
CHAPTER 4

Kolmogorov Complexity and its Applications

Ming LI
Aiken Computation Laboratory, Han•ard University, Cambridge, MA 02138, USA

Paul M.B. VIT ANYI
Centrum voor Wiskunde en biformatica, Kruislaan 413, 1098 SJ Amsterdam, Netherlands, and Facu/teit

Wiskunde en Jnjormatica, Universiteic van Amsterdam, Amsterdam, Netherlands

Contents
L Introduction
2. Mathematical theory
3. Applications of compressibility
4. Example of an application in mathematics: weak prime number theorems.

5. Applications of incompressibility: proving lower bounds

6. Resource-bounded Kolmogorov complexity and its applications

7. Conclusion
Acknowledgment
References

HANDBOOK OF THEORETICAL COMPUTER SCIENCE

Edited by J. van Leeuwen
((' Elsevier Science Publishers B.V., 1990

189
196
214
221
222
236
247
247
:48

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 189

t. Introduction

In everyday language we identify the information in an individual object with the
essentials of a description for it. We can formalize this by defining the amount of
information in a finite object (like a string) as the size (i.e., number of bits) of the
smallest program that, starting with a blank memory, outputs the string and then
terminates. A similar definition can be given for infinite strings, but in this case the
program produces element after element forever. Thus, 1 n (a string of nones) contains
little information because a program of size about log n outputs it (like "print n ls").
Likewise, the transcendental number rr = 3.1415 ... , an infinite sequence of seemingly
"random" decimal digits, contains O(l) information. (There is a short program that
produces the consecutive digits of rr forever.) Such a definition would appear to make
the amount of information in a string depend on the particular programming language
used. Fortunately, it can be shown that all choices of programming languages (that
make sense) lead to quantification of the amount of information that is invariant
up to an additive constant.

The theory dealing with the quantity of information in individual objects goes
by names such as "algorithmic information theory'', "Kolmogorov complexity",
"K-complexity", "Kolmogorov-Chaitin randomness", "algorithmic complexity",
"descriptive complexity", "program-size complexity", and others. Although there is
a case to be made for "Solomonoff-Kolmogorov-Chaitin complexity" as the most
appropriate name, we regard "Kolmogorov complexity" as well entrenched and
commonly understood, and use it hereafter.

At the outset we wanted to survey the applications of this theory to the theory of
computation, primarily in connection with the analysis and synthesis of algorithms
in relation to the resources in time and space such algorithms require. But we were
dealing with deep notions and general principles arising from, and having an impact
to, many more disciplines. Gradually, the subject acquired a sophisticated mathe­
matical theory and applications in an increasingly large number of astoundingly
different areas. This chapter attempts to grasp the mass of fragmented knowledge
of this fascinating theory.

The mathematical theory of Kolmogorov complexity contains deep and sophis­
ticated mathematics. Yet the amount of this mathematics one needs to know to apply
the notions fruitfully in widely divergent areas, from recursive function theory to chip
technology, is very little. However, formal knowledge does not necessarily imply the
wherewithal to apply it, perhaps especially so in the case of Kolmogorov complexity.
It is the purpose of this chapter to develop the minimum amount of theory needed,
and briefly outline a scala of illustrative applications. In fact, while the pure theory
of the subject will have its appeal to the select few, the surprisingly large field of its
applications will, we hope, delight the multitude.

One can distinguish three application areas, according to the way Kolmogorov
complexity is used. That is, we can use the fact that some strings are extremely com­
pressible; that many strings are not compressible at all; and that some strings may
be compressed but that it takes a lot of effort to do so.

Kolmogorov complexity has its roots in probability theory, combinatorics, and

190 M. LI, P.M.B. VITANYI

philosophical notions of randomness, and came to fruition using the recent develop­
ment of the theory of algorithms. Consider Shannon's classical information theor~'
[144] that assigns a quantity of information to an ensemble of possible messages.
All messages in the ensemble being equally probable, this quantity is the number
of bits needed to count all possibilities. This expresses the fact that each message in
the ensemble can be communicated using this number of bits. However, it does no!
say anything about the number of bits needed to convey any individual message in
the ensemble. To illustrate this, consider the ensemble consisting of all binary strings
of length 9999999999999999. By Shannon's measure, we require 9999999999999999
bits on the average to encode such a string. However, the string consisting of
9999999999999999 ones can be encoded in about 55 bits by expressing
9999999999999999 in binary and adding the repeated pattern 'T'. A requirement
for this to work is that we have agreed on an algorithm that decodes the encoded
string. We can compress the string still further when we note that 9999999999999999
equals Y x 1111111111111111, and that 1111111111111111 consists of 24 ones.

Thus, we have discovered an interesting phenomenon: the description of some
strings can be compressed considerably. In fact, there is no limit to the amount to
which strings can be compressed, provided they exhibit enough regularity. This obser­
vation, of course, is the basis of all systems to express very large numbers, and was
exploited early on by Archimedes in "The Sand Reckoner". However, if regularity is
lacking, it becomes more cumbersome to express large numbers. For instance, it seems
easier to compress the number "one billion," than the number "one billion seven­
hundred thirty-five million two-hundred sixty-eight thousand and three-hundred
ninety-four," even though they are of the same order of magnitude.

This brings us to a related root of Kolmogorov complexity, the notion of random­
ness. In the context of the above discussion, random strings are strings that cannot be
compressed. Now let us compare this with the common notions of mathematical
randomness. To measure randomness, criteria have been developed which certify this
quality. Yet, in recognition that they do not measure "true" randomness, we call these
criteria "pseudo" random tests [71]. For instance, statistical survey of initial sequences
of decimal digits of 7t have failed to disclose any significant deviations of randomness
[71, 113, 147]. But clearly, this sequence is so regular that it can be described by
a simple program to compute it, and this program can be expressed in a few bits.
Von Neumann [120]:

"Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin. For, as has been pointed out
several times, there is no such thing as a random number-there are
only methods to produce random numbers, and a strict arithmetical
procedure is of course not such a method. (It is true that a problem
we suspect of being solvable by random methods may be solvable by
some rigorously defined sequence, but this is a deeper mathematical
question than we can go into now.)"

This fact prompts more sophisticated definitions ofrandomness. Notably R. Von Mises
[115] proposed notions that approach the very essence of true randomness. In the

KoLMOGOROV COMPLEXITY AND ITS APPLICATIONS 191

early nineteenhundreds, Von Mises aimed at an axiomatic foundation of a calculus
of probabilities. With the axioms validated by empirical evidence, in the manner of
thermodynamics or mechanics, this would form a basis for real applications. However,
while the ultimate justification of proposals for a proper theory of probabilities must
lie in its applicability to real phenomena, this aspect was largely ignored in favor of
the mathematical elegance of Kolmogorov's classic treatment of the set-theoretic
axioms of his calculus of probability in 1933 [74].

"This theory was so successful, that the problem of finding the basis
of real applications of the results of the mathematical theory of
probability became rather secondary to many investigators
[however] the basis for the applicability of the results of the mathe­
matical theory of probability to real 'random phenomena' must
depend in some form on the frequency concept of probability, the
unavoidable nature of which has been established by Von Mises in
a spirited manner." [75].

Let us go into some more detail. The usual treatment of probability theory is designed
so that abstract probabilities can be computed, but nothing is said about what proba­
bility really means, or how the concept can be applied meaningfully to the actual
world. In [115] Von Mises analyzes the situation in detail, and suggests that a proper
definition of probability depends on obtaining a proper definition of a random sequence.

The frequency theory to interpret probability says roughly that if we perform an
experiment many times, then the ratio offavorable outcomes to the total number n of
experiments will, with certainty, tend to a limit, p say, as n-+oo. This tells us something
about the meaning of probability, namely the measure of the positive outcomes is p.
But suppose we throw a coin 1000 times and wish to know what to expect. Is 1000
enough for convergence to happen? The statement above does not say. So we have to
add something about the rate of convergence. But we cannot assert a certainty about
a particular number of n throws, such as "the proportion of heads will be p ± e for
large enough n (with e depending on n)". We can at best say "the proportion will lie
between p ± e with at least such and such probability (depending one and n0) whenever
n > n0 ." But now we defined probability in an obviously circular fashion.

In 1919 Von Mises proposed to eliminate the problem by postulating that a sequence
of outcomes of independent repetitions of random events in nature, like a sequence of
tosses with a coin, satisfies certain properties. The properties selected were claimed to
be validated by abundant empirical evidence. (We discuss the actual properties he
suggests below.) The analogy Von Mises uses is with a physical science as thermo­
dynamics, where, apart from the assumption of the basic laws like the law of con­
servation of energy, or the law of increasing entropy, the remainder is derived in
a purely mathematical way. These laws have no other justification than a long history
of failures of inventors of perpetuum mobiles (in contrast to the idea that perpetuum
mobiles are impossible because of the laws of thermodynamics). Coming back to
probability theory, granted the Von Mises axioms, the remainder of the calculus is
developed in a purely mathematical way, and the mathematical laws of probability
result. This approach actually satisfied Von Mises, and solves the problem noticed

192 M. LI, P.M.B. VITANYI

above because one property of a random sequence will be that the relative frequency
limit exists. Other philosophers of science insist that additionally the random sequences
defined form a set of full measure, and without exception do satisfy all laws of
probability, because then it seems physically justifiable to assume that as a result of an
(infinite) experiment only (or rather with probability one) random sequences appear
(see [71, 100, 115, 173]).

Von Mises' particular interpretation of a notion of infinite random sequence of
zeros and ones designated by the special name of collective (Kollektiv in German) is as
follows. An infinite sequence a 1 a2 .•• of zeros and ones is a random sequence in the
special meaning of collective if the following two conditions are satisfied:

(l) Firstly, if fn is the number of ones among the first n terms of the sequence, then

I. f
lm~=p

n- 00 n '

for some p, O<p< 1.
(2) Secondly, (1) is not only required for the original sequence, but (with the same

limit p) also for every infinite subsequence an, an1 • •• obtained by some admissible partial
function </J, which is defined for all finite binary sequences and takes the values 0 and 1,
and selecting one after the other those indices n for which </J(a 1 a2 . •. an_ i) = l.

The existence of a relative frequency limit, condition (1), is a strong assumption.
Empirical evidence from long runs of dice throws, in gambling houses, or with death
statistics in insurance mathematics, suggests that the relative frequencies are apparently
convergent. But clearly, no empirical evidence can be given for the existence of a definite
limit for the relative frequency. However long the test run, in practice it will always be
finite, and whatever the apparent behavior in the observed initial segment of the run, it
is always possible that the relative frequencies keep oscillating forever if we continue.

Condition (2) says that, for any "admissible" strategy of successively selecting infi­
nitely many elements from the sequence, the frequency of ones in the selection goes to
the same limit as in condition (1). Put in other words, considering the sequence as fair
coin tosses, condition (2) says there is no strategy ef; (principle of excluded gambling
system) that assures a player, betting at fixed odds and in fixed amounts on the tosses of
the coin, to make infinite gain. That is, no advantage is gained in the long run by
following some system, such as betting "head" after each run of seven consecutive tails,
or (more plausibly) by placing the nth bet "head" after the appearance of n + 7 tails in
succession. According to Von Mises, the above conditions are sufficiently familiar and
form an uncontroverted empirical generalization to serve as a basis of an applicable
calculus of probabilities. The problem with this definition is that Von Mises was unable
to give a rigorous definition of what is the admissibility criterion. He essentially appeals
to the familiar notion that no gambler, making a fixed number of wagers of"heads", at
fixed odds and in fixed amounts, on the flips of a coin, has profit in the long run from
betting according to a system instead of betting at random. Says Church: "this
definition ... while clear as to general intent, is too inexact in form to serve satisfactorily
as the basis of a mathematical theory."

It turns out that the naive mathematical approach to a concrete formulation comes
to grief as follows. We completely ignore the clear intention of Von Mises concerning

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 193

a nontrivial restriction implied by the phrase "admissible place selection functions" by
admitting simply all partial functions. Since arbitrary functions are allowed as
a strategy, this definition is too restrictive, and no sequence exists that satisfies it with
probability p other than 0.

EXAMPLE. Let a=a 1a2 ••• be any infinite string satisfying (1). Define <f> 1 as c/> 1(a 1 .•.

a;_ i)= 1ifai=1, and undefined otherwise. But then p= 1. However, this is not all of the
story. Defining <Po by </>0 (a 1 ••. a;_ i)=bh b; the complement of ai for all i, we obtain by
(2) that p=O. Consequently, if we allow functions like </> 1 and <Po as strategies, then Von
Mises' definition cannot be satisfied at all.

This counterexample was not recognized as such by Von Mises, because it
apparently violates the admissibility condition that ai is not used in the definition of
</>(a 1 ..• a;- i).Here Von Mises' position is succinctly expressed by "first the collective,
then the probability." Each collective, a physical object, determines what the admis­
sible place selection functions for it are. While we can generalize from experience that
all law like place selection functions are admissible, a place selection function pulled out
of the blue with reference to a particular collective is inadmissible for it (but may be
admissible for other collectives). In the example it just happens that after a criterion for
admissible <P has been fixed too widely, it turns out that for any sequence there is an
admissible <P that coincides with a l/J that is defined in a clearly inadmissible fashion.
Here we cannot go into the various arguments put forward by the contestants in the
ensuing discussion, but note that several attempts to resolve this problem turned out to
be unsatisfactory one way or the other.

A. Wald [167] showed that the restriction of the set of admissible <I> to a countable
set eliminates the contradiction above. For any countable set of admissible selection
functions, almost all sequences are random. Can we meaningfully fix some countable
set of functions? A. Church proposed to fix it [37] to the formal notion of effectively
computable functions, or recursive functions, as developed by A.M. Turing and himself
(gamblers use computable strategies). He points out that, with a total recursive <f>, not
only is the definition completely rigorous and do corresponding random sequences
exist, but moreover they are abundant since the infinite random sequences with p = 1
form a set of measure 1; and from the existence of random sequences with probability
1, the existence of random sequences associated with other probabilities is readily
derived. Let us call sequences satisfying (1) and (2) with computable <P Mises-Wald­
Church random. Appealing to a theorem by Wald yields as a corollary that the set of
Mises-Wald-Church random sequences associated with any fixed probability has the
cardinality of the continuum. Moreover, each Mises-Wald-Church random sequence
qualifies as a normal number. (A number is normal if each digit of the base, and each
block of digits of any length, occurs with equal asymptotic frequency.) Note however,
that not every normal number is Mises-Wald-Church random. This follows, for
instance, from Champernowne's number

0.1234567891011121314151617181920 ...

that is normal and where the ith digit is easily calculated from i. The definition of

194 M. LI. P.M.B. VITANYI

a Mises-Wald-Church random sequence implies that its consecutive digits cannot
be effectively computed. (Namely, existence o~ an effective ef>1 as above contradicts
o <p <I in (2).) Thus, an existence proof for M1ses-Wald-Church random sequences
is necessarily nonconstructive. . . .

Unfortunately, the Von Mises-Wald-Church defimt10n is not yet good enough,
since it was discovered by Ville [160] that even standard properties such as the Law of
the Iterated Logarithm do not follow from it. In 1965, P. Martin-Lof, visiting
Kolmogorov. succeeded in defining random sequences in a ma.nner that is free of
such difficulties [109]. His notion of infinite random sequences 1s related to infinite
sequences of which all finite initial segments have high Kolmogorov complexity (cf.
Section 2.4; for a survey of the work on infinite random sequences, see [81, 82]).

Until now the discussion has centered on infinite random sequences where the
randomness is defined in terms of limits of relative frequencies. However,

'The frequency concept, based on the notion of limiting .frequency as
the number of trials increases to infinity, does not contribute anything
to substantiate the application of the results of probability theory to
real practical problems where we always have to deal with a finite
number of trials," [75].

[t seems more appealing to try to define randomness for finite strings first and only then
define random infinite strings in terms of randomness of initial segments. The aim is to
obtain a theory in which the existence of frequency limits follows from the randomness
of the sequence, rather than the other way around [129]. However, properly defining
random finite strings appeared to be an even more hopeless affair than such a definition
for infinite strings. But the essence of the solution had already been discovered before.
For instance, P.S. Laplace [83] and also Kolmogorov [75] observed that "randomness"
consists in lack of "regularity", and that, if some regularity can be caused by a simple
law, then the chance that it is caused by this law is far greater than that it arose
spontaneously. Moreover, it can be noted that there cannot be a very large number of
simple laws. Identifying "laws" with "algorithms" brings us to our topic proper.

1.1. The inventors

We feel it is important to give a careful treatment of the genesis of the ideas in this
area. Kolmogorov complexity originated with the discovery of universal descriptions,
and a recursively invariant approach to the concepts of complexity of description,
randomness, and a priori probability. Historically, it is firmly rooted in R. Von Mises'
notion of random infinite sequences [115] as discussed above.

With the advent of electronic computers in the 1950s, a new emphasis on computer
algorithms and a maturing general recursive function theory, ideas tantamount to
Kolmogorov complexity, came to many people's minds, because "when the time is ripe
for certain things, these things appear in different places in the manner of violets coming
to light in early spring" (Wolfgang Bolyai to his son Johann in urging him to claim
the invention of non-Euclidean geometry without delay). Thus, with Kolmogorov
complexity one can associate three inventors: R.J. Solomonoff in Cambridge, MA

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 195

[149], close in time but far away in geography followed by A.N. Kolmogorov in
Moscow [75, 76], and then G.J. Chaitin in New York [25].

