. If n = 0, we
have an axiom, written simply as <r, u>-+d <r', r>.

c. Rules which share the same (list of) premise(s) may be combined into one rule
(with more than one consequence).

d. In a transition <r, u>-+d <r', r> we shall usually suppress mentioning the d. No
confusion will arise, since transitions are always to be taken with respect to one
fixed d.

e. A rule of the form
<ri, a>-+d <r, r>
<r2,a>-+d <r,r>

will be abbreviated to <r2, a>-+o <r1,u> or even to r2 -+o r1. (Read: in order
to execute r 2 , find out how to execute r 1• The 'O' expresses that this requires zero
'steps'.)

f. Each transition system T determines a relation 'R which is defined as the least
relation (here subset of SySCo x :E x Declpp x SySCo x T) satisfying the given
axioms and rules.

Next, we give the definition of the transition system Tpp which will be used to obtain
the operational semantics CJ for CPP •

Definition 3.5 (transition system 'Tpp for Cpp) The rules in Tpp are organized in
groups, for easier structuring. This grouping is not part of the formal system itself.

s-ru.les

• zero-step

(x:=e):r -+o

(s1 ; s2) : r -+o

if e then s1 else s2 fi : r -+o

new(s) : r -+o

<begin var x := e; send: r,a> -+o

e: >.a.(r<a/x>)

s1 : (s2 : r)

e : >..j3.if j3 then s1 : r else s2 : r fi

(s: E,r)

<(x := e;s): r<u(x)/x>,u>

38

•axioms

<m: r,a> -+ <r,m>
<whileedosod:r,a> -+

<e : >.,B.if f3 then (s; while e dos od) : r else r fi., u>

e-rules

• zero-step

a : >..f3.r -o r[a/ ,6]
</>(e1i ··,ek): g -o e1: .A/31.(e2: · · (e1c: >.fh.~(fh, ··,/h.:): g) · ·)

(s;e):g -o s:(e:g)

• axioms

r-roles

• zero-step

• axioms

<x: g,u>-+ <u(x): g,u>

if tt then r 1 else r2 fi -+o r1

if ff then r1 else r2 fi -o r2

<r<a/x>,u>- <r,u[a/x]>

• rules for parallel execution

Explanation

<r,cr>-+ <r',r>
<(r,f),a>-+ <(r',f),r>
<(r,r),o»- <(f,r'),r>

<r1, r;>- <r', m>, <r2, r;>- <ru, iii>
---------------, d(m) = s

<(r1,r2),u>-+ <s: (r',r"),a>

(interleaving)

(rendez-vous)

(assignment): evaluating x := e amounts to first evaluating e, and transmitting the
result a to the continuation which will eventually arrange that x is set to a.

(new): the body sis supplied with the termination continuation E, and set in parallel
to r (which itself may consist of several continuations in parallel)

39

{begin •• end): evaluate x := e; s, and next reset x to the value (O'(x)) it had upon
block entrance

(m): the method m is stored, available for subsequent use in in the rendez-vous rule

(if>(t)): the arguments ei, •• , e1c are evaluated from left to right, yielding (31, •• ,{J1c; the
interpretation ~ of <P is then applied to these {Ji, •• , f31c

(r<a/x>): this handles the assignment of a to x, resulting in q(a/x]

(interleaving): the usual interleaving rule for parallel composition

(rendez-vous): in case r 1 and r 2 can make an m and m-step, respectively, the rendez­
vous succeeds, sis executed, and the execution continues with that of (r', r"). (See
also the remark at the end of Section 3 for a possible refinement of the rule.)

We next discuss how to assemble all successive steps prescribed by Tp 11 for some program
(d, s) into one result <?(d,s). Crucial here is the definition of the range P of the mapping
('.): .C1111 -+ P. We shall determine Pas solution of a domain equation (in the category
of complete metric spaces, cf. Section 2), viz.

P = {Po} U (E-+ 'Pca((E UM) x P)) (3.2)

Equation (3.2) may be understood as follows: Each clement p in P (to be called a process
as well, but now a mathematical, and not a programming, entity) is either the nil-process
po, or it is a function in E-+ 'Pea(·) which, when supplied with a state u as argument,
yields an element X of Pea(·), i.e. a compact subset of (:EUM) x P. Thus, the elements
of p(u) = X are' of the form <u' ,p'> or <m,p'>. The first possibility delivers a next
state u', together with a so-called resumption p'. This resumption tells us what to do
next: In the operational or denotational setting this will be determined by the syntactic
or semantic continuation, respectively. A second possibility for an element X is a pair
<m,p'>; here m results from a method call, and p' is as before. The rendez-vous rule
resolves synchronized method calls. However, one-sided method calls which have not
synchronized with their partner will leave such a pair <m,p'> as a trace in the result.

The domain P is used in the next definition which introduces (the intermediate) <?d
as fixed point of a contracting higher-order mapping (of meaning functions to meaning
functions) ~d· To understand the structure of the definition, the reader should look at
Lemma 3.7.c. This is the result in the form which is most intuitive, and to justify it we
employ the -I>d-mapping.

Definition 3.6 Let FE SySCo -+ P.

a. We define ~d : (SySCo -+ P) -+ (SySCo-+ P) by putting

lf?d(F)(E)
-I>d(F)(r)

= Po
= ,\q.{<T,F(r')> I <r,u>-+ <r',7">},

where -+ is determined by Tp 11 •

for r # E

40

We have

Lemma 3.7

a. <T1d(F)(r) E P for each F, r.

b. <I>d is contracting in F.

c. Od(E) = Po
Od(r) = ..\a.{<r,Od(r1)> I <r,u>-+ <r',r>}, for r # E

Proof

a. Follows from the fact that 'Tpp is finitely branching, i.e. for each r , a, we have
l{(r',r) I <r,o»-+ <r',r>}l<oo.

b. Clear by the definition of <I>d(F), in particular by the <r, .. >-step in its definition.

c. Immediate by the definitions of <I>d and Od. 0

Remark The domain P has rather more structure than is usual for an operational seman­
tics. We use the same P for our denotational definitions in the next subsection; the proof
that 0 = V (in Section 5) will considerably profit from it. On the other hand, it is not
difficult to use the same 7,,p to obtain a much simpler (i.e., less structured) operational
meaning, say O*: Lpp -+ P*. Let 8 be a new symbol (standing for deadlock), and let
:E6 = :E* U :E"' U 'E* · { 8}, i.e., the set of all finite sequences over :E, possibly postfixed by
8, and all infinite sequences over :E. We put

and define o; to satisfy

Od"(E) = ,\a.{ e}

{
,\u. LJ{ £T1 .O;i(r')(u') I <r, u>-+ <r', u'>}

Od(r) = if the above set { ·} =f:. 0
{ t5} otherwise

for r-::/= E.