R.J. Solomonoff had been a student of R. Carnap at the University of Chicago in
the fifties. His objective was to formulate a completely general theory of inductive
inference that would overcome shortcomings of previous methods like [22]. Already
in November 1960 Solomonoff had published a Zator Company technical report on
the subject of "Kolmogorov" complexity [148]. In March 1964 he published a long
paper [149] introducing a version of universal a priori probability, namely the fore­
runner of the Solomonoff-Levin distribution, through the intermediate definition of
what we have termed "Kolmogorov complexity", and proved the Invariance Theorem.
This paper received little attention until Kolmogorov started to refer to it from 1968
onward. It is interesting to note that Solomonoff also discusses informally the ideas of
randomness of finite strings, noncomputability of Kolmogorov complexity, com­
putability of approximations to Kolmogorov complexity, and resource-bounded
Kolmogorov complexity. A paragraph referring to Solomonoff's work occurs in [114].
To our knowledge, these are evidently the earliest documents outlining an algorithmic
theory of descriptions.

In 1933 the great Soviet mathematician A.N. Kolmogorov 1 supplied probability
theory with a powerful mathematical foundation [74]. Following a four-decades long
controversy on Von Mises' concept of randomness, Kolmogorov finally introduced
complexity of description of finite individual objects, as a measure of individual
information content and randomness, and proved the Invariance Theorem in his paper
of spring 1965 [76]. Kolmogorov's invention of the complexity of description was in no
way a haphazard occurrence, but on the contrary the inevitable confluence of several of
his major research threads: the foundations of probability and random sequences,
information theory, and the theory of algorithms. Uspekhi Mat. Nauk announced
Kolmogorov's lectures on related subjects in 1961 and following years, and, says
Kolmogorov: "I came to similar conclusions [as Solomonoff], before becoming aware
of Solomonoff's work, in 1963-1964" [77].

G.J. Chaitin had finished the Bronx High School of Science, and was an 18-years old
undergraduate student at the City College of the City University of New York when he
submitted the original versions of [24, 25] for publication, in October and November
1965 respectively. Published in 1966, [24] investigated "state/symbol" complexities
relative to arbitrary algorithms. In this work Chaitin extended C.E. Shannon's earlier
work on coding concepts [145], and did not introduce any invariant notion of
complexity. However, at the end of his 1969 publication [25], Chaitin apparently
independently puts forward the proper notion of Kolmogorov complexity, proves the
Invariance Theorem, and studies infinite random binary sequences (in the sense of
having maximally random finite initial segments) and their complexity oscillations.
According to Chai tin: "this definition [of Kolmogorov complexity] was independently
proposed about 1965 by A.N. Kolmogorov and me ... Both Kolmogorov and I were
then unaware of related proposals made in 1960 by Ray Solomonoff" [27].

1 Andrei N. Kolmogorov, born 25 April 1903 in Tambov, USSR, died 20 October 1987 in Moscow. For
biographical details see [3, 17, 52], or [166], and the obituary in the Times [121].

196 M. LI, P.M.8. VJTANYI

The Swedish mathematician P. Martin-Lof, visiting Kolmogorov in Moscow during
1964-1965, investigated complexity oscillations of infinite sequences and proposed
a new definition of infinite random sequences which is based on constructive measure
theory [109, 111]. L.A. Levin, then a student of Kolmogorov, found a definition of
a priori probability (the Solomonoff-Levin distribution) as a maximal semicomputable
measure [173], and introduced the quantity corresponding to the self-delimiting
variant of Kolmogorov complexity as the negative logarithm of a priori probability. In
1974 he more explicitly introduced Kolmogorov complexity based on self-delimiting
programs [86]. This work relates to P. Gacs' results concerning the differences between
symmetric and asymmetric expressions for information [45]. In 1975 Chaitin also
discovered and investigated this Kolmogorov complexity based on self-delimiting
programs [28]. Another variant of Kolmogorov complexity, viz., the length of the
shortest program p that computes a function f such that f(i) is the ith bit of the target
string, was found by D.W. Loveland [103, 104] and used extensively in [173]. Other
variants and results were given by Willis [169], Levin [85], Schnorr [140], and Cover
[38]. Apart from Martin-Lof's work, we mention that of C.P. Schnorr [138, 139] on
the relation between Kolmogorov complexity and randomness of infinite sequences.
This chapter of the Handbook is a precursor of our forthcoming textbook [97].

2. Mathematical theory

Kolmogorov gives a cursory but fundamental and elegant exposition of the basic
ideas in [78]. Currently, the most complete treatment of the fundamental notions and
results in Kolmogorov complexity is Levin and Zvonkin's 1970 survey [173]. Since this
survey is not up to date, it should be complemented by Schnorr's [139, 140] and
Chaitin's more recent monograph [30]. Kolmogorov and Uspenskii present a survey
covering research in the Soviet Union [80], and Kolmogorov's selected works in the
area are contained in [79] (see also [174]). For the advanced reader we mention Levin's
important work [88]. An introductory but complete treatment of Kolmogorov
complexity and its applications will be given in [97].

There are several variants of Kolmogorov complexity; here we focus on the original
version in [24, 76, 78, 173]. (Later, we also define the more refined "self-delimiting"
version.)

NOTATION. It is useful to fix some notation first. All through this paper it is convenient
to identify the positive integers with the finite binary strings as follows:

(0, e), (1, 0), (2, 1), (3, 00), (4, 01), (5, 10), (6, 11), (7, OOO), ...

That is, the natural number n corresponds with the nth binary string in lexicographic
length-increasing order. We call such an n a finite object, and whether we view it as
a natural number or a binary string will be apparent from the context. If x is a binary
string (natural number) then lxl denotes the length or number of zeros and ones in x.
The number of elements in a finite set A is denoted by d(A). Hence, with A= { 1, 2, ... , n}
we have ld(A)I is about log n. A few times we need to denote the absolute value of

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 197

a number as in la-bi, the absolute value of the difference of a and b. We feel that in each
such case the context clearly indicates that we mean an absolute value and not a length,
and refrain from introducing special notation.

First take a general viewpoint, as in [78], in which one assumes some domain D of
objects with some standard enumeration of objects x by numbers n(x). We are
interested in the fact that n(x) may not be the most economical way to specify x. To
compare methods of specification, we agree to view such a method as a function S from

natural numbers p written in binary notation to natural numbers n, n= S(p). We do not
yet assume that S is computable, but maintain full generality to show to what extent

such a theory can also be developed with noneffective notions, and at which point
effectiveness is required. For each object x in D we call the length IPI of the smallest
p that gives rise to it the complexity of object x with respect to the spec(fying method S:

Ks(x)= min{lp I: S(p)=n(x)},

and Ks(x)= oo if there are no such p. In computer science terminology we can call

pa program and Sa programming method (or language). Then one can say that Ks(x)

is the minimal length of a program to obtain x under programming method S.

Considering distinct methods Si. S2 , .•. , S, of specifying the objects of D, it is easy to
construct a new method S that gives for each object x in D a complexity Ks(x) that
exceeds only by c, c less than about log r, the original minimum of the complexities
Ks, (x), K 5 ,(x), ... , K 5,(x). The only thing we have to do is to reserve the first log r bits of

p to identify the method S; that should be followed, using as a program the remaining
bits of p. We say that a method S "absorbs a method S' with precision up to c" iffor aH x

K8 (x) ~ Ks-(x) +c.

Above we have shown how to construct a method S that absorbs any of the methods

S 1 , ... , S, with precision up to c, where c- log r. Two methods S 1 and S 2 are called
"c-equivalent" if each of them c-absorbs the other. As Kolmogorov remarks, this
construction would be fruitless if the hierarchy of methods with respect to absorption
were odd, for instance, if there is no bottom element. However, under relatively natural

restriction on S this is not so. Namely, among the partial recursive functions (in the
sense of Turing [155]), there exist optimal ones, say S, such that for any other

computable function S'

Ks(x) ~ Ks,(x) + Cs,S'·

Clearly, all optimal methods S, S' of specifying objects in D are equivalent in the

following way: the absolute value of the difference satisfies

IKs(x)- Ks,(x)I ~cs.s'·

Thus, from an asymptotic point of view, the complexity K(x) of an object x, when we
restrict ourselves to optimal methods of specification, does not depend on accidental

peculiarities of the chosen optimal method.
To fix thoughts, w.1.o.g., consider the problem of describing a finite object x. It is

useful to develop the idea that the complexity of specifying an object can be facilitated

198 M. LI, P.M.B. VITANYI

when another object is already specified. Thus, we define the complexity of an object x,
given an object y. Let pE {O, 1 }*, and we call pa program. Any computable function
f together with strings p and y such that f(p,y)=x is a description of x. We call f the
interpreter or decoding function. The (descriptional) complexity K r of x, with respect to
f, conditional toy, is defined by

K1(xly)=min{lpl: pe{O, 1}* & f(p,y)=x},

and K 1(xly)= ro if there are no such p. The following theorem asserts that each finite
object has an intrinsic complexity which is independent from the means of description.
Namely, there exist asymptotically optimal functions such that the description length
with respect to them minorizes the description length with respect to any other
function, apart from an additive constant, for all finite objects. This important fact
is what makes the theory work.

INVARIANCE THEOREM (Solomonoff[149], Kolmogorov [76], Chaitin [25]). There exists
a partial recursive function f 0 , such that, for any other partial recursive function f,
there is a constant c1 such thatfor all strings x,y, K10(xly)~Kr(xly)+cr·

PROOF. Fix some standard enumeration of Turing machines, with an ordinary input
tape, an extra input tape to contain the conditional information, a worktape, and an
output tape. Let n(T) be the number associated with Turing machine T. Assume that
the conditional input y is contained on the extra input tape. Let f 0 be the universal
partial recursive function computed by a universal Turing machine U. That is.
U starting with input O"lp, pe{O, 1}*, on the ordinary input tape and yon the extra
input tape halts with output x on the output tape iff T starting with input p on the
ordinary input tape and y on the extra input tape halts with x on its output tape, for
n(T) = n. Choosing c 1 = n + 1 finishes the proof. D

Clearly, any function Jo that satisfies the Invariance Theorem is optimal in the sense
discussed above. Therefore, we are justified to fix a particular reference machine U as in
the proof of the theorem and its associated partial recursive function f 0 , and drop the
subscripts on K. We define the conditional Kolmogorov complexity K(xly) of x under
condition of y to be equal to K 10(xly) for this fixed optimal f 0 . Define the unconditional
Kolmogorov complexity of x as K(x) = K(xle), where e denotes the empty string (lei =0).

In his talks Kolmogorov used to credit A.M. Turing [155] for the universal Turing
machine, which is the substance of the Invariance Theorem. Before we continue, we
recall the definitions of the big-0 notation.

NOTATION (order of magnitude). We use the order of magnitude symbols 0, o, n
and 0. If f and g are functions on the real numbers, then

(i) f(x) = O(g(x)) if there are positive constants c, x 0 , such that I f(x)I ~ c lg(x)I for
ali x~x0 ;

(ii) j(x)=o(g(x)) if limx ... 00f(x)/g(x)=O;
(iii) f(x)=!l(g(x)) if f(x)#o(g(x)); and
(iv) /(x) = 0(g(x)) if both f(x) = O(g(x)) and f(x)=!l(g(x)).

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 199

The relevant properties are extensively discussed in [72, 161]. This use of fi was
introduced first by Hardy and Littlewood in 1914, and must not be confused by
Chaitin's real number Q we meet in a later section. (Some computer scientists use the
order of magnitude symbol Q such that f(x) = O(g(x)) iff there is a positive constant
c such that /(x):;?: cg(x) from some x onwards. This is different from our use of the
traditional definition of Q as the complement of o, as in (ii), which says: f(x) = Q(g(x)) ifl'
there is a positive constant c such that flx);?=cg(x) for infinitely many x.)

EXAMPLE. For each finite binary string x we have K(xx) ~ K(x)+ 0(1). (The constant
implied by the big-0 notation is fixed by the choice of reference machine U.) Namely,
let Tcompute x from program p. Now fix a universal machine Vwhich, on input onm Ip,
simulates T just like the reference machine U in the proof of the Invariance Theorem,
but additionally V doubles Ts output before halting. Now V starting on onm 1p
computes xx, and therefore u starting on on(V)10n<TJ1p computes xx. Hence, for all X,

K(xx)~K(x)+n(V)+ I.

EXAMPLE. Let us define K(x,y)=K((x,y)) with(-,·:> a standard one-one mapping
(pairing function) of pairs of natural numbers to natural numbers. That is, K(x, y) is the
length of a shortest program that outputs x and y and a way to tell them apart. It is
seductive to conjecture K(x,y)~K(x)+K(y)+O(I), the obvious (but false) argument
running as follows. ~uppose we have a shortest program p to produce x, and a shortest
program q to produce y. Then with 0(1) extra bits to account for some Turing machine
T that schedules the two programs, we have a program to produce x followed by y.
However, any such Twill have to know where to divide its input to identify p and q. We
can separate p and q by prefixing pq by a clearly distinguishable encoding r of the length
IPI in O(loglpl) bits \see Section 2.2 on self-delimiting strings). Consequently, we have at
best established

K(x, y) ~ K(x) + K(y) + O(log(min(K(x), K(y)))).

In general this cannot be improved.

2.1. Incompressihilin

Apart from showing that complexity is an attribute of the finite object alone, the
Invariance Theorem has also another most important consequence: it gives an upper
bound on the complexity. Namely, there 1s a fixed constant c such that for all x ofiength
n we have

K(x)~n+c.

This is easy to see. If T is a machine that just copies its input to its output, then
p = onm Ix is a program for the reference machine U to output x.

This says that K(xl is bounded above by the length ofx modulo an additive constant.
The obvious question to ask further is: "how many x can be compressed how far?".
Since there are 2" binary strings of length n, but only 2"- l possible shorter descriptions,
it follows that, for all n, there is a binary string x oflength n such that K (x);::,: n. We call

200 M. LI, P.M.B. VITANYI

such strings incompressible. It also follows that, for any length n and any binary stringy,
there is a binary string x oflength n such that K(xly)~n.

EXAMPLE. Is a substring of an incompressible string also incompressible? A string
x = uvw can be specified by a short description for v oflength K(v), a description of lul,
and the literal description of uw. Moreover, we need information to tell these three
items apart. Such information can be provided by prefixing each item with a self­
delimiting description of its length, as explained in the section on self-delimitation.
Together this takes K(v)+ luwl + O(loglxl) bits. Hence,

K(x) ~ K(v) + O(loglxl) + luwl.

Thus, if we choose x incompressible, K(x) ~ lxl, then we obtain

K(v) ~ lvl-O(loglxl).

It can be shown that this is optimal-a substring of an incompressible string can be
compressible. This conforms to a fact we know from probability theory: every suf­
ficiently long random string must contain long runs of zeros.

EXAMPLE. Define p(x) as a shortest program for x. We show that p(x) is incompressible,
in the sense that there is a constant c>O such that for all strings x, we have
K(p(x)) ~I p(x)l -c. Suppose the contrary. Define a universal machine V that works just
like the reference machine U, except that V first simulates U on its input to obtain an
output, and then uses this output as input on which to simulate U once more. But then,
U with input on<Vllp(p(x)) computes x, and therefore K(x):::;; lp(x)l -c + n(V)+ 1, for all
c>O, some x, which is impossible.

EXAMPLE. It is easy to see that K(xlx):::;;n(T)+ 1, where Tisa machine that just copies
the input to the output. However, it is more interesting that, for some shortest program
p(x) of(x), K(p(x)lx):::;;log K(x)+ 0(1), which cannot be improved in general. Hint: later
we show that K is a noncomputable function. This rules out that we can compute any
shortest program p(x) from x. However, we can dovetail the computation of all
programs shorter than lxl + 1: run the first program one step, run the first program one
step and the second program one step, and so on. This way we will eventually
enumerate all programs that output x. However, since some computations may not
halt, and the halting problem is undecidable, we need to know the length of a shortest
program p(x) to recognize any such program when it is found.

A natural question to ask is: how many strings are incompressible? It turns out that
virtually all strings of given length n are incompressible. Namely, there is at least one
x oflength n that cannot be compressed to length < n since there are 2n strings oflength
n and but 2" - 1 programs oflength less than n; at least t of all strings of length n cannot
be compressed to length < n - 1 since there are but 2·- 1 - I programs of length less
than n - 1; at least ath of all strings of length n cannot be compressed to length < n - 2,
and so on.

Generally: let g(n) be an integer function. Call a string x oflength n g-incompressible if

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 201

K(x)~n-g(n). There are 2" binary strings of length n, and only 2•-g!ni_1 possible
descriptions shorter than n -g(n). Thus, the ratio between the number of strings x of
length n with K(x) < n - g(n) and the total number of strings of length n is at most 2 -g(n>,

a vanishing fraction when g(n) increases unboundedly with n. In general we loosely call
a finite string x of length n random if K(x) ~ n - O(log n).

Intuitively, incompressibility implies the absence of regularities, since regularities
can be used to compress descriptions. Accordingly, we like to identify incompressibility
with absence of regularities or randomness. In the context of finite strings randomness
like incompressibility is a matter of degree: it is obviously absurd to call a given string
random and call nonrandom the string resulting from changing a bit in the string to its
opposite value. Thus, we identify c-incompressible strings with c-random strings.

However, with infinite strings we may a priori hope to be able to use Kolmogorov
complexity to sharply distinguish the random strings from the nonrandom ones, to
finish the task set by Von Mises (see the Introduction). Let us call an infinite string
x g-incompressible if each initial string x 1,. oflength n has K(x 1 ")~ n-g(n), from some
n onward. In [109], Martin-Lof has defined a satisfactory notion for randomness of
infinite strings. It turns out that Martin-Lof random strings are (2 log n)-incompres­
sible, but not (log n)-incompressible (cf. Section 2.4). We· call finite or infinite O(log n)­
incompressible strings loosely "random" or "Kolmogorov random", but want to
stress here that randomness for infinite strings according to Martin-Lof has a stricter
and more profound definition. We return in somewhat more detail to this matter below.

Curiously, though most strings are random, it is impossible to effectively prove them
random. The fact that almost all finite strings are random but cannot be proved to be
random amounts to an information-theoretic version of Godel's Theorem below.
Strings that are not incompressible are compressible or nonrandom. The nonrandom
infinite binary strings are very scarce: they have measure zero in the set of all infinite
binary strings.

2.2. Self-delimiting descriptions

In previous sections we formalized the concept of a greatest lower bound on the
length of a description. Now we look at feasibility. Let the variables x, y, xh y;, . ..
denote strings in {O, 1 }*. A description of x, \x\ = n, can be given as follows:

(1) A piece of text containing several formal parameters p 1 , ... , Pm· Think of this
piece of text as a formal parametrized procedure in an algorithmic language
like Pascal.

It is followed by
(2) an ordered list of the actual values of the parameters.

The piece of text of (1) can be thought of as being encoded over a given finite alphabet,
each symbol of which is coded in bits. Therefore, the encoding of (1) as prefix of the
binary description of x requires 0(1) bits. This prefix is followed by the ordered list (2)
of the actual values of p1 , ••• , Pm in binary. To distinguish one from the other, we
encode (1) and the different items in (2) as self-delimiting strings, an idea used already
by C.E. Shannon.

For each string x e {O, 1 }*,the string x is obtained by inserting a "O" in between each

202 M. LI. P.M.B. VrrANYI

pair of adjacent letters in x, and adding a '"1" at the end. That is,

01011 = 0010001011.

Let x' = lxl x (an encoding of the length of x in binary followed by x in binary). The
string x,'is called the selfdelimiting version of x. So "10~101011" is t.he self-d~limiting
version of "O 1011 ". (According to our convention "10" 1s the fifth bmary stnng.) The
self-delimiting binary version of a positive integer n requires log n + 2 log log n bits, and
the self-delirni ting version of a binary string w requires I wl + 2 log I wl bits. For con­
venience, we denote the length lnl of a natural number n by "log n".

EXAMPLE (generalization). More generally, for x E {O, 1 }* - { .s}, do(x) = x is the self­
delimiting version of order 0 of x using 21xl bits. Above we defined the "standard"
self-delimiting version d 1 (x) =x' of order I. In general, for i ~ 1, d;(x) = xixi- 1 ... x 1 x,
with x 1 =lxl and xj=lxi_ 1 J (l<j~i), is the self-delimiting version of order i of x.
Define log< 11 =log, and logU+ 11 =log log<i1 for j~ I. Then,

ld;(x)I = lxl + log< 11 lxl + ·· · + log!i- l)lxl + 2 iog<i1lxl.

Obviously, further improvements are possible.

EXAMPLE. Self-delimiting descriptions were used in the proof of the Invariance Theorem
(namely, in the encoding O"ml). Using it explicitly, we can define Kolmogorov com­
plexity as follows. Fix an effective coding c of all Turing machines as binary strings such
that no code is a prefix of any other code. Denote the code of Turing machine M by
c(M). Then the Kolmogorov complexity of xE{O, 1}*, with respect to c, is defined
by Kc(x)=min{lc(M)y I: Mon input y halts with output x}.

EXAMPLE (seif-delimiting Kolmogorou complexity). A codec such that c(x) is not a prefix
of c(y) if x i= y is called a prefix code. We can define a variant of Kolmogorov complexity
by requiring at the outset that we only consider Turing machines for which the set of
programs is a prefix code. The resulting variant, called self-delimiting Kolmogorov
complexity, has nicer mathematical properties than the original one, and has therefore
become something of a standard in the field. This complexity is variously denoted in the
literature by K P, I, H, or simply by K which results in confusion with the original
notion. We treat it in Section 2.7 and denote it (only) there by K'. For most applications
it does not matter whether we use K'(x) or K(x) since they coincide to within an additive
term of O(loglxl). In the case of inductive inference, however, we need to use the
self-delimiting version of complexity. We denote both versions indiscriminately by
K(x), and point out which version we mean if it matters.

EXAMPLE (Li, Maass, and Vitanyi). In proving lower bounds in the theory of com­
putation it is sometimes useful to give an efficient description of an incompressible string
with "holes" in it. The reconstruction of the complete string is then achieved using an
additional description. In such an application we aim for a contradiction where these
two descriptions together have significantly smaller length than the incompressible
string they describe. Formally, let x 1 •.. xk be a binary string of length n with the x/s

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 203

(1 :::;;, i:::;;, k) blocks of equal length c. Suppose that d of these blocks are deleted and
the relative distances in between deleted blocks are known. We can describe this
information by

(1) a formalization of this discussion in 0(l) bits, and
(2) the actual values of c, m, p 1, d 1 , p2 , d 2 , ... , Pm, dm, where m (m:::;;, d) is the number

of "holes" in the string, and the literal representation of x = x 1x2 ... xk.
Here .x; is X; if it is not deleted, and is the empty string otherwise; Pi• di indicates that

the next Pi consecutive x/s (of length c each) are one contiguous group followed by
a gap of dic bits long. Therefore, k-d is the number of (nonempty) .X;'s, with

m m

k= L (p;+d;) and d= L d;.
j: 1

The actual values of the parameters and x are coded in a self-delimiting manner. Then,
by the convexity of the logarithm function, the total number of bits needed to describe
the above information is no more than

(k-d)c + 3d log(k/d) + O(log n).

We then proceed by showing that we can describe x by this description plus some
description of the deleted x;'s, so that the total requires considerably less than n bits.
Choosing x such that K(x)~n then gives a contradiction (see [94]).

This.finishes the Application Toolkit. We have now formalized the essence of what we
need for most applications in the sequel. Having made our notions precise, many
applications can be described informally yet rigorously. The remainder of the theory
of Kolmogorov complexity we treat below is not always required for the later
applications. But, for instance, for the proper definition of the Solomonoff-Levin
distribution, as needed in the application to inductive inference, it is required to use the
self-delimiting version of complexity we briefly discussed in an example above (see
also Section 2. 7).

2.3. Quantitative estimate of K

We want to get some insight in the quantitative behavior of K. We follow [173]. We
start this section with a useful property. Consider the conditional complexity of a string
x, with x an element of a given finite set M, given some stringy. Let d(M) denote the
numberof elements in M. Then the fraction ofxE M for which K(xly)<ld(M)l-m, does
not exceed 2- m, by a counting argument similar to that in Section 2.1. Hence we have
shown that the conditional complexity of the majority of elements in a finite set cannot
be significantly less than the complexity of the size of that set. The following lemma says
that it cannot be significantly more either.

LEMMA (Kolmogorov). Let A be an r.e. set of pairs (x,y), and let My={x:(x,y)EA}.
Then, up to a constant depending only on A, K(xly):::; ld(My)I.

PROOF. Let A be enumerated by a Turing machine T. Using y, modify Tto Ty such that
Ty enumerates all pairs (x, y) in A, without repetition. In order of enumeration we select

204 M. LI, P.M.B. VITANYI

the pth pair (x, y), and output the first element, i.e. x. Then we find p <d(M>,), such that
Ty(p)=x. Therefore, we have by the Invariance Theorem K(xly)~Kr,(x)~ I d(My)I, as
required. O

EXAMPLE. Let A be a subset of {O, 1}*. Let A,," equal {xeA: lxl~n}. If the limit of
d(A ,,")/2" goes to zero for n going to infinity, then we call A sparse. For example, the set
of all finite strings that have twice as many zeros as ones is sparse. This has as a
consequence that all but finitely many of these strings have short programs.

CLAIM. (a) (Sipser) If A is recursive and sparse, then for all constant c there are only
finitely many x in A with K(x) ~ lxl -c. Using Kolmogorov's Lemma we can extend this
result as follows.

(b) If A is r.e. and d(A ,,;n)/n-< 1 +el2•, c >0, goes to zero for n going to infinity, then,
for all constant c, there are only finitely many x in A with K(x) ~Ix 1- c.

(c) If A is r.e. and d(A ,,;n) ~ p(n) with p a polynomial, then, for all constant c > 0,
there are only finitely many x in A with K(x) ~Ix l/c.

PROOF. (a) Consider the lexicographic enumeration of all elements of A. There is
a constant d, such that the ith element x of A has K(x)::::;: K(i) +d. If x has length n, then
the sparseness of A implies that K(i)::::;: n -g(n), with g(n) unbounded. Therefore, for each
constant c and all n, if x in A is of length n, then K(x)<n-c from some n onward.

(b) Fix c. Consider an enumeration of n-length elements of A. For all such x, the
lemma above in combination with the sparseness of A implies that

K(xln):::;n-(1 +1:)logn+O(l).

Therefore, K(x) ~ n -e log n + 0(1), for some other fixed positive£, and the right-hand
side of the inequality is less than n-c from some n onward.

(c) Similarly as above. O

We now look at unconditional complexity. We identify the binary string x with the
natural number x, as in the correspondence mentioned at the outset of Section 2. This
way, K(x) can be considered as an integer function.

LEMMA (Kolmogorov). For any binary string x, the following hold:
(a) K(x)~lxl, up to some constant not depending on x.
(b) The fraction of x for which K(x) < 1-m and lxl = l does not exceed r m, so that

equality holds in (a) for the majority of words.
(c) limx- 00 K(x)= oo, and
(d) for m(x) being the largest monotonic increasing integer function bounding K(x)

from below, m(x) = miny;;.xK(y), we have Iimx- 00 m(x) = w.
(e) For any partial recursive function <f>(x) tending monotonically to w from some x 0

onwards, we have m(x)«p(x), for all large enough x.
(f) The absolute difference IK(x + h)- K(x)I ~ 21hl, up to some constant independent of

x, h. That is, although K(x) varies all the time between lxl and m(x), it does so fairly
smoothly.

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 205

PROOF. (aHd) have been argued above or are easy. For (e) see [173]. We prove (f).Let
p be a minimal-length description of x so that K(x) = IPI· Then we can describe x + h by
Tip, Ti the (order 0) self-delimiting description of h, and a description of this discussion in
a constant number of bits. Since 1111 ~21hl (see previous section), this proves (f). O

EXAMPLE. One effect of the information quantity associated with the length of strings
is that K(x) is nonmonotonic on pre.fixes. This can be due to the information contained
in the length of x. That is, clearly for m < n we can still have K(m) > K(n). But then
K(x)<K(y) for x=On and y=Om, notwithstanding that y is a proper prefix of x. For
example, if n= 2k then K(On)~log log n +0(1), while we have shown above that there
are m < n for which K(m) ~log n - 0(1). Therefore, the complexity of a part can turn out
to be greater than the complexity of the whole. In an initial attempt to solve this
problem we may try to eliminate the effect of the length of the string on the complexity
measure by treating the length as given. However, this does not help as the next
example shows.

EXAMPLE. For any binary string x, lxl = n, we have K(xjn) ~ K(x), but usually the length
of x does not give too much information about x. But sometimes it does. For instance
for a string x=O". Then, K(x)=K(n)+O(l), but K(xln)=O(l). Moreover, it is easy to
find m such that m < n and K(Omln) = Q(log n). But of course K(Omjm)= 0(1) again. Thus,
our next try is to look at the complexity K(xln) where n =Ix!. But now we get
nonmonotonicity in another way. Consider x = nOO ... 0 with lxl = n, that is, the nth
binary string padded with zeros up to length n. These strings are called n-strings by
Loveland [104]. Now always K(xln) = 0(1), but by choosing the prefix n of x random
we have K(nlm) =!l(log n) with m= In!.

2.4. Infinite random strings

If x = x 1 x 2 •.• is a finite or infinite string of binary digits xi,lxl ~ n, then Xm.n denotes
the substring XmXm+ 1 •.. Xn.

In connection with the task set by Von Mises (cf. Introduction) we would like to
express the notion of randomness of infinite binary strings in terms of Kolmogorov
complexity. The obvious way is to use the definition of finite random strings. That is,
call an infinite binary string x random if there is a constant c such that, for all n,
K(x 1 :n) ~ n -c. But in 1965 Martin-Loffound that such strings do not exist [109-111]:

THEOREM (Martin-Lof). If f(n) is a recursivefunction such that :l::rf(n>=o:::i, thenfor
any infinite binary sequence x there are in.finitely many nfor which K(x1 .)<n- f(n).

EXAMPLE. f(n)=logn satisfies the condition of the theorem. Let x=x1x2··· be any
infinite binary string, and Xi:m any m-length prefix of x. If n-m is the natural number
corresponding to Xi:m• so m is about log n, then K(x 1:nl=K(xm+ 1 ... x.)+0(1). This is
easy to see, since we can uniquely reconstruct x i:m from the length n - m of Xm + 1 ..• x.
with 0(1) additional bits of information.

206 M. LI, P.M.B. VITANYI

However, it was observed by Martin-U)f that if f(n) is such that the series

'\"' ?-f(n)
L.,- (2.1)

converges recursively (there is a recursive set of integers n, such that Ln;..,2- f<•> ~ 2-r,
for example f(n) =log n + 2 log log n), then almost all strings x (in the sense of binary
measure) have the property

K(X1:n)~n- f(n), (2.2)

from some n onwards. In a less precise form these phenomena were also presented
by Chaitin [25]. Due to these complexity oscillations the idea of identifying infinite
random sequences with those such that K(x 1,.);;o: n -c does not work. These problems
caused Martin-Lofto try another track and proceed directly to the heart of the matter.
Namely, to justify any proposed definition of randomness, one will have to show that
the sequences that are random in the stated sense satisfy the several properties of
stochasticity we know from the theory of probability. So why not, instead of proving
that each such property separately is satisfied by a proposed definition, formalize the
property that the random sequences introduced possess, in an appropriate sense, all
possible properties of stochasticity.

It turns out that the notion of infinite binary strings satisfying all properties of
randomness, in the sense ofall properties that hold with probability 1, is contradictory.
However, if we restrict ourselves to only those properties that are effectively verifiable,
and statistical tests for randomness invariably are effective, then the resulting notion of
random infinite string is noncontradictory. Pursuing this approach through con­
structive measure theory, Martin-Lof [109] develops the notion of random binary
sequences as having all "effectively verifiable" properties that from the point of view of
the usual probability theory are satisfied with "probability!". That is to say, they pass
all effective statistical tests for randomness in the form of a "universal" test, where the
bits represent the outcome of independent experiments with outcomes 0 or 1 with
probability!. Not only do such random strings exist, indeed, it turns out that these
random strings have measure 1 in the set of all strings. Using this definition of
randomness he shows the following theorems [111].

THEOREM (Martin-Lof). Random binary sequences satisfy (2.2) from some n onwards,
provided (2.1) converges recursively.

THEOREM (Martin-Lof). If K(x 1 .ln);;o:n-c for some constant c and infinitely many n,
then x is a random binary sequence.

For related work see also [103, 138, 139, 141, 173]. We mention that for the self­
delimiting version (Section 2.7) of complexity K' it holds that x is random iff there is
a constant c>O such that K'(x 1,.ln);;o:n-c, for all n.

2.5. Algorithmic properties of K

We select some results from Zvonkin and Levin's survey [173]. Again, we consider
K(x) as a function that maps a positive integer x to a positive integer K(x).

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 207

THEOREM (Kolmogorov). (a) The function K(x) is not partial recursive. Moreover, no
partial recursive function q>(x), defined on an infinite set of points, can coincide with K(x)
over the whole of its domain of definition.

(b) There is a (total) recursive function H(t, x), monotonically decreasing in t, such that
lim 1 ~ 00 H(t, x) = K(x). That is, we can obtain arbitrary good estimates for K(x) (but not
uniformly).

PROOF. (a) Every infinite r.e. set contains an infinite recursive subset [135, Theorem
5-IV]. Select an infinite recursive set A in the domain of definition of cp(x). The func­
tion f(m)=min{x: K(x)~m. xE A} is (total) recursive (since K(x)=q>(x) on A), and
takes arbitrarily large values. Also, by construction, K(f(m))~m. On the other hand,
K(f(m)) ~ K 1(f(m)) +er by definition of K, and obviously Kr(/(m)) ~ lmJ. Hence,
m ~log m up to a constant independent of m, which is false.