Od(r) exhibits three essential differences with Cd(r). Firstly, it has lost the branching
structure of the latter. Next, steps <r, u>-+ <r', m> do not contribute to the result
(whence the possibillity that the set { ·} might be empty). Thirdly, the resumptions have
disappeared (instead of <u',p'> we now simply employ p'(u')). As a consequence, Odis
not compositional. In particular, no relationship of the form Od(r1 , r2) = o;(r1) II 0;7(r2)
holds.

3.4 Denotational semantics

We shall define the denotational semantics V for .Cpp in terms of the auxiliary semantic
mappings Id and £d:

Id : Stalpp-> SeSCo-> P
£d : ExpPP-+ SeECo _, P

41

Here (p E)P is as in Section 3.3, SeSCo =df P is the set of semantic statement continua­
tions, and SeECo =df (f E)V - P is the set of semantic expression continuations. The
definition of the semantic parallel composition operator 'II' will be supplied in Definition
3.9.

Definition 3.8 (denotational semantics for Cpp)

a. Id(x := e)(p) = £d(e)(>.a.>.u.{ <u[a/x),p>})
Id(m)(p) = >.u.{ <m,p>}

Id(s1; s2)(p) = Ia(s1)(Id(s2)(p))
Id(if e then s1 else s2 fi)(p) = £d(e)(>.,B.if .B thenid(si)(p) else Id(s2)(p) 6.)
Id(while e do s1 od)(p) =

>.u.{ <u, £d(e)(>.,8.if ,8 thenid(s1)(Id(while e do s1 od)(p)) else p fi)}
Id(new(s1))(p) = Id(si)(po) II p

Id(begin var x := c; s1 end)(p)
= >.u.Id(x := e; s1)(>.C1.{ <iT[u(x)/x],p>})(u)

b. Ed(a)(f) = f(a)
Ed(x)(f) = >.u.{ <u, f(u(x))>}

Ed(lfi(e1, • .,ek))(f)
= ed(e1)(>.,81 £d(ek)(>.f3k.f(~(/31, .• , f3k))) .. ·)

ed(s; e)(f) = Id(s)(ed(e)(f))

Some explanations may help.

• s = x := e: e is evaluated, the result is passed on to the expression continuation
f = >.0:. ···,and eventually a change of state - setting x to a - is performed, and
f then continues (resumes) with p

• s = m: the pair <m,p> will play a role in the definition of II·
• s =while e do s1 od: A (silent) step is performed, leaving u unchanged, and then

e is evaluated and the usual conditional for the while statement is given. Note that
Id(while ... od) returns on the right-hand side. To turn this into a well-defined
formula, we should in fact define Id as a (unique) fixed point of some higher-order
contraction '1td. (Details of a related case can lie found in [BV91].)

• s = new(s1): Id(s1) is supplied with the nil-continuation po, and executed in
parallel with the already present continuation p. Note that Id uses II; below, we
shall see that II uses Id. A comment on this follows later.

• s = begin ... end: this amounts to executing the assignment and then the state­
ment sll and after that resetting x to the value u(x) it had upon entrance of the
block. Thus, it mimicks the operational rule.

• e = x: As in 'Tpp , a silent step is performed, and then the value u(x) is passed on
to the expression continuation f.

'Ve proceed with the definition of the parallel composition operator. Let X, Y range
over "Pco(T X P).

Definition 3.9 Let Pl, P2 E P.

42

a. Pl II P2 = ..\er.((p1 (er) lJ.. P2) U ~(a) lJ.. pi) U (p1 (er) la P2 (er))

b. X IL p = { <r,p' II p> I <r,p>E X}

c. X la Y = { <u,Id(s)(p' II p'')> I <m,p'>E X, <m,p">E Y and d(m) = s}

In executing p 1 II p2 for argument u, one either makes a simple step from the left- or
right operand (this yields interleaved execution), or the two outcomes X = Pi (a) and
Y = p2(a) communicate (in X Jcr Y) by a rendez-vous of the two steps <m,p'> in X and
<m,p"> in Y. This leads to the evaluation of Id(s), for s = d(m), with continuation
p' II p11 • The circularity in this definition, viz. II defined in terms of (lJ.. and la- defined

in terms of) II and Id, and Id defined in terms of II, may be circumvented by using a
simultaneous higher-order mapping (in two arguments), and defining <Id, II> as unique
fixed point of this mapping. Considerable detail about this approach is supplied in
[BV91}; therefore, we omit this here.

Finally, we put

Definition 3.10 'D(d, s) = Id(s)(po).
In Section 5 we shall prove

First Main Theorem For each 11" in Cpp , 0(11") = 'D(7r).