(b) Let c be a constant such that K(x) ~ lxl + c for all x. Define H(t, x) as the length of
the smallest program p, with I pi~ Ix I+ c, such that the reference machine U with input
p halts with output x within t steps. D

EXAMPLE (Barzdin'). It is not too difficult to show by similar reasoning that if .f(x) < lxl
is a total recursive function with limx~xf(x)= oo, then the set B={x: K(x)~f(x)} is
simple in the recursive-theoretic sense of Post. That is, Bis recursively enumerable and
the complement of Bis infinite but does not contain an infinite recursively enumerable
subset. It is then straightforward that for every axiomatized theory F (that is consistent
and sound) there are only finitely many n for which the statement "n rt B" is both true
and provable in F. However, from the definition of Bit follows that all x with K(x) ~ lxl
do not belong to B, and there are infinitely many of those. Hence, if Fis strong enough
to express statements of the form "n rt B", for instance F contains arithmetic, then
infinitely many true statements can be expressed in F but are not provable. This is
a version of Godel's famous incompleteness result. It is different from Godel's original
proof in the fact that our undecidable statements are not constructive. This result is
attributed to Barzdin' in Levin and Zvonkin's 1970 survey [173].

It turns out that with Kolmogorov complexity one can quantify the distinction
between 11.e. sets and recursive sets. Let x = x 1 x 2 •• . be an infinite binary sequence such
that the set of numbers n with x. = 1 is r.e. That is, x is the characteristic sequence of the
set M = { n: x. = 1}. If the complementary set with the x. = 0 were also r.e., then f(n) = x.
would be computable, and the relative complexity K(x 1 .ln) bounded. But in the
general case, when the set of ones is r.e., K(x1:.) can grow unboundedly.

THEOREM (Barzdin', Loveland). For any binary sequence x with the set M = { n: x. = I}
being r.e., it holds that K(x 1,.ln) ~log n +cM, where cM is a constant dependent on M (but
not dependent on n). Moreover, there are sequences such that for any n it holds that
K(x 1 .)~logn.

PROOF. Let the number of ones in x 1:n be m ~ n. Since M is r.e. we can recursively
enumerate all of its elements without repetition. Given m, we know that after having
enumerated m elements in M that are less or equal ton, we have found them all. Since

208 M. LI, P.M.B. VITANYI

K(m) ~log n + c for some fixed constant c, this proves the upper bound. The lower
bound holds for universal sets like K 0 = { (x, y): Tx halts on input y} (see [9, 103, 173]).

0

In [78] Kolmogorov gives the following interesting interpretation with respect to
investigations in the foundations of mathematics: Label all Diophantine equations by
natural numbers. Y.V. Mateyasevich has proved that there is no general algorithm to
answer the question whether the equation Dn is soluble in integers (the answer to
Hilbert's Tenth Problem is negative). Suppose we weaken the problem by asking for the
existence of an algorithm that enables us to answer the question of the existence or
nonexistence of solutions for the first n Diophantine equations with the help of some
supplementary information of size related to n. The theorem above shows that this size
can be as small as log n + 0(1). Such information is in fact contained in the -log n
length prefix of the mythical number Q that encodes the solution to the halting problem
for the first n Turing machines (cf. Section 3.6).

In the same 1968 paper [9] Barzdin' derives one of the first results in "time-limited"
Kolmogorov complexity. It shows that by imposing recursive time limits on the
decoding procedure, the length of the shortest description of a string can sharply
increase. Lett be an integer function and T be a Turing machine. Define K~(x 1 ,nln) as
the minimum length of a program p such that T starting with conditional non its extra
input tape computes the n-length prefix of x within t(n) steps, and then halts.

THEOREM (Barzdin'). Let T be any Turing machine. For any binary sequence x with an
r.e. set M = { n: x. = 1} and any constant c > 0, there exists a (total) recursive function
t such that for infinitely many n, KHx 1,.ln) ~en holds. Moreover, there are such
sequences x such that for any (total) recursive t and any n, KHx 1 ,n);;:::c1n holds, with c,
a constant independent of n (but dependent on t.)

2.6. Information

If the conditional complexity K(xly) is much less than the unconditional complexity
K(x), then we may interpret this as an indication that y contains much information
about x. Consequently, up to an additive constant, we can regard the difference

I(x:y)= K(y)-K(yJx)

as a quantitative measure of the information about y contained in x. Ifwe choose f 0 , in
the Invariance Theorem, such that f 0 (e,x)=x, then

K(xlx)=O, J(x:x)=K(x).

In this way we can view the complexity K(x) as the information contained in an object
about itself. For applications, this definition of the quantity of information has the
advantage that it refers to individual objects, and not to objects treated as elements of
a set of objects with a probability distribution given on it, as in [144]. Does the new
definition have the desirable properties that hold for the analogous quantities in classic

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 209

information theory? We know that equality and inequality can hold only up to additive
constants, according to the indeterminacy in the Invariance Theorem. For example,
the equality l(x:y)=l(y:x) cannot be expected to hold exactly, but a priori it can be
expected to hold up to a constant related to the choice of reference function f 0 •

However, with the current definitions, information turns out to be symmetric only up
to a logarithmic factor. Define K(x, y) as the complexity of x and y together (see the
examples before Section 2.1). That is, the length of the least program of U that prints out
x and y and a way to tell them apart. The following lemma is due to Kolmogorov and
Levin.

LEMMA (symmetry). To within an additive term of O(log K(x,y)),

K(x, y) = K(x) + K(ylx).

In the general case it has been proved that equality up to a logarithmic error term is
the best possible. From the lemma it follows immediately that, to within an additive
term of O(log K(x, y)),

K(x)-K(xly)= K(y)-K(ylx),

and therefore the absolute value of the difference of the information quantities satisfies

IJ(x:y)-J(y:x)I = O(log K(x, y)).

It has been established that the difference can be of this order (see [173]).

2. 7. Self-delimiting Kolmogorov complexity

This more refined version of complexity is, in a sense, implicit in Solomonoff's
original a priori probability [148, 149]. A definition (the universal semicomputable
semimeasure m(x), corresponding to the Solomonoff-Levin distribution we study later)
was supplied in the 1970 survey of Levin and Zvonkin [173]. The quantity corres­
ponding to the self-delimiting Kolmogorov complexity K'(x) occurs already in the
form of the negative logarithm of the a priori probability m(x). It is explicitly defined
as below and studied by Levin and Gacs in 1974 [45, 86]. It was also discovered in 1975
by Chaitin [28]. For the development of the theory K'(x) is often a more useful
complexity measure than the K(x), but for many applications one can use both equally
well because they coincide to within a logarithmic factor.

NoTE. With some abuse of notation, after this section we simply drop the prime of
K'(x) and denote all types ofKolmogorov complexity simply by K(x). Ifit is important
whether we intend the self-delimiting version or the non-self-delimiting one, then we
will explicitly state which version we mean.

There are two ways to define K'(x). First, consider a class of Turing machines
T1 , T2 , .•. with a one-way input tape, a one-way output tape, and a two-way worktape.
Let the infinite input tape contain only zeros or ones (no blanks). These are the

210 M. LI, P.M.B. VITANYI

self-delimiting Turing machines, because the set of inputs (programs) for which each
machine halts is prefix-free. We call a binary string pa program for Tif Tstarts scanning
the leftmost bit of p and halts scanning the rightmost bit of p. Just as before, we can
prove an Invariance Theorem concerning the complexities associated with the different
machines, where the optimal complexity is provided by the universal self-delimiting
machine. We fix one such machine U and call it the reference self-delimiting machine.
The self-delimiting complexity K'(x) is the length of the shortest program p of U that
outputs x.

FACT. We have defined programs so that no program is the prefix of another one. Each
program is self-delimiting with respect to T. This allows an alternative approach to
define K'(x).

Second approach: For a self-delimiting machine T and each binary string x, define
P(x) as the probability that T eventually halts with x written on the output tape.
(Solomonoffhas called P the a priori probability, cf. Section 2.9.) The entropy is defined
as H(x) = - log P(x).

Let the symbols on the input tape be provided by independent tosses of an unbiased
coin. This enables us to give a natural probability distribution over programs: the
probability of program p is simply 2-IPI_ We can now easily compose programs from
self-delimiting subprograms by prefixing a sequence of n self-delimiting programs with
a self-delimiting description of n. Choosing the method in the previous section, we can
encode a binary string x by a program of length lxl + 2log14 Namely, define Turing
machine T such that it outputs a binary string x iff it first reads the self-delimiting
binary encoding of the length of x, and then the usual binary representation of x. Thus,
with respect to T,

P(x);;:,, 2 -1x1- 2 log lxl, H(x)~ lxl +2 log lxl, K'(x) ~ lxl + 2log14

To make the definitions meaningful, we normalize these measures with respect to an
optimal universal machine. This choice maximizes P and minimizes Hand K'. It can be
shown that the optimal self-delimiting machine selected this way can be set equal to the
reference machine U of the earlier approach! Hence the two approaches define the same
K' (as usual, up to a fixed additive constant). Let U be such a machine. Then, the
a priori probability of x is

P(x)= L rlPI.
U(p)=x

(This is the Solomonojf-Levin distribution which we denote below by the special
notation m(x). Thus the entropy H(x) = - log m(x).) It follows immediately from the
definitions that the relation between the different notions is K(x) ~ K'(x) ~ H(x). Levin
has shown the significant result that K'(x)= -logm(x)+O(l). That is, if x has many
long programs, it must also have a short program.

EXAMPLE. To within an additive constant, for all finite binary strings x, y we have
K'(x, y) ~ K'(x)+ K'(y). Namely, let p and q be self-delimiting programs for x and
y respectively. Let V be a universal machine just like the reference machine U, except

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 211

that it simulates U first on p to produce x, then on q to produce y, and subsequently
outputs x, y. Presented with input pq, V can tell p apart from q because p is self­
delimiting. Hence, U with program ()"<V>1pq, computes xy. Therefore, for all finite
binary strings x,y, K'(x,y)~K'(x)+K'(y)+n(V)+ l.

The self-delimiting complexity K' satisfies many laws without a logarithmic fudge
term. Infinite random sequences can be more naturally defined using K' complexity. In
fact, it turns out that an infinite binary string x is random in the sense of Martin-Lof
(see before and [109]) iffthere exists a constant c such that K'(x 1 ,.)~n-c for all n. This
interesting characterization was proposed by Chaitin [28], and proved by Schnorr.
The following lemma, due to Levin and Gacs [45], and also Chaitin [28], shows that
K'(x) is a symmetric measure of the information in x.

LEMMA (strong symmetry). To within an additive constant,

K'(x, K'(x)) = K'(x), K'(x,y) = K'(x)+ K'(y I (x, K'(x))).

Therefore, the exact symmetry of iriformation holds up to an additive constant in the
sense that

K'(y)-K'(y I (x, K'(x)))= K'(x)-K'(x I (y, K'(y))).

REMARK. It is a fundamental result due to Gacs [45] that if we delete K'(x) and K'(y)
from the condition, the equalities in the lemma in general can only hold to within a term
logarithmic in K'(x, y). In Chaitin's formulation [28] of conditional complexity, say
denoted by Kc(xiy), he means the complexity of x given the lexicographically least
program p for y. It is straightforward to verify that Kc(xly) = K'(xlp) = K'(xl(y, K'(y))).
Furthermore, if simply Kc(x)=K'(x) and Kc(x,y)=K'(x,y), then we have Kc(x,y)=
Kc(x) + Kc(ylx) up to an additive constant.

2.8. Probability theory

Laplace [83] has pointed out the following conflict between our intuition and the
classical theory of probability:

"In the game of heads and tails, if head comes up a hundred times in
a row then this appears to us extraordinary, because the nearly
infinite number of combinations that can arise in a hundred throws
are divided in regular sequences, or those in which we observe a rule
that is easy to grasp, and in irregular sequences, that are incompar­
ably more numerous."

Yet, one-hundred heads are just as probable as any other equal-length sequence of
heads and tails, even though we feel that it is less "random" than some others. We can
formalize this. (We follow Gacs's insightful treatment [46] in this section). Let us
call a pay-off function (or martingale) with respect to distribution P any nonnegative
function t(x) with :ExP(x)t(x) ~ l. Suppose our favorite nonprofit casino asks 1 dollar
for a game that consists of a sequence of flips of a fair coin, and claims that each
outcome x has probability P(x) = 2- Jxl. To back up this claim, it ought to agree to pay

212 M. LI, P.M.B. VITANYI

t(x) dollars on outcome x. Accordingly, we propose a pay-off t0 with respect to Pn (P
restricted to sequences of n coin flips): put t0 = 2n12 for all x whose even digits are
0 (head) and 0 otherwise. This bet will cost the casino 250 -1 dollars for the outcome
(n = 100) above. Since we must propose the pay-off function beforehand, it is unlikely
that we define precisely the one that detects this particular fraud. However, fraud
implies regularity, and, as Laplace suggests, the number of regular bets is so small
that we can afford to make all of them in advance.

"If we seek a cause wherever we perceive symmetry, it is not that we
regard the symmetrical event as less possible than the others, but,
since this event ought to be the effect of a regular cause or that of
chance, the first of these suppositions is more probable than the
second."

Let us make this formal, using some original ideas of Solomonoff as developed by
Levin. We need the Kraft inequality: for each set S offinite binary strings such that no
string in Sis a proper prefix of another string in S, we have

I r1x1:s::;: i.
xeS

We call Sa pre.fix-code. With notation K(xly) we mean the self-delimiting complexity
of the previous section. Then for each fixed y, the set of K(xly)'s is the length set of
a prefix-code, so Kraft's inequality applies. For most binary strings of length n, no
significantly shorter description exists, since the number of short descriptions is
small. We can sharpen this observation by, instead of counting the number of simple
sequences, measuring their probability. By Kraft's inequality, for each fixed y,

(2.3)
x

so that only a few objects can have small complexity. Conversely, letµ be a computable
probability distribution, i.e., such that there is an effective procedure that, given x,
computes µ(x) to any degree of accuracy. Let K(µ) be the length of the smallest such
program. Then

K(x) :s::;: -log µ(x) + K(µ) + c, (2.4)

with c a universal constant. Put d(xlµ)= -logµ(x)-K(x). By (2.3), t(xlµ)=2J<xlµ> is
a pay-off function. We can now beat any fraudulent casino. We propose the pay-off
function t(x)=2-iogP.<x>-K<xln>. (We use conditional complexity K(xln) because the
uniform distribution Pn depends on n.) If every other coin flip comes up heads, then
K(xln):s::;:(in)+c0, and hence we win 2r<x>~c 1 2n12 from the casino (c0 ,c1 >0), even
though the bet does not refer to "heads".

The fact that t(xlµ) is a pay-off function, implies by Chebychev's First Inequality
that for any k>O,

µ{x: K(x)< -log µ(x)-k} <2-k. (2.5)

Together, (2.4) and (2.5) say that with large probability the complexity K(x) ofa random
outcome x is close to its upper bound - log µ(x) + K(µ). If an outcome x violates any

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 213

"laws of probability", then the complexity K(x) falls far below the upper bound. Indeed,
a proof of some law of probability (like the law of large numbers, the law of iterated
logarithm, etc.) always gives rise to some simple computable pay-off function t(x)
taking large values on the outcomes violating the law. In general, the pay-off function
t(xiµ) is maximal (up to a multiplicative constant) among all pay-off functions that are
semicomputable (from below). Hence the quantity d(xiµ) constitutes a universal test of
randomness-it measures the deficiency of randomness in the outcome x with respect
to distribution µ, or the extend of justified suspicion against hypothesis µ given the
outcome x.

2.9. A priori probability: the So/omonojf' Levin distribution

Let K(x) be the self-delimiting variant of complexity. The incomputable Solomono.ff­
Levin distribution m(x) can be defined as

m(x)= L 2-IPI,
U(p) =x

with Uthe reference universal self-delimiting Turing machine. Now m(x) can be inter­
preted as the probability that U halts with output x if we generate the input p by an
indefinitely long sequence of random coin flips (U will use only the self-delimiting prefix
p of this sequence as its program) (see also the section on self-delimiting complexity).
This distribution was conceived by Solomonoff in [148, 149], but in different form. A
mathematically natural form, in terms of a universal semicomputable semimeasure that
dominates all semicomputable semimeasures, which can be shown to coincide with the
above definition of m(x) up to a multiplicative constant, was given by Levin in [173].
A discrete semimeasure µ is a real-valued function satisfying Lxµ(x)::;:; l. A function µ
is semicomputable (from below) if the set { <p, q, x): p/q::;:; µ(x) }, p, q and x natural
numbers, is recursively enumerable.

It can be shown that m is a universal semicomputable semimeasure in the sense that,
for each semicomputable semimeasure µ,there exists a constant c>O such that, for all
x, m(x) > cµ(x). That is, m dominates µ multiplicatively.

It can be shown that m(x) = 2-K(x)±O(l). It turns out that m(x) has the remarkable

property that the test d(xlm) shows all outcomes x random with respect to it. We can
interpret (2.4) and (2.5) as saying that if the real distribution isµ, then µ(x) and m(x) are
close to each other with large probability. Therefore, if x comes from some unknown
computable distribution p, then we can use m(x) as an estimate for µ(x). Accordingly,
Solomonoff has called m "a priori probability". The randomness test d(xip) can be
interpreted in the framework of hypothesis testing as the likelihood ratio between
hypothesisµ and the fixed alternative hypothesis m. In ordinary statistical hypothesis
testing, some properties of an unknown distribution µ are taken for granted, and the
role of the universal test can probably be reduced to some tests that are used in
statistical practice. However, such conditions do not hold in general as is witnessed by
prediction of time series in economics, pattern recognition or inductive inference (see
Section 3.2).