Remark Though the rendez-vous rule (and the corresponding denotational definitions)
yield precisely all successful computations, one might argue that it induces too many
deadlock possibilities: Consider, e.g., the situation that d(m) = m', and that r 1 = (m:
E,m': E), r 2 = m: E. Since <r1 ,a>-+ <(E,m': E),m> and <r2 ,a>-+ <E,m>, we
may infer that <(r1,r2),u>-+ <m': (E, rn': E),a>. As a consequence, in the result
<m' : (E, m' : E), er>, a rendez-vous between m' and rn' is no longer possible (since m"s
partner m' is not accessible in a parallel component, but has been 'hidden' to occur after
m'). Thus, an extra deadlock possibility has arisen which should have been avoided.
A way out of this problem is the introduction (taken from [ABKR89]) of a separation
between so-called dependent and independent resumptions. This works as follows: Right­
hand sides of transitions are now of the form <r', er'> or <r', <r", m>>. Here r1 is the
independent resumption which may continue independently of the success of the rendez­
vous involving m, and r" is the dependent resumption which may resume only after the
rendez-vous for m has taken place. The induced modifications in Tpp are

• <m: r,u>-+ <E,<r,m>>

• (revised rendez-vous rule)

<r1 ,u>-+ <rL <r~', m>> <r2,u>-+ <r~, <r~, m>>
<(ri,r2),er>-+ <(s: (rf,rq),(r~,rD},a> d(m) = s

Also, in the interleaving rule we now take r E I.: U (SySCo x M). As a consequence,
only the independent resumption (r') in <r', <r", m>> is involved in interleaving steps.
Next, in the definition of P we replace the M x P term by M x P x P. Finally, we
change the definition of 4>d(F)(r), for r '# E, to read

<Pd(F)(r) =..\er. {<a',F(r')> I <r,a>-+ <r',u'>} U
{<rn,F(r"),F(r')> I <r,a>-+ <r',<r",m>>},

43

with '-+'with respect to the amended Tpp •
As to the denotational definitions, we impose the following changes:

• change in P as just given

• change in definition of Id: Id(m)(p) =.ha{ <m,p,PO>}

• change in definition of II:

X lL P = { <a,p' II p> I <a,p'>E X} U {<m,p",p' II p> I <m,p",p'>E X}
X 10' Y = {<u,Id(s)(p}' llp~) llP~ llP2> I <m,p~,p!>E X, <m,p~,p2>E Y,d(m) = s}

\Ve leave to the reader to work out the required modifications in the equivalence proof
of Section 5.

4 Parallel objects

4.1 Introduction

The language .Cpo extends £pp with a mechanism to name and re/er to processes.
Such a named process will from now on be called an object. It includes an 'active' part -
comparable to the sin the new(s) construct of Section 3 - and a declarative part. In the
declarative pa.rt we find the information on how a method name m is to be supplied with
a method body µ, here taken in the form of a parametrized expression >.x.e. Individual
variables may now refer not only to values such as integers or truth values (together
called V in Section 3), but as well to (the names of) objects. To be precise we replace V
by

(a,(3,-y E)Obj = SObj U ObjN

where SObj, the set of standard objects, takes over the role of V', and ObjN is the set
of object names. Objects are created as instances of a class: the relevant information
about a class c is contained in the declaration d(c). This is a pair <d(c)i, d(c)2>, where
d(c)1 E M -+ Meth tells us how each method name m is provided with a method
µ E Meth as its body (i.e., d(c)i(m) = µ), and d(c)2 E Stat,,0 is the statement (the
'process' of Section 3) execution of which is initiated (in parallel to the already existing
objects) at the moment new(c) is executed. In other words, each execution of new(c)
results in the creation of one more object as instance of class c, and all these objects are
executing the (same) body s (determined by c's declaration) in parallel. The execution
of new(c) furthermore involves the creation of a new name, say a', which is used to
identify the newly created object (instance of c). Normally, this name will be stored in
some individual variable (occurring in the creating object), for later reference.

The snapshot in Figure 1 of a creating a: and created a:' may help (see next page).
This picture assumes that d(c)i(m') = µ', ... , and that d(c)2 = s'. Details on how the
new name o/ is to be determined follow in Section 4.3. The picture also reflects that
individual variables (from now on rather callr.rl instance variables) are 'private' to the
objects. Private variables are not accessible from other objects. In fact, the only way in
which objects may interact is by the sending and receiving of messages. This takes place
by an extended version of the rendcz-vous mechanism. Instead of the earlier synchronized
execution of m and rrt occurring in two parallel processes (leading to the execution of

44

a reference as result of(l) . a.', object created by new(c)

decl. part

body

m~µ-;". ..
x·;y, ...

... ·· "· .·· · . . ·· ·. . .

.,.. _____________ _
s:

x ;~et) new(c)

·.

m'~µ', ...
x', y',_ ____________ _
s': ...

Figure 1: Two Objects

decl. part

body

parallel processes (leading to the execution of the body s = d(m) associated with m), we
now have the following concept, execution of which is described in a number of steps:

1. a statement answer(m), when occurring in the body of an object (named, say, by
object name a) indicates willingness to execute the methodµ (associated with the
method name m in the declaration of the class of which a is an instance) upon
request;

2. a so-ea.lied send-expression e!m(e), when occurring in the body of an object (named,
say, by object name /3) is executed as follows:

• the value of the expression e is determined, resulting in the object /i next

• the Yalues of the expressions ei, •• , e1c are determined from left to right, result­
ing in /i, .. , 'Yki

• a request for execution of the method associated ·with method name m by the
object name "1 is issued

[Step 2 takes place in parallel to Step 1];

3. in case the issue of this request synchronizes with the execution of the answer
statement an.swer(m) as meant under 1 (implying that a= -y), and assuming that
µ. = >..i.e!, next

4. the values 'Yi, .. , "fie are assigned to the (formal parameters, i.e., the) instance vari­
ables x1, .. , x1c, the expression e' is evaluated, the Xi are reset to their earlier values
{which they had just before the assignment), and the result a is returned to that
position in object {3 where the value of e!m(e) is required;

5. execution is resumed with the parallel execution (in a) of the statement following
answer(m) and (in (3) with the construct following e!m(e).

45

All through the execution of 1. to 5., further parallel objects (different from o or {J) will
continue independently with their own activities. The only 'waiting' involved is (in o)
for completing the evaluation of the method µ , and (in (3) for the returning of the value
a.

This brief sketch of the informal semantic of Lpo should suffice here. More extensive
explanations are contained in various studies on POOL semantics ([ABKR.86, ABKR.89,
Rut90b, AR89a, AR90]. We have aimed at including, in Cpo , of all essential features of
POOL. Concepts not treated are

• temporary variables (in addition to instance variables) and the object nil;

• the conditional answer statement, and an answer statement of the form
answer(m1, .. , mk), k ~ 1;

• the method call (not as part of a rendez-vous);

• a few special cases of expressions;

• (a full treatment of) the standard objects.

Apart from the last item, the missing features can be dealt with without undue effort,
by small extensions of the present definitions. Standard objects are more difficult since
they are not, by nature, compact (cf. [Rut90b] for more information on this).

4.2 Syntax

The syntax for Cpo may be inferred from that of Lpp , as amended in the light of the
extensions outlined above. Note that the new- and block constructs have been moved
from the class of statements to that of expressions.
The following basic sets a.re used

• (x E)IVar, a countable set of (individual or) instance variables

• (m E)../llJ, a finite set of method names

• (o, (3, I E)SObj, the syntactic set of standard objects (to be identified later with the
semantic set of standard objects including the integers, truth values, and maybe
more)

• (c E) Class , a finite alphabet of class names.

We have no more use for the set Fune . Finiteness of ../III and Class is, as before, postu­
lated in order to avoid declarations with infinite domain.

Definition 4.1 (syntax for Lpo)

a. s(E Stat,,0) .. - x := e I answer(m I (s1; s2) I if e then s1 else s2 fi I
while e do sod

b. e(EExpp0) •• - alxle!m(e)lnew(c)i(s;e)lbeginvarx:=e;eend

c. (d E)Declp0 = Class -+ ((M -+ Meth) X Stat,.0)

d. µ(E Meth) .. - >.x.e

46

e. ir(E Cpo) •. - (d,new(c))

In clause e., we see that the execution of a program starts with the creating of a first

object as instance of some (initial) class c.

4.3 Operational semantics
As before we base the operational semantics on a transition system, now named T,,o •
This will involve a somewhat extended notion of state, as well as an adapted notion of
a, possibly labeled, syntactic continuation.

We begin with the introduction of the sets of objects and states.

Definition 4.2

a. (a,{J,7 E)Obi = SObi U ObiN
Here SObj is the set of standard objects, and ObjN is a (not further specified) set
of object names.

b. (u E)E = (IVar -+ Obj -+ Obj) x 'P/in (Obj).

c. The functions new : 'PJin (Obi) x Class --+ ObjN and class : ObiN --+ Class will
be introduced below.

d. The notation u[.B/x,a] abbreviates <u1[u1 (x)[,B/a]/x], u2>: u is changed such that
u[/3/x, a](:i:)(a) now equals /J; elsewhere u is not changed.

A state is a pair u = <u1,u2>. For a given instance variable x and object name er,
u1(:i:)(a) tells us the current value of x (in object er). Note that the 'same' :z: will
have, in general, a different value u1(:c)(a) in some other object a. Furthermore, u2 E
'PJin (Obi) consists of a finite subset of Obj which may be read as the collection of

all objects currently active. (If one so desires, one may consider some or all of the
standard objects (for integers, truth values and the like) as already active and supplied
with suitable standard methods. These issues are dealt with at length in [ABKR.89],
(Rut90b], and are not further treated here.) The function new delivers, for a. current set
of active objects {(E 'P/in (Obi)) and class c, a new name new(e,c) not in{, which
may be used to name a new instance of class c. The function class determines, for each
object name er, the class c = class(a) of which a is an instance.
We proceed with the definition of the various continuations.

Definition 4.3

a. (r E)SySCo is the set of syntactic statement continuations given by

r EI (s: r) I (e: g) I r<er/x> I g(a) I if f3 then r1 else r2 :fi I
</3,m,~>: g.

b. (g E)SyECo is the set of syntactic expression continuations given by

g .. - Aa.r I g<a/:c> Ix

47

c. (p E)LSySCo is the set of labeled syntactic statement continuations given by

p .. - «:t,r> I (p1,p2) I a: x I <{3,p>

d. (x E)LSyECo is the set of labeled syntactic expression continuations given by

x .. - <a,g>l(x,p)l(p,x)

Anticipating the denotational semantics, we already mention that each p will correspond
to some (mathematical) process in P, and each x to some function in Obj -t P. Whereas
<a, r> should be rea.d as: haver executed by object a, the construct a : x has as intended
meaning that the object a is passed as argument to (the function which is the meaning
of) X· The construct e : x (special case of e: g) is normally evaluated by some object, say
/3. The value of the expression e is determined (with respect to /3); eventually, its value,
say -y, is passed on to x (which itself may be a labcled construct, e.g., <a,g>). The
construct </3, p> is auxiliary; the role of /3 is (eventually) no more than to be thrown
away.

Below, we shall make extensive use of pairs <p,u> - to be read as: execute the
la.beled continuation p with state u as argument. We adopt the convention that, in such
a pair, p is always consistent with respect to u. This requires, by definition, that all
a appearing as labels in p a.re element of u2 (the set of currently active object names).
Here we say that

• a appears as label in <a,r> or <a,g>

• if a appears as label in p, pi, P2 or g, then a appears as label in (Pi.P2), (p,x) ,
(x,p), e :g or </3,p>.

A transition is a five-tuple (written in the arrow notation of Section 3) of one of three
forms

• <p,u>-td <p',u'>,

• <p,u>-d <p', <a,m>>,

• <p,u>-d <x,</3,m,P>>.

The first possibility reflects a 'normal' step, the second results from an answer statement:
<a, m> indicates that object 0t is willing to execute the method named by m, and the
third results from a send expression, asking object /3 to execute m with parameters P,
with a result to be returned, upon completion of the method execution, to X· A transition
rule has the general form as described in Section 3. Rules of the form

<p1,u>-d ···
<p2,u>-d ···

with··· standing for the same pair, will again be abbreviated to <p2,u> -to <piiu>,
or even to p2 -to p1. If p2, p1 a.re of the form <a, r2 >, <a, r1 >, respectively, we further
simplify the notation to read r2 -to r1.