Since the a priori probability m is a good estimate for the actual probability, we can

214 M. LI, P.M.B. VITANYI

use the conditional a pnon probability for prediction-without reference to the
unknown distributionµ. For this purpose, we first define a priori probability M for the
set of infinite binary sequences as in [173].For any finite sequence x,M(x) is the a priori
probability that the outcome is some extension of x. Let x, y be finite sequences.
Then

M(xy)

M(x)
(2.6)

is an estimate of the conditional probability that the next terms of the outcome will be
given by y provided that the first terms are given by x. It converges to the actual
conditional probability µ(xy)/ µ(x) with µ-probability 1 for any computable distribution
µ [150]. Inductive inference formula (2.6) can be viewed as a mathematical formulation
of Occam's razor: predict by the simplest rule fitting the data. The a priori distribution
Mis incomputable, and the main problem of inductive inference can perhaps be stated
as "finding efficiently computable optimal approximations to M" [46].

3. Applications of compressibility

It is not surprising that some strings can be compressed arbitrary far. Easy examples
are the decimal expansions for some transcendental numbers like n = 3.1415 ... and
e=2.7182 These strings can be described in 0(1) bits, and have therefore constant
Kolmogorov complexity. A moment's reflection suggests that the set of computable
numbers, i.e., the real numbers computable by Turing machines which start with
a blank tape, coincides precisely with the set of real numbers of Kolmogorov com­
plexity 0(1). A nice application of what we may call extreme compressibility of some
strings is a new version of Godel's celebrated incompleteness theorem.

3.1. A version of Godels Theorem

Recall Godel's famous incompleteness result that each formal mathematical system
which contains arithmetic is either inconsistent or contains theorems which cannot be
proved in the system. Barzdin' has first formulated a new form of Godel's Incomplete­
ness Theorem in terms of simple sets (cf. Section 2.5). This was also treated by Chaitin
in a sequence of papers [26, 27, 32], as follows. Let us view a theorem-a true
statement-together with the description of the formal system, as a description of
a proof of that theorem. Just as certain numbers can be really far compressed, liken or
10100, in their descriptions, in a formal mathematical system the ratio between the
length of the theorems and the length of their shortest proofs can be enormous. In
a sense, the argument below shows that the worst-case such ratio expressed as
a function of the length of the theorem increases faster than any computable function.

In Bennett's [11] phrase: although most numbers are random, only finitely many of
them can be proved random within a given consistent axiomatic system. If T is an
axiomatized system (which is sound, i.e. all theorems provable in Tare true), whose
axioms and rules of inference require about k bits to describe, then T cannot be used to
prove the randomness of any number much longer thank bits. If the system could prove

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 215

randomness for a number much longer thank bits, then the first such proof (first in an
unending enumeration of all proofs obtainable by repeated application of axioms and
rules of inference) could be used to derive a contradiction: an approximately k-bit
program to find and print out the specific random number mentioned in this proof,
a number whose smallest program is by assumption considerably larger than k bits.
Therefore, even though most strings are random, we will never be able to explicitly
exhibit a string of reasonable size which demonstrably possesses this property. (This
formulation is due to Bennett.)

EXAMPLE (Chaitin). We use an approach that is slightly different from Chaitin's
approach.

(a) Let axiomatized theory T be describable ink bits: K(T)~k. Assume that T is
contradiction-free.

(b) Assume that all true formulas in T can be proved in T.
(c) Let Sc(x) be a formula in T with the meaning: "x is the lexicographically least

binary string oflength c with K(x)?: c." Here x is a formal parameter and can explicit
constant, so K(Sc) ~log c up to a fixed constant independent of T and c.

For each c, there exists an x such that S,(x) =true is a true statement by a simple
counting argument. Moreover, Sc expresses that this x is unique. It is easy to see that
combining the descriptions of T, S0 we obtain a description of this x. Namely, by (b), for
each candidate string y of length c, we can decide S,(y) =true (holds for y = x) or
not(Sc(y))= true (holds for y # x), by simple enumeration of all proofs in T. We need to
distinguish the descriptions of T and S0 so we code T's description self-delimiting in
not more than 2k bits. Hence, for some fixed constant c' independent of x, T and c, we
find K(x) ~ 2k +log c + c', which contradicts K(x)> c for all c > cy, where er= 3k + c' for
another constant c'.

As Chai tin expresses it: " ... if one has ten pounds of axioms and a twenty-pound
theorem, then that theorem cannot be derived from those axioms."

EXAMPLE (Levin). Levin has tried to gauge the implications of algorithmic complexity
arguments to probe depths beyond the scope ofGodel's arguments. He derives what he
calls "Information Conservation Inequalities". Without going into the subtle details,
Levin's argument in [86] takes the form that the information /(a:f3) in a string a about
a string f3 cannot be significantly increased by either algorithmic or probabilistic
means. In other terms, any sequence that may arise in nature contains only a finite
amount of information about any sequence defined mathematically. Levin says: "Our
thesis contradicts the assertion of some mathematicians that the truth of any valid
proposition can be verified in the course of scientific progress by means of nonformal
methods (to do so by formal methods is impossible by Godel's Theorem)." (For
a continuation of this research, see [88].)

3.2. Inductive inference in theory formation

This application stood at the cradle of Kolmogorov complexity proper. It led
Solomonoff to formulate the important notion of a universal a priori probability, as
described previously. Solomonotf's proposal [149], i.e., the Solomonotf-Levin distri-

216 M. LI, P.M.B. VITANYI

bution, is a synthesis of Occam's principle and Turing's theory of effective computability
applied to inductive inference. His idea is to view a theory as a compact description of
past observations together with predictions of future ones. The problem of theory
formation in science is formulated as follows. The investigator observes increasingly
larger and larger initial segments of an infinite binary sequence. We can consider the
infinite binary sequence as the outcome of an infinite sequence of experiments on some
aspect X of nature. To describe the underlying regularity of this sequence, the investi­
gator tries to formulate a theory that governs X, on the basis of the outcome of past
experiments. Candidate theories are identified with computer programs that compute
infinite binary sequences starting with the observed initial segment.

To make the discussion precise, we give a simplified Solomonoff inductive inference
theory. Given a previously observed data string S over {O, 1 }*,the inference problem
is to predict the next symbol in the output sequence, i.e., extrapolating the sequence S.
By Bayes' rule, for a= 0 or 1,

P(Sal S) = P(SISa)P(Sa)
P(S) '

where P(S)=P(SISO)P(SO)+P(SISl)P(Sl). Since P(S!Sa)= l for any a, we have,

P(Sa)
P(SalS)= P(SO)+P(Sl)

(3.1)

(3.2)

In terms of inductive inference or machine learning, the final probability P(SalS) is the
probability of the next symbol being a given the initial sequence S. The goal of induc­
tive inference in general is to be able to infer the underlying machinery that generated S,
and hence be able to predict (extrapolate) the next symbol. Obviously we now only
need the prior probability P(Sa) to evaluate P(SalS). Let K denote the self-delimiting
Kolmogorov complexity. Using the Solomonoff-Levin distribution, assign rK(Sal as
the prior probability to P(Sa). This corresponds to Occam's razor principle of choosing
the simplest theory and has two very nice properties:

(1) l:x2-K(xJ ~ 1 by Kraft's inequality. Hence this is a proper probability assignment.
(2) For any computable probability P, there is a constant c such that 2-K(xl)?; c P(x),

for all x. In fact, m(x)=rK(xJ±0<1l [47, 173].
This approach is guaranteed to converge in the limit to the true solution and in fact it
converges faster than any other method up to a constant multiplicative factor. It turns
out that Gold's idea of identification by enumeration [53] can also be derived from
this approach [96].

The notion of complexity of equivalent theories as the length of a shortest program
that computes a given string emerges forthwith, and also the invariance of this measure
under changes of computers that execute them. The metaphor of natural law being
a compressed description of observations is singularly appealing. Among others, it
gives substance to the view that a natural law is better if it "explains" more, that is,
describes more observations. On the other hand, if the sequence of observations is
sufficiently random, then it is subject to no law but its own description. This
metaphorical observation was also made by Chaitin [24].

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 217

3.3. Rissanen's Minimum Description Length Principle

Scientists formulate their theories in two steps: first a scientist must, based on
scientific observations or given data, formulate alternative hypotheses, and second he
selects one definite hypothesis. This was done by many ad hoe principles, among the
most dominant, Occam's razor principle, the maximum likelihood principle, various
ways of using Bayesian formula with different prior distributions. However, no single
principle is satisfactory in all situations. But in an ideal sense, the Solomonoff approach
we have discussed presents a perfect way of solving all induction problems using Bayes'
rule with the universal prior distribution. However, due to the noncomputability of
the universal prior function, such a theory cannot be directly used in practice. Inspired
by the Kolmogorov complexity research, in 1978 Rissanen proposed the Minimum
Description Length Principle (MDLP) [132]. See also [177] for a related approach
pioneered by C.S. Wallace and D.M. Boulton in 1968. Quinlan and Rivest used this
principle to construct an algorithm for constructing decision trees and the result was
quite satisfactory compared to existing algorithms [130]. Using MDLP, Gao and Li
[51] have implemented a system (on IBM PC) which on-line recognizes/learns hand­
written English and Chinese characters. The Minimum Description Length Principle
can be intuitively stated as follows.

MINIMUM DESCRIPTION LENGTH PRINCIPLE. The best theory to explain a set of data is
the one which minimizes the sum of

(1) the length (encoded in binary bits) of the theory;
(2) the length (in binary bits) of data when encoded with the help of the theory.

EXAMPLE (Kemeny). The importance of"simplicity" for inductive inference was already
exploited in an elegant paper by Kemeny [70]. This paper clearly anticipates the ideas
developed in this section, and we cite one example. We are given n points in the plane.
Which polynomial fits these points best? One extreme is to put a straight line through
the cluster such that the x2 measure is minimized. The other extreme is to simply fit an
n -1 degree polynomial through then points. Neither choice seems very satisfactory,
and it is customary to think that the problem is not formulated precisely enough. But
MDLP says that we look for the mth degree polynomial, rn ~ n - 1, such that the
description of the m-vector of coefficients of the polynomial, together with the des­
cription of the points relative to the polynomial, is minimized.

It is remarkable that, using Kolmogorov complexity, we can formally derive a
version of the MDL principle, and explain how and why it works [96]. From Bayes'
rule,

P(HID)= P(DIH)P(H)
P(D) '

we need to choose the hypothesis H such that P(HID) is maximized, where D denotes
the data. Now taking the negative logarithm on both sides of Bayes' formula, we get

-log P(HID)= -log P(DIH)-log P(H)+log P(D).

218 M. LI, P.M.B. VITANYI

Since D is fixed, maximizing the term P(HID) is equivalent to minimizing

-log P(DIH)-log P(H)

Now to get the minimum description length principle, we only need to explain the
above two terms properly. The term - log P(H) is straightforward. Assuming the
Solomonoff- Levin distribution, P(H) = r K(H) where K(H) is the self-delimiting
Kolmogorov complexity of H. Then the term - log P(H) is precisely the leng~h of
a minimum-length pre.fix-free encoding, or shortest program, for the hypothesis H.
Similarly for the term -log P(D I H).

Now just assume that P is computable. It can be shown that the universal probability
distribution m(x) can approximate P(x) in the sense that

(1) there is a constant c, such that m(x)~cP(x), and
(2) the probability that m(x):::;; k P(x) is at least 1 - 1/k.

Since m(H) = rK(H)±O(I>, the quantity rK<H) is a reasonable estimate for P(H).
Similarly, 2-K!DIH> is an estimate for P(D I H).Hence we must minimize K(D I H) + K(H),
i.e., find an H such that the sum of the description lengths is minimized.

In the original Solomonoff approach, H in general is a Turing machine. In practice
we must avoid such a too general approach in order to keep things computable. In
different applications, the hypothesis H can mean many different things. For example,
H may refer to decision trees, finite automata, Boolean formulae, or polynomials of
certain degree. Thus, Rissanen suggested the following approach. First convert (or
encode) H to an integer. Then we try to assign a prior probability to each integer.
Assigning rK(n) to integer n would be perfect but it is not computable. Jeffreys [67]
suggested to assign probability 1/n to integer n. But this results in an improper dis­
tribution since L::'; 1 1/n diverges. Rissanen defined the following length function: let

l*(n)= log n +log log n +log log log n + · ··
all positive terms, and let L(n) = l*(n)+ log c where c = 2.865064 It has been shown
that LnrL(•l=J, see [133].

3.4. Learnability in the Valiant learning model

This section is rather closely related to the previous two sections. There we did
not consider the number of steps involved in making an inference, or the number of
examples needed to learn a concept. Solomonoff's principle shows that we learn
something perfectly in the limit, but how fast this converges is not prescribed at the
outset. For instance, the well-known principle of Gold [53] of inference by enumera­
tion can be viewed as a particular case of Solomonoff's principle (cf. [96]) and we note
here without further explanation, and as immediately clear to those familiar with it,
that the Gold paradigm of inductive inference is aimed at precise inference. But what if
we want to learn a concept using a number of examples that is bounded a priori?
Obviously if we are to precisely infer a law of nature, an infinite (or exponential)
behavior is inherent. However, for the purpose of machine learning, it is sufficient to
just learn such a law approximately: if a human child (or a computer) would recognize,
with 0.99 probability, the next apple after seeing three apples, we consider that the

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 219

concept of apple is learned. In 1983, Valiant [157] introduced such a learning model.
Valiant emphasizes polynomial-time learnability. For simplicity and convenience, we
consider the problem of learning Boolean formulae of n variables.

According to Valiant, a concept Fis, say, a Boolean formula. Those vectors v such
that F(v)= 1 are called positive examples, the rest are negative examples of F. For any F,
there are many possible Boolean formulae f such that j is consistent with the concept
F. Let 1/1 denote the least number of symbols needed to write such a representation f.
The learning algorithm has available two buttons labeled POS and NEG. If POS
(NEG) is pushed, a positive (negative) example is generated according to some fixed but
unknown probability distribution D+ (D-). We assume nothing about the distribu­
tions n+ and D- except that LJ(v)=iD+ (v)= 1 and LJ<vJ=oD- (v)= 1. Let A be a
class of concepts. Then A is learnable from examples iff there exists a polynomial p
and a (possibly randomized) learning algorithm L such that, for f in A and e > 0,
algorithm L halts in p(n, lfl, l/e) time and examples, and outputs a formula geA
that, with probability at least 1-e, has the following properties: Lg(v)=oD+ (v) <e and
Lg(v)=1D-(v)<e.

Various classes of concepts are shown to be learnable in Valiant's sense [16, 58, 68,
99, 134, 157, 158]. Many Valiant learnable classes are NP-complete to learn in the Gold
sense (see [69] for a survey). In [16], again by Occam's principle, it was shown that
given a set of positive and negative data, any consistent concept of size "reasonably"
less than the size of data is an "approximately" correct concept. That is, if one can find
a shorter representation of data, then one learns. The shorter the conjecture is, the more
and better it explains with higher probability (see also [96]). Many concepts turn out to
be too hard (like NP-complete) to learn in Valiant's sense. A further refinement to
learning "simple" concepts under all "simple" distributions, using the universal
distribution m, is developed in [176].

3.5. Computable numbers are not random

One can make precise the off-hand claim made in the Introduction that the set of
computable numbers coincides with the set of reals which have Kolmogorov com­
plexity 0(1). (We view a real number as an infinite sequence of digits.) Let N = {O, 1, ... }
be the set of natural numbers, let S = { e, 0, 1, 01, 10, 11,. .. } be the set of finite binary
strings, and let X be the set of infinite binary strings. We denote by lsl the length of
a strings, and by s1,. the prefix oflength n ofa strings. (If x e X then lxl = oo.) An infinite
string x is recursive iffthere is a recursive function f: N-tS such that x 1 '" = f(n) for all n.
Let K denote the plain Kolmogorov complexity as in Section 2. It can be shown [29]
that x is recursive iff there exists a constant c > 0 such that for all n e N we have
K(x1:n) ~ K(n) +c.

3.6. The number of wisdom Q

This Cabalistic exercise follows Chaitin [26, 27] and Bennett [11]. A real is normal
if each digit from O to 9, and each block of digits of equal length, occurs with equal
asymptotic frequency. No rational number is normal to any base, and almost all

220 M. LI, P.M.B. VITANYI

irrational numbers are normal to every base. But for particular ones, like re and e, it is
not known whether they are normal, although statistical evidence suggests they are. In
contrast to the randomly appearing sequence of the decimal representation of re, the
digit sequence of Champernowne's number 012345678910111213 ... is very non­
random yet provably normal [34]. Once we know the law that governs n:'s sequence, we
can make a fortune betting at fair odds on the continuation of a given initial segment,
and most gamblers would eventually win against Champernowne's number because
they will discover its law.

Almost all real numbers are Kolmogorov random, which implies that no possible
betting strategy, betting against fair odds on the consecutive bits, can win infinite gain.
Can we exhibit a specific such number? One can define an uncomputable number
k = O.k 1 k2 • .• such that k; = 1 if the ith program in a fixed enumeration of programs for
some fixed universal machine halts, else k; = 0. By the unsolvability of the halting
problem, k is noncomputable. However, by Barzdin's Theorem (Section 2.5) k is not
incompressible: each n-length prefix ki:n of k can be compressed to a string of length
not more than 2 log n (since K(k 1 .In)~ log n), from some n onwards. It is also easy to see
that a gambler can still make infinite profit, by betting only on solvable cases of the
halting problem, of which there are infinitely many. Chaitin [28] has found a number
that is random in the strong sense needed.