We next present

Definition 4.4 (transition system T,0 for C,,0)

a-rules

• zero-step

48

(:c := e) : r -o e:)..cr..(r<o:/:c>)
(s1;s2): r -o s1: (s2: r)

if e then s1 else s2 fi : r -o e :)../3.if f3 then s1 : r else s2 : r fi

• axioms

<<o:,answer(m): r>,u> - <<o,r>, <o:,m>>
<<cr.,whileedosod,a> -

e-rules

• zero-step

<<cr.,e: >.{3.if ,8then s: while edo sod: r else rfi>,u>

o: : g -+o g(a)
{s;e):g -+o s:{e:g)

e!m(ei, .. , e1c) : g -+o e:)..,8.{e1 :)..,81-(· · ·
e1c :)..f3i..(<{3, m, /31, .. , /31c>: g) · · ·))

<<a, begin var i := e; e end: g -+o
<<a, ((:c1 := e1; .. ; :i:1c := e1c); e) : g<u1 {:ci)(o)/:i:1> .. <u1 (:i:1c){o)/:c1c>>,u>

• axioms

<<o,:i:: g>,u> - <<o,cr1(:c)(a): g>,u>
<<a,new(c):g>,cr> -+ <(<a,{3:g>,<f3,s:E>),u'>

T 1 p, x-ruJes

• zero-step

• axioms

if tt then r1 else r2 fi -+o r1
if ff then r1 else r2 fi -+o r2

()..o.r}(,8) -+o r[/3/o]
g<cr./:c>(,8) -o g(f3)<oi/ :c>

<a,g>(f3) -o <cr.,g(/3)>
(x, p)(fJ) -+o (x(/3)),p)
(p, x)(f3) -+o (p, x(/3))

</3,p> -+o p

<<a,</3,mJJ>: g>,u>-+ <<a.,g>, <{3,m,ii>>
<<o, r<f3/:c>>,u>- <<er., r>,u[,B/x,o]>

• rules for parallel execution

49

<p,u>-+ <p',u'>
<(p,p),u>-+ <(p7,p),u1>
<(p,p),u>-+ <(p,p'),u'>

(interleaving)

and similar rules with <a,m> replacing u', or with x' replacing p' and </3,m,iJ>

replacing u'
(rendez-vous)

<(pi,p2),u>-+ </3, begin var x := f3;e end: (x', p")>,u>

where d(class(/3)) 1(m) = >.x.e

Explanation. Most of the rules should be clear as refinement of those of 7,.,, . We
emphasize that (even when no object label a is explicitly written) all calculations take
place as part of named objects: eventually, all access to variables is through the function
application u1 (x)(a) in the axiom for <<a,x: g>, u>. The answer statement executed
in a determines a step <a, m>; the send expression e!m(e) evaluates e and ei, .. , ek

from left to right, and makes a step involving the outcome </3,m,<P1, .. ,(3k>>. The
new(c) expression determines a new object name f3 (on the basis of the current set of
names u2 and the class name c), and initiates execution of <{3, s : E>, where s, the
body of class c, is retrieved from d(c)2. In the rendcz-vous of pi, P2, where P1 may make
a send-step <x',</3,m,iJ>> and P2 a (corresponding) answer step <p",</3,m>>, the
body of the method µ = >.x.e associated with m in the declaration is, after appropriate
initialization with the parameters /J, executed, and the result is eventually passed back
to x'. (If desired, one may refine the rendez-vous rule by the introduction of dependent
and independent resumptions, cf. the remark at the end of Section 3.)
We next discuss how to use T,, 0 to determine 0 for C,,0 • First, we introduce the
domain P which serves as range for 0. Corresponding to the three kinds of right-hand
sides of a transition (viz. <p',u'>, <p',<a,m>>, <x,<{3,m,P>>), it is natural to
define P as solution of the equation

P ={po} U (:E-+ Pc0 (:E X P U

Obj x M x P U Obj x M x Obj * x (Obj -+ P)))

Using this P, we define 0 as fixed point of a contracting higher order operator ~d based
on T,,0 • Since we now deal with transitions yielding both <p', .. > and <x', .. > results,
we introduce cpd as an operator on pairs of meaning functions F =<Fi, F2>:

Definition 4.5

a. Let F1 E LSySCo -+ P, F2 E LSyECo -+ Obj -+ P, and let <i>d have the type
cpd : (LSySCo -+ P) x (LSyECo -+ Obj -+ P) -+

(LSySCo -+ P) x (LSyECo -+ Obj -+ P),
where <i>d(F1,F2) =df <F1,F2> is given as

50

F1 (p) = p0 if all r occurring in p are equal to E, and otherwise

F1 (p) =>..a. {<a', F1 (p1)> I <p, a>-+ <p', u'>} U
{<</3,m>,F1(p')> I <p,a»-+ <p',</3,m>>} U

{ <</3,m,/h, F2(x 1)> I <p,a>-+ <x', </3,m,/J>>}

and

F2 (x) = >..a.p0 if all r occurring in x arc equal to E, and otherwise

' I I I } F2(x) = >..a.,\a. {<cr',F1(p)>I <a: x,u>-+ <p ,<1 > u
{ <<.B,m>, F1(p1)> I <a: x,a>-+ </, <!3, m>>} u
{ <</3, mJJ>,F2(x')> I <a:: x, u>-+ <x', <{3, m, ft>>}

b. Od = fix(<l>d)i, O(d,new(c)) = Od(<a,s : E>), where a = new(0,c), and

d(c)2 = s.

Thus, in order to execute (d,new(c)), the first instance of c is named by a - obtained
when the set of active objects is still empty - and execution of the body of this object
(given in the declaration of c) is initiated.

4.4 Denotational semantics

Similar to what we did in Section 3, we define the intermediate denotational mappings

Id : Statpo -+ Obj -+ P -+ P,
&d: Exppo-+ Obj -+ (Obj -+ P)-+ P.