Q equals the probability that the reference self-delimiting universal Turing machine
halts when its program is generated by fair coin tosses. That is, Q = Lx m(x), with m(x)
the Solomonoff-Levin distribution. Then, Q is a number between 0 and l. It is greater
than 0 since some programs do halt, and it is less than one since some programs do not
halt (use the Kraft inequality). It is Kolmogorov random, it is noncomputable, and no
gambling scheme can make an infinite profit against it. It has the curious property that
it encodes the halting problem very compactly. Namely, suppose we want to determine
whether a program p halts or not. Let program p have length n. Its probability in terms
of coin tosses is r". Ifwe know the first n bits Qln ofQ, then Q1n<Q<Q1.+2-n.

However, dovetailing (execute phases l, 2, where phase i consists of executing one
step of each of the first i programs) the running of all programs sufficiently long must
yield eventually an approximation Q' of Q with Q' > Q 10 . If p is not among the halted
programs which contributed to Q', then p will never halt, since otherwise its con­
tribution would yield Q ~ Q' + r ", which is a contradiction. (That is, Qin is a short
program to obtain kl m with m ~ 2".)

The argument suffices, via Barzdin's Theorem in Section 2.5, to establish that Q is
a random infinite sequence in the sense of Martin-Lof (Section 2.4).

Knowing the first 10,000 bits of Q enables us to solve the halting of all programs of
less than 10,000 bits. This includes programs looking for counterexamples to Fermat's
Last Theorem, Riemann's Hypothesis and most other conjectures in mathematics
that can be refuted by single finite counterexamples. Moreover, for all axiomatic
mathematical theories which can be expressed compactly enough to be conceivably
interesting to human beings, say in less than 10,000 bits, Q uo.ooo can be used to decide
for every statement in the theory whether it is true, false or independent. Finally,
knowledge of Q 1 " suffices to determine whether K(x)~n for each finite binary string x.
Thus, Q is truly the number of wisdom, and "can be known of, but not known, through
human reason" [11].

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 221

EXAMPLE (Chaitin). Recall that the Barzdin'-Loveland Lemma states that for all r.e.
sets each n-length initial segment of their characteristic sequence has Kolmogorov
complexity O(log n). Kolmogorov has remarked that this implies that the solubility of
the first n Diophantine equations in an effective enumeration can be decided using
at most O(log n) bits extra information. Namely, given the number m~n of soluble
equations in the first n equations, we can find them all effectively in the obvious way.
Chaitin observed that this is not the case if we replace the question of mere solubility by
the question of whether there are finitely many or infinitely many nontrivially different
solutions. Namely, no matter how many solutions we find for a given equation, by itself
this can give no information on the question to be decided. It turns out that the set of
indices of the Diophantine equations with infinitely many different solutions is not
r.e. In particular, in the characteristic sequence each initial segment of length n has
Kolmogorov complexity of about n. Chaitin says that this shows that randomness is
inherent not only in natural phenomena (e.g., related to quantum mechanics), but also
occurs in mathematics [32, 33]. More precisely, we have the following claim.

CLAIM. There is an (exponential) Diophantine equation A(n,x 1,x2 , ..• ,xm)=O which
has infinitely many solutions x i. x2 , •• ., Xm iff the n-th bit of Q is I.

PROOF. By dovetailing the running of all programs of the reference self-delimiting
machine U in the obvious way we find a computable sequence of rational numbers
r 1 ~r2 ~ • • · such that Q = lim 00 r •. The set R = { (n, k): the nth bit of rk is a 1} is a
recursively enumerable (even recursive) set. The main step is to use a theorem due to
J.P. Jones and Y.V. Mateyasevich (J. Symbol. Logic 49 (1984), pp. 818-829) to the effect
that "every recursively enumerable set R has a singlefold exponential Diophantine
representation A(p, y)". That is, A(p, y) = 0 is an exponential Diophantine equation, and
the singlefoldedness consists in the property that p e R iff there is a y such that
A(p, y) = 0 is satisfied and, moreover, there is only a single such y. (Here both p and y
can be mu!tituples of integers; in our case p represents (n,x 1), and y represents
(x 2 , •.• , xm>. For technical reasons we consider as proper solutions only solutions
x involving no negative integers.) Representing R this way, there is a Diophantine
equation A(n, k, x 2 , ... , xm)=O which has exactly one solution x 2 , ... , Xm if the nth bit
of the binary expansion of rk is a one, and it has no solution x 2 , •.• , Xm otherwise.
Consequently, the number of different m-tuples x 1 , x 2 , ... , Xm which are solutions to
A(n, x 1 , x2 , •.. , Xm) = 0 is infinite if the nth bit of the binary expansion of Q is a 1, and
this number is finite otherwise. D

4. Example of an application in mathematics: weak prime number theorems

Using Kolmogorov complexity, it is easy to derive a weak version of the prime
number theorem. An adaptation of the proof that Chai tin gives of Euclid's theorem
that the number of primes is infinite [31] yields a very simple proof of a weak prime
number theorem. Let n:(n) denote the number of prime numbers less than n. (Recall that
n(n) is asymptotically n/log n). We prove that n(n) is Q(log n(log log n)- 1). Let n be

222 M. Lt, P.M.B. VITANYI

a random number with K(n)~log n-0(1). Consider a prime factorization

with p 1 , p2 , ••• the sequence of primes in increasing order. With m = n:(n), we can
describe n by the n:(n)-length vector of exponents (e1 , .•. , e,,<n>). Since Pi~ p1 =2, it holds
that ei ~log n and, bounding K(e;) by the length of self-delimiting descriptions of ei,

K(e;) ~log log n + 2 log log log n,

for all i < m. Therefore,

K(n)< n:(n)(log log n + 2 log log log n).

Substituting the lower bound on K(n), we obtain the claimed lower bound on n(n) for
the special sequence of random n.

Recently, P. Berman [Personal communication] obtained the stronger result
that the number of primes below n is O(n/log2 n), by an elementary Kolmogorov
complexity argument. It is interesting because it shows a relation between primality
and prefix codes. Recall that we identify the positive integer n with the nth binary string.
Assume that we have a function c:N-+N with the following property: for every two
integers m, n, c(m) is not a prefix of c(n). Then c is called a prefi~ code. Consider only
prefix codes c such that c(n) = o(n 2). (For instance, choose c(n) =I nln, the self-delimiting
description of n with binary length I c(n)I =log n + 2 log log n bits.)

LEMMA (Berman). For an infinite subsequence of positive integers n, Pn=O(c(n)), where
Pn is the n-th prime.

Choosing c(n) as above we have c(n) < n log 2 n. Therefore, by the lemma, Pn is
O(n log2 n). Straightforward manipulation of the order-of-magnitude symbols then
shows that n:(n) is Q(n/log2n). This can be strengthened by choosing more efficient
codes, but not all the way to obtain n:(n) = O(n/log n).

5. Applications of incompressibility: proving lower bounds

It was observed in [126] that the static, descriptional (program size) complexity of
a single random string can be used to obtain lower bounds on dynamic, computational
(running time) complexity. The power of the static, descriptional Kolmogorov com­
plexity in the dynamic, computational lower bound proofs rests on one single idea:
there are incompressible (or Kolmogorov random) strings. A traditional lower bound
proof by counting usually involves all inputs (or all strings of certain length) and one
shows that the lower bound has to hold for some of these ("typical") inputs. Since
a particular "typical" input is hard to construct, the proof has to involve all the inputs.
Now we understand that a "typical input" can be constructed via a Kolmogorov
random string. However, as we have shown in relation with Godel's Theorem, we will
never be able to put our hands on one of those strings or inputs and claim that it is
random or "typical". No wonder the old counting arguments had to involve all inputs:

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 223

it was because a particular typical input cannot be proved to be "typical" or random. In
a Kolmogorov complexity proof, we choose a random string that exists. That it cannot
be exhibited is no problem, since we only need existence. As a routine, the way one
proves a lower bound by Kolmogorov complexity is as follows: Fix a Kolmogorov
random string which we know exists. Prove the lower bound with respect to this
particular fixed string: show that ifthe lower bound does not hold, then this string can
be compressed. Because we are dealing with only one fixed string, the lower bound
proof usually becomes quite easy and natural.

In the next subsection, we give three examples to illustrate the basic methodology.
In the following subsections, we survey the lower bound results obtained using
Kolmogorov complexity of the past ten years (1979-1988). Many of these results
resolve old or new, some of them well-known, open questions; some of these results
greatly simplify and improve the existing proofs. The questions addressed in the next
few subsections often deal with simulating one machine model by another, e.g., as
treated in P. van Emde Boas' Chapter 1 "Machine Models and Simulations" in this
Handbook.

5.1. Three examples of proving lower bounds

In this section, we illustrate how Kolmogorov complexity is used to prove lower
bounds by three concrete examples.

5.1.1. Example 1: one-tape Turing machines
Consider a most basic Turing machine model with only one tape, with a two-way

read/write head, which serves as both input and worktape. The input is initially put onto
the first n cells of the orily tape. We refer a reader not familiar with Turing machines to
[62] for a detailed definition. The following theorem was first proved by Hennie and
a proof by counting, for comparison, can be found in [62, page 318]. In [124] the
following elegant proof is presented. Historically, this was the first lower bound
obtained by Kolmogorov complexity.

THEOREM. It requires Q(n2) steps for the above single-tape TM to recognize L = { wwR:
WE {O, 1 }*} (the palindromes). Similarly for L' = { w2wR: WE {O, 1 }*}.

PROOF (cf [124]). Assume on the contrary that M accepts L in o(n2) time. Let IMI
denote the length of the description of M. Fix a Kolmogorov random string w of length
n for a large enough n. Consider the computation of M on wwR. A crossing sequence
associated with a tape square consists of the sequence of states the finite control is in
when the tape head crosses the intersquare boundary between this square and its left
neighbor. If cs is a crossing sequence, then lcsl denotes the length of its description.
Consider an input ofwOnwR oflength 3n. Divide the tape segment containing the input
into three equal-length segments of size n. If each crossing sequence associated with
a square in the middle segment is longer than n/(lOIMI) then M spent Q(n2) time on this
input. Otherwise there is a crossing sequence oflength less than n/(lOIMI). Assume that
this occurs at c0 . Now this crossing sequence requires at most n/10 bits to encode. Using

224 M. LI, P.M.B. VITANYI

this crossing sequence, we reconstruct was follows. For every string xO"xR of length 3n,
put it on the input tape and start to simulate M. Each time when the head reaches c0

from the left, we take the next element in the crossing sequence to skip the computation
of M when the head is on the right of c0 and resume the simulation starting from the
time when the head moves back to the left of (or on) c0 again. If the simulation ends
consistently, i.e. every time the head moves to c0 , the current status of M is consistent
with that specified in the crossing sequence, then w = x. Otherwise, if w # x and the
crossing sequences are consistent in both computations, then M accepts a wrong input
xO"wR. However, this implies

K(w)< lcsl + O(log n) < n,

contradicting K(w) ;:i: n. D

5.1.2. Example 2: parallel addition
Consider the following widely used and most general parallel computation model,

the priority PRAM. A priority PRAM consists of processors P(i), i = 1, 2, ... , n°< 11, and
an infinite number of shared memory cells C(i), i = 1, 2, ... Each step of the computation
consists of three parallel phases as follows. Each processor (l) reads from a shared
memory cell, (2) performs a computation, and (3) may attempt writing into some shared
memory cell. At each step each processor is in some state. The actions and the next
state of each processor at each step depend on the current state and the value read. In
case of write conflicts, the processor with the minimum index succeeds in writing.

THEOREM. Adding n integers, each of polynomial number of bits, requires Q(log n)
parallel steps on a priority PRAM.

REMARK. A weaker version than the one above was first proved in [59] using a Ramsey
theorem, and in [66, 122]. In these references one needs to assume that the integers
have arbitrarily many bits, or exponentially many bits. A more precise version of the
above theorem was proved in [93]. Beame [10] obtained a different proof, indepen­
dently.

PROOF (cf [93]). Suppose that a priority PRAM M with n°(l) processors adds n
integers in o(log n) parallel steps for infinitely many n's. The programs (maybe infinite)
of M can be encoded into an oracle A. The oracle, when queried about (i, 1), returns the
initial section of length l of the program for P(i). Fix a string X E { 0, 1 }"' such that
KA(X);;::IXI. Divide X equally into n parts x 1,x2, ... ,Xn· Then consider the (fixed)
computation of M on input (xi, ... , Xn). We inductively define (with respect to X)
a processor to be alive at step t in this computation if

(1) it writes the output; or
(2) it succeeds in writing something at some step t';;:: t which is read at some step

t";;:: t' by a processor who is alive at step t".
An input is useful if it is read at some step t by a processor alive at step t. By simple
induction on the step number we have that for a T-step computation, the number of
useful inputs and the number of processors ever alive are both 0(2T).

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 225

It is not difficult to see that, given all the useful inputs and the set ALIVE= { (P(i), t;):
P(i) was alive until step t; >0}, we can simulate M to uniquely reconstruct the output
Li= 1 x;. Since T= o(log n), we know 2r = o(n). Hence there is an input x;0 which is not
useful. We need 0(2Tlogn°! 1>)=o(nlogn) bits to represent ALIVE. To represent
{ xi: i -:f. i0 } we need n3 - n2 +log n bits, where log n bits are needed to indicate the index
i0 of the missing input. The total number of bits needed in the simulation is less than

J = n3 -n2 + O(n log n) + O(log n) < n3•

But from these J bits we can find Li= 1 X; by simulating Musing the oracle A, and then
reconstruct X;., from Li'=i x; and {xi: i-:f.i0 }. But then KA(X)~J <n3 . This contradicts
the randomness of X. O

5 .1.3. Example 3: Boolean matrix rank (Seiferas-Yesha)
For all n, there is an n by n matrix over GF(2) (a matrix with zero-one entries with the

usual Boolean multiplication and addition) such that every submatrix of s rows and
n -r columns (r, s ~in) has at least 1s linear independent rows.

REMARK. Combined with the results in [20, 172] this example implies that TS = Q(n3) is
an optimal lower bound for Boolean matrix multiplication on any general random­
access machines, where T stands for time and S stands for space.

PROOF. Fix a random sequence x of elements in GF(2) (zeros and ones) of length n2 , so
K(x)?:: Ix!. Arrange the bits of x into a matrix M, one bit per entry in, say, the rowmajor
order. We claim that this matrix M satisfies the requirement. To prove this, suppose this
is not true. Then consider a submatrix of M of s rows and n-r columns, r,s~tn.
Suppose that there are at most is-! linearly independent rows. Then 1 +!s rows can
be expressed by the linear combination of the other is- 1 rows. Thus we can describe
this submatrix using
111 The is-1 linear independent rows, in (h- l)(n-r) bits;
• for each of the other is+ 1 rows, use (ts-1) bits.
Then to specify x, we only need to specify, in addition to the above, (i) M without the
bits of the submatrix, and (ii) the indices of the columns and rows of this submatrix.
When we list the indices of the rows of this submatrix, we list the !s- I linearly
independent rows first. Hence we only use

n2 -(n-r)s +(n-r)log n+s log n +(h- l)(n-r)+{!s- l)(!s+ I)< n2

bits, for large n's. This contradicts the fact K(x)?::lxl. D

REMARK. A lower bound obtained by Kolmogorov complexity usually implies that the
lower bound holds for "almost all strings". This is the case for all three examples. In this
sense the lower bounds obtained by Kolmogorov complexity are usually stronger than
those obtained by its counting counterpart, since it usually also implies directly the
lower bounds for nondeterministic or probabilistic versions of the considered machine.
We will discuss this in Section 5.7.

226 M. LI, P.M.B. VITANYI

5.2. Lower bounds: more tapes versus fewer tapes

Although Barzdin [9] and Paul [124] are the pioneers of using Kolmogorov com­
plexity to prove lower bounds, the most influential paper is probably the one by Paul,
Seiferas and Simon [126], which was presented at the 1980 STOC. This was partly
because [124] was not widely circulated and, apparently, the paper by Barzdin [9]
did not even reach this community. The major goal of [126] was "to promote the
approach" of applying Kolmogorov complexity to obtain lower bounds. In [126],
apart from other results, the authors with the aid of Kolmogorov complexity,
remarkably simplified the proof of a well-known theorem of Aanderaa [1]: real-time
simulation of k tapes by k - l tapes is impossible for deterministic Turing machines.

In this model the Turing machine has k (work)tapes, apart from a separate input tape
and (possibly) a separate output tape. This makes the machine for each k ~ l far more
powerful than the model of Example 1, where the single tape is both input tape and
worktape. For instance, a one-(work)tape Turing machine can recognize the marked
palindromes of Example 1 in real time T(n) = n in contrast with T(n) =0(n2) required
in Example 1.

In 1982 Paul [127], using Kolmogorov complexity, extended the results in [126] to:
on-line simulation of real-time (k + 1)-tape Turing machines by k-tape Turing machines
requires O(n(log n)1f<k + 1 >) time. Duris, Gali!, Paul and Reischuk [42] then improved the
lower bound for the one- versus two-tape case to Q(n log n).