Let f range over Obj -+ P.

Definition 4.6 (denotational semantics for lpp)

• statements

Id(x := e)(a)(p) = t:d(e) (o:)(>..,B.>.a.{ <a[f3 /x, a],p>})
Id(m)(a:)(p) = ,\a.{ <<a:, m>,p>}

Id(s1;s2)(a)(p) = Id(si)(a)(Id(s2)(a:)(p))
Id(if e then s1 else s2 fi.)(a)(p)

= t'd(e) (>..f).if (J then Td(s1)(a)(p) else Id(s2) (a)(p) fi)
Id(while e dos od)(a)(p) = ,\er.{ <u, Ed(e)(a) (>.(3.

if /3 then Id(s)(a)(Id(while e dos od)(a)(p)) else p fi)>}

• expressions

ed(/3)(a)(J) = f((J)
t:d(x)(a)(J) = ..\a.{ <a,f(cr1(x)(a))>}

ed(s;e)(a)(J) = Id(s)(a)(£d(e)(o:)(f))
Ed(e!m(t))(a)(!) = £ d(e) (a) (>../3.(£d(e1) (o:) (.\/31.(· · ·

Ed(ek)(o:)(>..~k-Aa.{ < <,8, m, j3>, f >}) · · ·))))
£d(new(c))(o:)(J) = >..a.{ <a', f ((3) 11 Td(s)(j3)(po)>}

where f3 = new(o-2,c), u' = <a1 ,a2 U {,B}> and d(c)2 = s
£d(begin var x := e; e end)(a)(J) =
>.a.Ed(x := e; e)(a)(>..,6.>.cr.{ <u[u1 (x)(Q()/xi] · · · [a1 (xk)(cx)/xk], f(f3)>})(o-)

51

The '11'-operator used in the clause for new(c) is defined in

Definition 4.7 Let p1,P2 E P, X,Y E 'Pc0 (·). We put

where
XII P = { <a,p' II p> I «r,p'>E X} U

{<<o:,m>,p' llP> I <<a,m>,p'>E X} U
{<</3,m,iJ>,f II p> I <</3,m,iJ>,f>E X}

f II P = Aa.(f(a) II p)

X la Y = { <u, £d(begin var x := /J; e end)(/3)(! 11 p') I
<</3, m,iJ>, f>E X, </3, m,p'>E Y
or vice versa, and d{class(/3))1(m) = Ax.e}

As in Section 3, the above definitions are circular in that £d depends on the definition
of II, and II depends on the definition of £d. We again refer to [BV91] for a rigorous
definition of a comparable problem. (In the present setting, contractivity of the relevant
higher-order operator follows easily from the <u', ... >step in the clause for £d(new(c))
and the <a, ... > step in the clause for X la Y.) Also, the definition of Id is not well­
formed since it is circular in the case of the while statement. This problem as well may
be dealt with by the familiar argument.

We are, at last, ready for the final

Definition 4.8 The denotational meaning V: .Cpo -t P is given by

V(d,new(c)) = Id(s)(a)(po),

where a= ncw(0, c) and s = d(c)2.
In Section 5, we shall sketch the proof of the

Second Main Theorem For each 7r E .Cpo , 0(7r) = V(7r).

5 Equivalence of 0 and V

We shall provide a detailed presentation of the proof that CJ and V coincide on .Cpp •

For Cpo , we shall only outline the main ideas.
We start with the equivalence proof for Cpp • We assume the various definitions from
Section 3; in addition we give several further definitions which will link the syntactic
continuations r to their denotations involving semantics continuations.

Definition 5.1 The mappings

Rd : SySCo -t P
9 d : SyECo -t V -t P

are given as follows

52
a.

'Rd(E) = Po
°Rd(S: r) = Id(s)('Rd(r))
'Rd(e: g) = £d(e)(9d(g))

'Rd(r1, r2) = 'Rd(r1) II 'R.d(r2)
'R.d(if {3 then r1 else r2 fi) = if ,B then 'R.d(ri) else 'Rd(r2) fi.

'R.a(r<a/x>) = .XO-.{<a[a/x], 'Rd(r)>}
'Rd(g(a)) = 9d(g) (a)

b.

We now state a central lemma relating the transition system 'Tpp and the 'Rd-function:

Lemma 5.2 Ifr1 -+o r2 then 'Rd(r1) = 'Rd(r2).
Proof In all the cases this is immediate by the definitions of 'Tpp and of 'R.d. D

Ne..xt, we introduce complexity measures on SySCo and SyECo (and on Stal.pp, Exppp),
which will play a role in an inductive argument in the proof of the key theorem below.

Definition 5.3 The mappings II · llr : SySCo -+ N (and analogously II · 11 9 , II · II.,
II · !le) are defined by

a. l!Ellr = 0, iis:rllr = lisJls + llrllr1 !le:gllr = lielle + llgllo, ll(rr,r2)1ir =
II r1 \lr +II r2 llr, II r<a/x> llr = II T llr, II g(a) llr = II 9 lls +II a !le,
II if {3 then r1 else r2 fi llr = max(li r1 llr, II r2 IJr) + 1.

b. U>.a.rll9 =llrllr·
c. II X :=ells =II X lie+ II e lie + 1, II m lls = 1, II S1; s2 lls = II S1 lls + II s2 lls + 1,

II if e thens1 else s2 fi II.= II e lie+ (max(il s1 II., II s2 II.)+ 1) + 1,
II while e dos od lls =II e lie+ II s lls + 1, II new(s) lls = II s lls + 1,
11 begin var x := e; send lls = II x := e; s lls + 1.

d. II a lie = II X lie = 1, II iP(e1, .. , ek) lie = 1 + II e1 lie + · · +II ek lie + 1, II s; e lie =
II S lls +II e lie+ 1.