To simulate k tapes with 1 tape, the known (and trivial) upper bound on the
simulation time was O(n2). The above lower bound decreased the gap with this upper
bound only slightly. But in later developments w.r.t. this problem, Kolmogorov
complexity has been very successful. The second author, not using Kolmogorov
complexity, reported in [163] an O(n i.s) lower bound on the time to simulate a single
pushdown store on-line by one oblivious tape unit. However, using Kolmogorov
complexity the technique worked also without the oblivious restriction, and yielded in
quick succession papers [164, 165] and the optimal results cited hereafter. Around
1983/1984, independently and in chronological order2, Wolfgang Maass at UC
Berkeley, the first author of the present chapter at Cornell and the second author at
CWI Amsterdam, obtained a square lower bound on the time to simulate two tapes by
one tape (deterministically), and thereby closed the gap between one tape versus

2 H istorica/ note. A claim for an Q(n1 _,)lower bound for simulation of two tapes by both one deterministic
tapeand onenondeterministic tape was first circulated by W. Maass in August 1983, but did not reach Li and
Vitanyi. Maass submitted his extended abstract containing this result to STOC by November 1983, and this
did not reach the others either. The final STOC paper of May 1984 (submitted February 1984) contained the
optimal r.!(n2) lower bound for the deterministic simulation of two tapes by one tape. In: M. Li, "On 1 tape
versus 2 stacks", Tech. Rept. TR-84-591, Dept. Computer Science, Cornell University, January 1984, the
Q(n2) lower bound was obtained for the simulation of two pushdown stores by one deterministic tape. In:
P.M.B. Vitanyi, "One queue or two pushdown stores take square time on a one-head tape unit", Tech. Rept.
CS-R8406, Centre for Mathematics and Computer Science, Amsterdam, March 1984, the Q(n2) lower bound
was obtained for the simulation of two pushdown stores (or the simulation of one queue) by one determi­
nistic tape. Maass' and Li's result were for off-line computation with one-way input, while Vitanyi's result
was for on-line computation. Li and Vitanyi combined these and other results in [94], while Maass pub­
lished in [105].

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 227

k (w.l.o.g. two) tapes. These lower bounds, and the following ones, were proven with as
simulator an off-line machine with one-way input. All three relied on Kolmogorov
complexity, and actually proved more in various ways 2 • Thus, Maass also obtained
a nearly optimal result for nondeterministic simulation: [105] exhibits a language that
can be accepted by two deterministic one-head tape units in real time but for which
a one-head tape unit requires O(n2) time in the deterministic case, and

Q(n 2/(log n)2log log n)

time in the nondeterministic case. This lower bound was later improved by [94] to

Q(n 2 jlog n log log n)

time using Maass' language, and by Galil, Kannan and Szemeredi [49] to Q(n 2 jlog<k>n)

(for any k, with Iog<k) the k-fold iterated logarithm) by an ingenious construction of
a language whose computation graph does not have small separators. This almost
closed the gap in the nondeterministic case. In their final combined paper, Li and
Vitanyi [94] presented the following lower bounds, all by Kolmogorov complexity. To
simulate two pushdown stores, or only one queue, by one deterministic tape requires
Q(n2) time. Both bounds are tight. (Note that the two-pushdown-stores result implies
the two-tape result. However, the one-queue result is incomparable with either of
them.) Further, one-tape nondeterministic simulation of two pushdown stores requires
Q(nl. 5 /~time. This is almost tight because of [89]. Finally, one-tape nondeter­
ministic simulation of one queue requires Q(n413 ~3n) time. The corresponding
upper bound of the last two simulations is O(nl. 5 .Jlog n) in [89]. In a successor paper,
together with Longpre, we have extended the above work with a comprehensive study
stressing queues in comparison to stacks and tapes [91]. There it was shown that a
queue and a tape are not comparable, i.e. neither can simulate the other in linear time.
Namely, simulating one pushdown store (and hence one tape) by one queue requires
Q(n4 i 3 /Jog n), in both the deterministic and nondeterministic cases. Simulation of one
queue by one tape was resolved above, and simulation of one queue by one pushdown
store is trivially impossible. Nondeterministic simulation of two queues (or two tapes)
by one queue requires Q(n 2 /(log2 n log log n)) time, and deterministic simulation of two
queues (or two tapes) by one queue requires quadratic time. All these results would be
formidable without Kolmogorov complexity.

A next step is to attack the similar problem with a two-way input tape. Maass and
Schnitger [106] proved that when the input tape is two-way, two worktapes are better
than one for computing a function (in contrast to recognizing a language). The model is
a Turing machine with no output tape; the function value is written on the worktape(s)
when the machine halts. It is interesting to note that they considered a matrix
transposition problem, as considered in Paul's original paper. Apparently, in order to
transpose a matrix, a lot of information needs to be shifted around which is hard for
a single tape. In [106] it is shown that transposing a matrix (with element size O(log n))
requires Q(n 3 i 2(log n)- 112) time on a one-tape off-line Turing machine with an extra
two-way read-only input tape. The first version of this paper (authored by Maass alone)
does not actually depend on Kolmogorov complexity, but has a cumbersome proof.
The final Kolmogorov complexity proof was much easier and clearer. (This lower

228 M. LI. P.M.B. VtTANYI

bound is also optimal [106].) This gives the desired separation of two tapes versus on~,
because with two worktapes, one can sort in O(n log n) time and hence ~o matrix
transposition in O(n log n) time. Recently, Maass, Schnitger and Szemered1 [107]. in
1987 finally resolved the question of whether two tapes are better than one w1 th
two-way input tape, for language recognition, with an ingenious proof. The sep~ration
language they used is again related to matrix transposition except that the matnces are
Boolean and sparse (only log- 2n portion of non-zeros): {A** B: A= B1 and ~ii #0 only
when i,j=O mod log m where m is the size of matrices}. The proof techmques used
combinatorial arguments rather than Kolmogorov complexity. There is still a wide
open gap between the Q(n Jog n) lower bound of [107] and the O(n 2) upper bound. In
[106] it was observed that if the Turing machine has a one-way output tape on which
the transposed matrix can be written, transposition of Boolean matrices takes only
0(n 514). Namely, with only one work tape and no output tape, once some bits have been
written they can later be moved only by time-wasting sweeps of the worktape head. In
contrast, with an output tape, as long as the output data are computed in the correct
order, they can be output and do not have to be moved again. Using Kolmogorov
complexity, in [41] Dietzfelbinger shows that transposition of Boolean matrices by
Turing machines with two-way input tape, one worktape, and a one-way output tape
requires Q(n 514) time, thus matching the upper bound for matrix transposition.

It turns out that the similar lower bound results for higher-dimensional tapes are
also tractable, and sometimes easier to obtain. The original paper [l 26] contains
such lower bounds. M. Loui proved the following results by Kolmogorov complexity.
A tree worktape is a complete infinite rooted binary tree as storage medium (instead of
a two-way infinite linear tape). A worktape head starts at the origin (the root) and in
each step can move to the direct ancestor of the currently scanned node (if it is not the
root) or to either one of the direct descendants. A multihead tree machine is a Turing
machine with a tree work tape with k ~ 1 tree work tape heads. We assume that the finite
control knows whether two worktape heads are on the same node or not. A d-dimen­
sional worktape consists of nodes corresponding to d-tuples of integers, and in each
step a worktape head can move from its current node to a node with each coordinate
± l of the current coordinates. Each worktape head starts at the origin which is the
d-tuple with all zeros. A multihead d-dimensional machine is a Turing machine with
ad-dimensional worktape with k ~ 1 worktape heads. M. Loui [102] has shown that
a multihead d-dimensional machine simulating a multihead tree machine on-line
(both machines have a one-way input tape and one-way output tape) requires time
Q(n 1+ 11d/log n) in the worst case, and he proved the same lower bound for the case
where a multihead d-dimensional machine is made more powerful by allowing the
work tape heads also to move from their current node to the current node of any other
worktape head in a single step. The lower bound is optimal.

5.3. Lower hounds: more heads versus fewer heads

Again applying Kolmogorov complexity, Paul [125] showed that two-dimensional
two-tape (with one head on each tape) Turing machines cannot simulate on-line two­
dimensional Turing machines with two heads on one tape in real time. He was not able

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 229

to resolve this problem for one-dimensional tapes, and, despite quite some effort, the
following problem is open and believed to be difficult: Are two heads on one (one­
dimensional) tape better than two (one-dimensional) tapes, each with one head? The
following result, proved using Kolmogorov complexity, is intended to be helpful in
separating these classes. A Turing machine with two one-head storage tapes cannot
simulate a queue in both real time and with at least one storage head always within o(n)
squares from the start square [162]. (Thus, most prefixes of the stored string need to be
shifted all the time, while storing larger and larger strings in the simulator, because the
simulator must always be ready to reproduce the stored string in real time. It would
seem that this costs too much time, but this has not been proved yet.) To eventually
exploit this observation to obtain the desired separation, Seiferas [142] proved the
following "equal information distribution" property. For no c (no matter how large) is
there a function f(n) = o(n), such that every sufficiently long string x has a description
y with the properties: IYI = c lxl and if x' is a prefix of x and y' is any subword of y with
Iii =c lx'I then K(x'ly')< f(K(x)).

M ultihead finite automata and pushdown automata were studied in parallel with the
field of computational complexity in the 1960s and 1970s. One of the major problems
on the interface of the theory of automata and complexity is to determine whether
additional computational resources (heads, stacks, tapes, etc.) increase the compu­
tational power of the investigated machine. In the case of multihead machines it is
natural to ask whether k + 1 heads are better than k. A k-head finite (pushdown)
automaton is just like a finite (pushdown) automaton except having k one-way heads
on the input tape. Two rather basic questions were left open from the automata and
formal language theory of the 1960s:

(1) Rosenberg Conjecture (1965): (k + 1)-head finite automata are better thank-head
finite automata [136, 137].

(2) Harrison-Ibarra Conjecture (1968): (k + 1)-head pushdown automata are better
thank-head pushdown automata. Or, there are languages accepted by (k+ 1)-DPDA
but not k-PDA [55].

In 1965, Rosenberg [137] claimed a solution to problem(!), but Floyd [44] pointed
out that Rosenberg's informal proof was incomplete. In 1971 Sud borough [152, 153],
and later Ibarra and Kim [65] obtained a partial solution to problem (1) for the case of
two heads versus three heads, with difficult proofs. In 1976 Yao and Rivest [171] finally
presented a full solution to problem (I). A different proof was also obtained by
Nelson [119]. Recently it was noted by several people, including Seiferas and the
present authors, that the Yao--Rivest proof can be done very naturally and easily by
Kolmogorov complexity: Let

as defined by Rosenberg and Yao-Rivest. Let b=(~)+ 1. So Lb can be accepted by
a (k+l)-DFA. Assume that a k-FA M also accepts Lb. Let W be a long enough
Kolmogorov random string and W be equally partitioned into w1 w2 ..• wb. We say
that the two w/s in Lb are matched if there is a time such that two heads of Mare in the
two w;'s concurrently. Hence there is an i such that w; is not matched. Then apparently,

230 M. LI, P.M.B. VITANYI

this w; can be generated from W-wi and from the positions of heads and states for
M when a head comes in/out wi; K(w;IW-w;)=O(klogn)<~lw;I, a contradiction.

The Harrison-Ibarra Conjecture, however, was open until the time of applied
Kolmogorov complexity. Several authors tried to generalize the Yao-Rivest method
[116, 117] or the Ibarra-Kim method [35] to the k-PDA case, but only partial results
were obtained. For the complete odyssey of these efforts see the survey in [36]. With the
help of Kolmogorov complexity, [36] presented a complete solution to the Harrison­
Ibarra Conjecture for the general case. The proof was constructive, and quite simple
compared to the partial solutions. The basic idea, ignoring the technical details, was
generalized from the above proof we gave for the Rosenberg Conjecture.

A related problem of whether a k-DFA can do string matching was raised by Gali!
and Seiferas [48]. They proved that a six-head two-way DF A can do string (pattern)
matching, i.e., accept L = { x # y: x is a substring of y}. In 1982, when the first author and
Yaacov Yesha, then at Cornell, tried to solve the problem, we achieved a difficult and
tediously long proof(many pages), by counting, that 2-DFA cannot do string matching.
Later Seiferas suggested the use ofKolmogorov complexity, which shortened the proof
to less than a page [92]! By similar methods a proof that 3-DF A cannot do string
matching was also obtained [90].

5.4. Lower bounds: parallel computation and branching programs

In Example 2 we have seen that the remarkable concept ofKolmogorov complexity
does not only apply to lower bounds in restricted Turing machines, it also applies to
lower bounds in other general models, like parallel computing models.

Fast addition or multiplication of n numbers in parallel is obviously important. In
1985 Meyer auf der Heide and Wigderson [59] proved, using Ramsey theorems, that
on a priority PRAM, the most powerful parallel computing model, addition (and
multiplication) requires Q(log n) parallel steps. Independently, a similar lower bound
on addition was obtained by Israeli and Moran [66] and Parberry [122]. All these
lower bounds depend on inputs from infinite (or exponentially large) domains.
However, in practice, we are often interested in small inputs. For example, addition of
n numbers of n1' 108108 n bits each can be done in O(log njlog log n) time with n°0) pro­
cessors which is less than the Q(log n) lower bound of [59]. In [93] Kolmogorov
complexity is applied to obtain parallel lower bounds (and trade-offs) for a large class of
functions with arguments in small domains (including addition, multiplication ...) on
priority PRAM. As a corollary, for example, we show that for numbers of polynomial
size, it takes O(log n) parallel steps for addition. This improved the results of
[59, 66, 122]. Furthermore the proof is really natural and intuitive, rather than the
complicated counting as before. Independently, Paul Beame at the same meeting
also obtained similar results, but using a different partition method. A proof of the
above result was given in Example 2.

As another example, we prove a depth-2 unbounded fan-in circuit requires 0(2n)
gates from {AND, OR, NOT} to compute the parity function. Assume the contrary.
Let C be a binary encoding of integer n and such a circuit with o(2n) gates. Without loss
of generality, let the first level of C be AND gates and the second level be an OR gate.

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 231

Consider an x=x 1 ..• x" such that K(xlC);?;lxl=n and PARITY(x)=l. Now, any
AND gate of fan-in at least n must be 0 since otherwise we can specify x by the index of
that gate which is log2 (o(2")). Therefore, since PARITY(x)= 1 some AND gate G, of
fan-in less than n, must be l. Then G includes neither xi nor x; for some i. Hence
changing only the value of xi in x does not change the output (value 1) of G and C,
a contradiction. (Note that more careful calculation on the constants can result in
a more precise bound.)

Sorting is one of the most studied problems in computer science, due to its great
practical importance. (As we have seen, it was also studied by Paul in [124].) In 1979
Borodin, Fischer, Kirkpatrick, Lynch and Tompa proved a time-space trade-off for
comparison-based sorting algorithms [19]. This was improved and generalized to
a very wide class of sequential sorting algorithms by Borodin and Cook [20] defined as
"branching programs". The proof involved difficult counting. In [131] Reisch and
Schnitger used Kolmogorov complexity, in one of their three applications, to simplify
the well-known Q(n 2/log n) bound of Borodin and Cook [20] for the time-space
trade-off in sorting with branching programs. They also improved the lower bound
in [20] to !1(n2log Jog n/log n).

5.5. Lower bounds: time-program size trade-off for searching a table

"Is x in the table?" Let the table contain n keys. You can sort the table and do binary
search on the table; then your program can be as short as Jog n bits, but you use about
log n time (probes). Or you can do hashing; you can use a perfect hashing function
h(x) =[A/(Bx+ C)] [23, 112]; then your program can be as long as Q(n) bits since
A, B, C need to have Q(n) bits to make h(x) perfect, but the search time is 0(1) probes.
What is the size of the program? It is nothing but the Kolmogorov complexity.

Searching a table is one of the most fundamental issues in computer science. In
a beautiful paper [108] Mairson literally studied the program complexity of table­
searching procedures in terms of the number of bits that is required to write down such
programs. In particular, he proved that a perfect hashing function of n keys needs E>(n)
bits to implement. He also provided the trade-offs between the time needed to search
a table and the size of the searching program.

5.6. Lower bounds: very large scale integration

It should not be surprising that Kolmogorov complexity can be applied to VLSI
lower bounds. Many VLSI lower bounds were based on the crossing sequence type of
arguments similar to that of Turing machines [98]. This sort of arguments can be
readily converted to much more natural and easier Kolmogorov complexity arguments
like the one used in Example l.

We use the model of Lipton and Sedgewick [98], which is a generalization of
Thompson's model [154]. All lower bounds proved here also apply to the Thompson
model. Roughly speaking, there are three main components in the model:

(a) the (n-input, 1-output) Boolean function f(x 1 , x2 , ... , x") which is to be com­
puted;

232 M. LI, P.M.B. VJTANYI

(b) a synchronous circuit C, computing f, which contains AND, OR, NOT gates
of arbitrary fan-in and fan-out and with n fixed input gates (i.e., what is called
where-oblivious) that are not necessarily on the boundary of the layout of C (the time
an input arrives may depend on the data value); and

(c) a VLSI (for convenience, rectangle) layout V that realizes C, where wires are of
unit width and processors occupy unit squares.

A central problem facing the VLSI designers is to find C that computes a given fin
time T, and a VLSI layout of C with area A, minimizing say A T 2 as introduced by
Thompson [154] and later generalized in [98].