It is not difficult to verify that

Lemma 5.4 If r1 -+o r2 then II r1 llr> II r2 llr·
Proof By the various definitions. Note, e.g., that II ef>(ei, .. , ek) lle = 1 + L:7=l II e; lie+ 1,
but 11~(0:1,..,a:k) lie= 1, since ~(01,..,ak) is an element of V. D
The main step leading to the proof that CJ = 1) on Cpp now follows. The key idea is
to show (following a method from [KR90)) that the denotational mapping 'R..d is a fixed
point of the contracting higher-order operator <I>d which we used earlier to define od.
This then implies that Rd= ('.)d, from which ('.)=Vis immediate.

Theorem 5.5 .Pd('Rd)(r) = 'R.d(r), for all r E SySCo.

Proof Induction on II r llr· If r = E, the result is clear. We now discuss a selection of
subcases for r, leaving the most difficult case that r = (r1 , r 2) to the last.

• r = (x := e) : r1

• r = while e do sod : r 1

53

<Pd('R.d)((x := e): r1)
= def. <I>d, def. Tpp

<I>d('R.d)(e: >..a.r1 <a./x>)
= ind. hyp.

'R.d(e : >..a.r1 <a/x>)
= Lemma 5.2

'R.d((x := e) : ri).

'1>d('R.d)((s1; s2): r1)
= def. '1>d, dcf. Tpp

'1>d('R.d)(s1 : (s2: r1))
= ind. hyp.

'R.d (s i : (s2 : r1))
= Lemma 5.2

'R.d((s1;s2): r1)

<I>d('R.d)(whileedosod: r1)
= clef. <I>d, clef. Tpp

>.u.{ <u, 'R.d(e : >..,B.if /3 then (s; while e dos od) : r1 else r1 fi)>}
= clef. nd

>.u{ <u, £d(e)(>..{3.if /3 then Id(s)(Id(while e do s od)('R.d(r1))) else 'R.d(r1) fi)>}
= clef. Id

Id(while e dos od)('R.d(r1))
= clef. nd

'R.d(while e dos od : r 1)

r = (x: g)
<I>d('R.d)(x : g)

= def. <I>d, Tpp
>.u.{<u,'R.d(u(x): g)>}

= def. 'R.d
Au.{ <u,£d(u(x))(9d(g))>}

= def. £d
Au.{ <u,9d(g)(u(x))>}

= def. £d
£d(x)(9d(g))

= def. nd
'R.d(x: g)

<Pd('R.4)(ri, r2)(u)
= def. <.1>4

54

{<-r,'Rd(f)> I <(r1,r2),u>- <r,r>}
= def. Tpp

{ <r', 'R.d(r', r2)> I <r1, u>- <r1, r'>} U
{ <r11 , 'Rd(r1, r11)> I <r2, u>- <r", r">} U
{ <u, 'R.d(s: (r', r"))> I <ri, u>-+ <r1, m>, <r2,u>-+ <r", m>,d(m) = s}

=
{ <r', 'R..d(r1)> I <r1, u>- <r', r'>} lL 'R..d(r2) U

{<r",'R..d(r")> I <r2,u>-+ <r",r">l lL nd(ri) u
{ <u,Id(s)('R.i(r') II 'R.i(r11)}> I <ri, u>-+ <r1 , m>, <r2, o->-+ <r", m>,d(m) = s}

= see below for (*)
«Pd('R.d)(r1)(u) lL nd(r2) u <Pd('R.d)(r2)(u) lL 'R..d(r1) u

(*)<I>d('Rd)(r1)(u) ICT <I>d('R..d)(r2)(u)
= ind. hyp.

n.l(r1)(a) 1L 'R..d(r2) u 'R..d(r2)(u) lL 'R.d(r1) u n.d(ri)(u) 10' 'R.d(r2)(11)

=

=

where the step leading to (*) is justified a.s follows:

=
{ <o-,Xd(s)(p' II p11)> I <m,p1>E cI>d('R..d)(r1)(0-),

<m,p11 >E cI>d('R.d)(r2)(u), d(m) = s}
=

{ <u,Id(s)(p' II p11)> I <m,p'>E { <r', 'R..d(r')> I <r1, u>-+ <r1 , r 1> },
<m,p">E { <r", 'R.d(r")> I <r2, u>-+ <r", r"> }, d(m) = s}

=
{ <u,Id(s)('Rd(r1) 11 nd(r"))> I <r1, a>- <r1, m>, <r2,u>-+ <r", m>,d(m) = s}

Finally, we can prove

First Main Theorem For 11' E .Cpp , 0(11') = 'D(11').

Proof O(d,s) =Od(s :E) ='Rd(s :E) =Id(s)(po) =V(d,s)

0

D

Remark The above proof suggests that, once Tpp is in the 'right' form, and 1J and the
semantic operators follow the structure of 'Tpp , then the proof that 0 = 'D follows more
or less 'automatically', i.e., it may be completely syntax driven without an appeal to
additional arguments. In [Rut90a], it has been established that this is indeed the case
for transition systems (and associated V) of a restricted format. We conjecture that
the approach of [Rut90a.] may be generalized to cover the present case as well. This

55

would require, more specifically, a better understanding of how continuations might be
incorporated in the method of [Rut90a].

We next outline how the proof that 0 = 'D on .Cpo may be structured extending
the above approach. We first provide the counterpart of Definition 5.1.

Definition S.6

a. The mapping Rd : SySCo -> Obj --> P is given by

Rd(E) Po

Rd(s: r)(a) = Id(s)(a)(Rd(r)(a))
Rd(e: g)(a) = Ed(e)(o:)(Qd(g)(a))

Rd(if f3 then r1 else r2 fi)(a) = if f3 then Rd(ri)(a) else Rd(ri)(a) fi.

Rd(r<f3/x>)(a) = >.u.{ <u[f3/x, a], Rd(r)(a)>}

Rd(g(f3))(a) = 9d(9)(a)(/3)

Rd(</3, rn,/j>: g)(a) = >.o-.{ <</3, m,P>, 9d(g)(a)>}

b. The mapping g d : SyECo -> Obj --> Obj --> P is given by

9d(>.f3.r)(a) = A/.'Rd(r[J / f3])(a), / fresh

9d(g<f3/x>)(a) = >.1.>.0-.{ <u[,B/x, a], 9d(g)(a)(J)> }, /fresh

9d(x)(a) = Rd(X)

c. The mapping Rd : LSySCo --> P is given by

Rd(<a,r>) = Rd(r)(a)

Rd(p1,p2) = Rd(P1) II Rd(p2)

Rd(<f3,p>) = Rd(P)

Rd(a: x) = Xd(X)(a)

d. The mapping Xd : LSyECo - Obj - P is given by

Again we have

Xd(<a,g>)

Xd(x,p) =

Xd(p, x) =

9d(g)(a)

Xd(X) II Rd(P)

Rd(P) II Xd(X)

Lemma S.7 If r1 ->o r2 (with respect to Tp 0), then 'Rd(r1) = RJ(r2). D

Similar to the proof of Theorem 5.5 (assuming an appropriate generalization of the
complexity measures 11 • 11), we can now prove

Theorem 5.8 if!d(Rd,Xd)(p,x) = <Rd(p),Xd(x)>.
From this, the second main theorem follows directly:

Second Main Theorem For 7f E .Cpo, 0(7r) = 'D(7r).

D

D

56

References

(AB88] P. America. and J.W. de Bakker. Designing equivalent semantic models for
process creation. Theoretical Computer Science, 60:109-176, 1988.

[ABKR86] P. America, J.W. de Bakker, J.N. Kok, and J.J.M.M. Rutten. Operational
semantics of a parallel object-oriented language. In Proc. POPL'86, pages
194-208, St. Pctersburg, Florida, 1986.

[ABKR89] P. America, J.W. de Bakker, J.N. Kok, and J.J.M.M. Rutten. Denotational
semantics of a parallel object-oriented language. Information and Computa­
tion, 83:152-205, 1989.

[Ame89] P. America. Issues in the design of a parallel object-oriented language. Formal
Aspects of Computing, 1:366-411, 1989.

[AR89a] P. America and J.J.M.M. Rutten. A parallel object-oriented language: design
and semantic foundations. In J.W. de Bakker, editor, Languages for Parallel
Architectures: Design, Semantics, Implementation Models, Wiley Series in
Parallel Computing, pages 1-49. Wiley, 1989.

[AR89b] P. America and J .J .M.M. Rutten. Solving reflexive domain equations in a cat­
egory of complete metric spaces. Journal of Computer and System Sciences,
39:343-375, 1989.

[AR90] P. America. and J.J.M.M. Rutten. A layered semantics for a parallel object­
oriented language. Technical Report CS-R9052, GWI, Amsterdam, 1990. To
appear in "Foundations of Object-Oriented Languages", LNCS 489, Springer,
1991.

[BBKM84] J.W. de Bakker, J.A. Bergstra, J.W. Klop, and J.-J.Ch. Meyer. Linear time
and branching time semantics for recursion with merge. Theoretical Computer
Science, 34:135-156, 1984.

[BV91] J.W. de Bakker and E.P. de Vink. CCS for 00 and LP. In Proc. TAP­
SOFT'91. LNCS, Springer, 1991. To appear.

[BM88] J.W. de Bakker and J.-J.Ch. Meyer. Metric semantics for concurrency. BIT,
28:504-529, 1988.

[BMOZ88] J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog, and J.I. Zucker. Transition
systems, metric spaces and ready sets in the seman ties of uniform concur­
rency. Journal of Computer and System Sciences, 36:158-224, 1988.

[BW90] J.W. de Bakker and J.H.A. Warmerdam. Metric pomset semantics for a
concurrent language with recursion. In I. Guessarian, editor, Proc. 18eme
Ecole de Printemps d'lnformatiqv.e, Sero.antique du. Parallelisme, pages 21-
49. LNCS 469, Springer, 1990.

[BZ82] J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of
concurrency. Information and Control, 54:70-120, 1982.

57

[Dug66] J. Dugundji. Topology. Allyn and Bacon, 1966.

[Eli91] A. Eliens. DLP - a Language for Distributed Logic Programming. PhD thesis,
Universiteit van Amsterdam, 1991.

(Eng89] R. Engelking. General Topology, volume 6 of Sigma Series in Pure Mathe­
matics. Heldermann, revised and completed edition, 1989.

[GS90] C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 633-674. North­
Holland, 1990.

(HBR90] E. Horita, J.W. de Bakker, and J.J.M.M. Rutten. Fully abstract denotational
semantics for nonuniform concurrent languages. Technical Report CS-R9027,
CWI, Amsterdam, 1990.

(KR90] J.N. Kok and J.J.M.M. Rutten. Contractions in comparing concurrency se­
mantics. Theoretical Computer Science, 76:180-222, 1990.

[Kur56] K. Kuratowski. Sur une mcthode de mctrisation complete des certains espaces
d'ensembles compacts. Fundamenta Mathematicae, 42:114-138, 1956.

[Mac71] S. MacLane. Categories for the working mathematician, volume 5 of Graduate
texts in mathematics. Springer, 1971.

[MV88] J.-J.Ch. Meyer and E.P. de Vink. Applications of compactness in the Smyth
powerdomain of streams. Theoretical Computer Science, 57:251-382, 1988.

[Par81] D. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proc 5th GI Conference, pages 167-183. LNCS 104, Springer, 1981.

(Rut89] J .J .M.M. Rutten. Correctness and full abstraction of metric semantics for
concurrency. In J.vV. de Bakker, W.P. de Roever, and G. Rozenberg, editors,
Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, pages 628-659. LNCS 354, Springer, 1989.

[Rut90a] J .J .M.M. Rutten. Deriving metric models for bisimulation from transition
system specifications. In M. Broy and C.B. Jones, editors, Proc. IFIP TC2
Working conference on programming concepts and methods, pages 155-177.
North-Holland, 1990.

[Rut90b] J .J .M.M. Rutten. Semantic correctness for a parallel object-oriented lan­
guage. SIAM Journal on Computing, 19:341-383, 1990.