We prove A T 2 = Q(n2) lower bounds for many problems roughly as follows. Draw
a line to divide the layout into two parts, with about half the inputs on each part.
Suppose the line cuts through w wires, then A= Q(w2). Further, since for each time unit
only one bit of information can flow through a wire, T > I/w where I is the amount of
information that has to be passed between the two parts. Then for each specific problem
one only needs to show that I =il(n) for any division. Lipton and Sedgewick defined
a crossing sequence to be, roughly, the sequence of T tuples (vi. ... , vw) where the ith
tuple contains the values appearing at the cut of width w at step i.

Now it is trivial to apply our Kolmogorov complexity to simplify the proofs of all
VLSI lower bounds obtained this way. Instead of complicated and nonintuitive
counting arguments which involves all inputs, we now demonstrate how easy one can
use one single Kolmogorov random string instead. The lower bounds before the work
of [98] were for n-input and n-output functions; the Kolmogorov complexity can be
even more trivially applied there. We only look at the harder n-input 1-output
problems stated in [98]. A sample question was formulated in [98].

EXAMPLE (pattern matching). Given a binary text string of(l -Ct)n bits and a pattern of
cxn bits, with ex< 1, determine if the pattern occurs in the text.

PROOF (sketch). Let C implement pattern matching with layout V. Consider any cut of
V of width w which divides inputs into two halves. Now it is trivial that I= Q(n) since for
a properly arranged Kolmogorov random text and pattern this much information
must pass the cut. This finishes the proof of A T 2 = O(n2). D

All other problems, selection/equality testing, DCFL, factor verification, listed in
[98] can be done similarly, even under the nondeterministic, or randomized, circuits
as defined in [98].

Some general considerations on VLSI lower bounds using Kolmogorov complexity
were given by R. Cuykendall [39]. L.A. Levin and G. Itkis have investigated the VLSI
computation model under different information transmission assumptions [87, 175].
In their model, if the speed of information transmission is superlinear, namely
max(K(d)- log f(d)) < oo with f(d) the time for a signal to traverse a wire of length d,
then a chip can be simulated by a chip in which all long wires have been deleted (which
results in considerable savings in required area). Note that f(d) = Q(d log2d) satisfies
the requirements for f, but not f(d) = O(d).

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 233

5.7. Lower bounds: randomized algorithms

We have seen that Kolmogorov complexity can be naturally applied to nondeter­
ministic Turing machines. Hence, it is likely that it is useful for analyzing randomized
algorithms. Indeed this is the case. In their paper about three applications of
Kolmogorov complexity [131] Reisch and Schnitger analyzed, using Kolmogorov
complexity, the probabilistic routing algorithm in the n-dimensional binary cubes of
Valiant and Brebner [156].

In 1983 Paturi and Simon generalized the deterministic lower bounds previously
proved in (1, 125-127, etc.] to probabilistic machines. This is based on the following
elegant idea (based on a note of, and discussions with, R. Paturi). As we mentioned
before, all Kolmogorov complexity proofs depend on only a fixed Kolmogorov
random string Cl. If the lower bound fails, then this incompressible string can be
compressed, hence a contradiction. A version of the Symmetry oflnformation Lemma
stated in Sections 2.6 and 2.7 is proved in [123]. They show that for a sequence of random
coin tossing, the probability that this sequence fJ of random coin tossing bits contains
much information about Cl is vanishingly small. Observe that if Cl is Kolmogorov
random relative to the coin tossing sequence {3, then the old deterministic argument
would just fall through with fJ as an extra useless input (or oracle as in Example 2). Note
that many such tX's exists. Hence, (ignoring technical details) using this idea and careful
construction of the input for the probabilistic simulator, it was shown that, on the
average, the probabilistic simulator would not give any advantage in reducing the
computation time.

REMARK. Similar ideas were expressed earlier in 1974 by Levin who called the general
principle involved "Law of Information Conservation" [86]; see for later develop­
ments also [88].

5.8. Lower bounds: formal language theory

The classic introduction to formal language theory is [62]. An important part of
formal language theory is deriving a hierarchy oflanguage families. The main division
is the Chomsky hierarchy with regular languages, context-free languages, context­
sensitive languages and recursively enumerable languages. The common way to prove
that certain languages are not regular (not context-free) is by using "pumping" lemmas,
i.e., the uvw-lemma (uvwxy-lemma respectively). However, these lemmas are com­
plicated to state and cumbersome to prove or use. In contrast, below we show how to
replace such arguments by simple, intuitive and yet rigorous Kolmogorov complexity
arguments. We present some material from our paper [95]. Without loss of generality,
languages are infinite sets of strings over a finite alphabet.

Regular languages coincide with the languages accepted by finite automata (FA).
Another way of stating this is by the Myhill-Nerode Theorem: each regular language
over an alphabet V consists of the union of some equivalence classes of a right-invariant
equivalence relation on V* (= Ui;,o Vi) of finite index. Let us give an example of how
to use Kolmogorov complexity to prove nonregularity. We prove that {Oklk: k~ l}

234 M. LI, P.M.B. VITANYI

is not regular. To derive a contradiction, suppose it is regular. Fix k with K(k) ;;;:-: log k,
with k large enough to derive the contradiction below. The state q of the accepting FA
after processing Ok is, up to a constant, a description of k. Namely, by running the
FA, starting from state q, on a string consisting of ones, it reaches its first accepting
state precisely after k ones. Hence, there is a constant c, depending only on FA, such
that log k < c, which is a contradiction. We generalize this observation, actually a
Kolmogorov-complexity interpretation of the Myhill-Nerode Theorem, as follows.
(In lexicographic order, short strings precede long strings.)

LEMMA (KC-regularity). Let L be regular. Then for some constant c depending only
on L and for each string x, if y is the n-th string in the lexicographical order in Lx =
{y:xyeL} (or in the complement of Lx) then K(y)~K(n)+c.

PROOF. Let L be a regular language. A stringy such that xy EL, for some x and n as in
the lemma, can be described by

(a) this discussion, and a description of the FA that accepts L,
(b) the state of the FA after processing x, and the number n. D

The KC-regularity lemma can be applied whenever the pumping lemma can be
applied. It turns out that the converse of our lemma also holds and gives a Kolmogorov
complexity characterization of regular languages [95]. Therefore, the above lemma
also applies to situations when the normal pumping lemma(s) do(es) not apply. Further
it is easier and more intuitive than pumping lemmas, as shown in the following
example.

EXAMPLE. We prove that {IP: p is prime} is not regular. Consider the string xy
consisting of p ones, with p the (k + l)st prime. In the lemma set x equal to 1 p' with p' the
kth prime, soy= p-p' and n= l. It follows that K(p-p')=O(l). Since the differences
between the consecutive primes rise unboundedly, this implies that there is an un­
bounded number of integers ofKolmogorov complexity 0(1). Since there are only 0(1)
descriptions oflength 0(1), we have a contradiction. (A simple way to argue that p-p'
rises unboundedly is as follows. Let P be the product of the firstj primes. Clearly, no
P + i, 1 < i ~j, is prime.)

EXAMPLE. (cf. [62, Exercise 3.l(h*)]). Prove that L= {xxRw: x, w E {O, 1 }*- {e}} is not
regular. Set x=(Ol)", where K(n);;:-:logn. Then the lexicographically first word in Lx
is y=(lO)"O. Hence, K(y)=O(log n), contradicting the KC-regularity Lemma.

EXAMPLE (cf. [62, Exercise 3.6*]). Prove that L= {Oili: GCD(i,j) = 1} is not regular.
For each prime p, the string QPlP is the second word with prefix QP. Hence by the
KC-regularity Lemma there is a constant c such that for all p we have K(p) < c, which
is a contradiction.

Similar general lemmas can also be proved to separate DCFLs from CFLs. Previous
proofs that a CFL is not a DCFL often use ad hoe methods. We refer the interested
readers to [95].

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 235

Concerning formal language theory we must mention a beautiful proof due to
Seiferas. It is known that linear context-free languages can be recognized on-line by
a one-worktape Turing machine in O(n2) time. This result is due to Kasami. Gallaire,
using a very complicated counting argument and de Bruijn sequences [50], proved that
a multi tape Turing machine requires O(n2 jlog n) time to recognize on-line linear
context-free languages. In [143] Seiferas presented an elegant and short proof of the
same bound using Kolomogorov complexity, significantly simplifying Gallaire's proof.

5.9. Lower bounds: which method to use?

Instead of attempting to answer this difficult question, we present a problem with
three proofs: one by counting, one by probabilistic argument and one by Kolmogorov
complexity. The question and first two proofs are taken from a beautiful book by Erdos
and Spencer [43].

A tournament T is a corn plete directed graph, i.e., for each pair of vertices u and v in T,
exactly one of the edges (u, v), (v, u) is in the graph. Given a tournament T of n nodes
{ 1, ... , n }, fix any standard effective coding, denoted by c(T), using !n(n-1) binary bits,
one bit for each edge. The bit of edge (u, v) is set to 1 iff u < v. The next theorem and the
first two proofs are from the first example in [43].

THEOREM. If v(n) is the largest integer such that every tournament on {l, ... , n} contains
a transitive subtournament on v(n) players, then v(n) ~ l + [2 log2 n].

REMARK. This theorem was proved first by Erdos and Moser in 1964. Stearns showed
by induction that v(n)~ 1 + [Iog2 n].

PROOF (by counting). Let v = 2 + [2 log2 n]. Let I'= I' n be the class of all tournaments on
{ 1, ... , n }, and I" the class of tournaments on { 1, ... , n} that do contain a transitive
subtournament on v players. Then

I"= u u I'A,a (5.1)
A a

where As; { 1, ... , n }, IAI = v, a is a permutation on A, and r A.a is the set of Tsuch that
TIA is generated by a. If TeI'A,,,, the (2) games of TIA are determined. Thus

I I' 1=2(~)-(~) A,a (5.2)

and by elementary estimates

II"I ~ L, 2<>>-(~> =G)v!2G>-<~> <2m =!TI. (5.3)
A,a

Thus r - I"-# 0. That is, there exists TE r - I" not containing a transitive subtourna­
ment on v players. D

PROOF (by probabilistic argument). Let v = 2 + [2 log2nJ. Let r = r n be the class of all
tournaments on { 1, ... , n}. Let also As; { 1, ... , n}, !Al= v, and let a be a permutation on
A. Let T= T" be a random variable. Its values are the members of r where, for each
Ter, Pr(T=T)=2-<2J. That is, all members of I' are equally probable values of T.

236

Then

M. LI, P.M.B. V!TANYI

Pr(T contains a transitive subtournament on v players)

~I,.Z:Pr(TIA generated by a)
A a

=(~)v!2-m<1.

Thus some value T of T does not contain a transitive subtoumament on v players. D

PROOF (by Kolmogorov complexity). Fix Te r. such that

K(c(T) In, v(n))~I c(T)I =!n(n-1).

Suppose v(n)=2 + [2 log2n] and let S be the transitive tournament of v(n) nodes. We
effectively recode c(T) as follows in less than lc(T)\ bits, and hence we obtain a con­
tradiction, by
• listing in order of dominance the index of each node in S in front of c(T), using

2fflog2nl)2 + 2flog2nl + \c(T)\ bits;
• deleting all bits from c(T) for edges in between nodes in S to save 2(flog2 nl)2 +

3flog2 n l + l bits. O

5.10. Lower bounds: open questions

This section summarizes the open questions that we consider to be interesting and
that may be solvable by Kolmogorov complexity.

(1) Can k-DFA do string matching (48]?
(2) Are two heads on one (one-dimensional) tape better than two (one-dimensional)

tapes each with one head?
(3) Prove a tight, or O(n 1 +•), lower bound for simulating two tapes by one for

off-line Turing machines with an extra two-way input tape.

6. Resource-bounded Kolmogorov complexity and its applications

Here we treat several notions of resource-bounded Kolmogorov complexity, with
applications ranging from the P =NP question to factoring integers and cryptography.
Several authors suggested early on the possibility of restricting the power of devices
used to compress strings. Says Kolmogorov [76] in 1965:

"The concept discussed ... does not allow for the 'difficulty' of
preparing a program p for passing from an object x to an object y
[some] object permitting a very simple program, i.e. with very small
complexity K(x), can be restored by short programs only as the result
of computations of a thoroughly unreal nature [this concerns] the
relationship between the necessary complexity of a program and its
permissible difficulty t. The complexity K(x) that was obtained
[before] is, in this case, the minimum of Kt(x) on the removal of the
constraints on t."

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 237

The earliest use of resource-bounded Kolmogorov complexity we know of is
Barzdin's 1968 result [9] cited earlier. Time-limited Kolmogorov complexity was
applied by Levin [84] in relation with his independent work on NP-completeness, and
further studied in [88]. Adleman investigated such notions [2], in relation to factoring
large numbers. Resource-bounded Kolmogorov complexity was extensively inves­
tigated by Daley [40], Hartmanis [56], and Ko [73]. Sipser [146] used time-limited
Kolmogorov complexity to show that the class BPP (problems which can be solved in
polynomial time with high probability) is contained in the polynomial time hierarchy:
BPP~l:4 nCT4 . (Gacs improved this to BPP~:E 2 nil 2 .) We treat the more influential
approaches of Adleman, Bennett, Hartmanis and Sipser in more detail below. Let us
note here that there is some relation between the approaches to resource-bounded
Kolrnogorov complexity by Adleman [2], Levin [88] and Bennett [12].

6.1. Potential

In an elegant paper [2], Adleman formulates the notion of potential as the amount of
time that needs to be pumped into a number by the computation that finds it. That is,
while constructing a large composite number from two primes we spend only a small
amount oftime. However, to find the primes back may be difficult and take a lot of time.
ls there a notion of storing potential in numbers with the result that high-potent primes
have relatively low-potent products? Such products would be hard to factor, because
all methods must take the time to pump the potential back. Defining the appropriate
notion, Adleman shows that if factoring is not in P (the class of problems that can be
solved by deterministic algorithms in time polynomial in the input length) then this is
the reason why. Formally, we use the following definition.

DEFINITION. For all integers k";30, for all xE {0,1 }*(for all yE {O, l}*), x is k-potent
(with respect toy) iff there is a program p of size ~ k loglxl which with blanks (y) as
input halts with output x in less than or equal to lxlk steps. (Recall that lxl is the length
of x and x can mean the positive integer x or the xth binary string.)

EXAMPLE. For almost all n EN, 1" is 2-potent. Namely, 11"1 = n and lnl ~log n. Then
it is not difficult to see that, for each large enough n, there is a program p, IPI < 2 log n,
that computes 1" in less than n2 steps.

EXAMPLE. For all k, for almost all incompressible x, x is not k-potent. This follows
straightaway from the definitions.

EXAMPLE. Let u be incompressible. If v = u + 1666, where "+" denotes "exclusive or",
then v is incompressible, but also v is !-potent with respect to u.

LEMMA (Adleman). For all k, the function

fk(x, 1 ") = { y: I y I~ n and y is k-potent w.r.t. x}

is computable in polynomial time.

238 M. LI, P.M.B. VITANYI

PROOF. There are at most 2 • 2kl•I,...., 2nk programs of length ~ klnl. By simulating all
such programs (one after the other) on input x for at most nk steps, the result is
obtained. O

We informally state two results proved by Adleman.

THEOREM (Adleman). Factoring is difficult if! multiplication in.finitely often takes highly
potent numbers and produces relatively low-potent products.

THEOREM (Adleman). With respect to the P =NP question: SATE NP- P if! for all
k there exist in.finitely many <P e SAT such that, for all T, if truth assignment T satisfies
</J, then T is not k-potent w.r.t. </J.

6.2. Logical depth

Bennett has formulated an intriguing notion oflogical depth [12-14]. Kolmogorov
complexity helps to define individual information and individual randomness. It can
also help to define a notion of"individual computational complexity" of a finite object.
Some objects are the result of long development (=computation) and are extremely
unlikely to arise by any probabilistic algorithm in a small number of steps. Logical
depth is the necessary number of steps in the deductive or causal path connecting an
object with its plausible origin. Concretely, the time required by a universal computer
to compute an object from its maximally compressed description. Formally (in Gacs'
reformulation, using the Solomonoff-Levin approach to a priori probability m, cf.
Section 2.9),

depth,(x) = min { t: m,(x)/ m(x) ~ e }.

Here, m, is the t-bounded analogue of m. Thus, the depth of a string x is at least t with
confidence 1-e ifthe conditional probability that x arises in t steps provided it arises at
all is less than e. (One can also formulate logical depth in terms of shortest programs
and running times, see [12] or the example below.) According to Bennett, quoted
in [30]: "A structure is deep, if it is superficially random but subtly redundant, in
other words, if almost all its algorithmic probability is contributed by slow-running
programs A priori the most probable explanation of'organized information' such
as the sequence of bases in a naturally occurring DNA molecule is that it is the
product of an extremely long biological process."

EXAMPLE (Bennett). Bennett's original definition: fix, as usual, an optimal universal
machine U; a string x e {O, 1 }*is logical (d, b)-deep, or "d-deep at confidence level 2 -b",

if every program to compute x in time ~dis compressible by at least b bits.

The notion is intended to formalize the idea of a string for which the null hypo­
thesis that it originated by an effective process of fewer than d steps is as implausible
as tossing b consecutive heads. Depth should be stable, i.e., no trivial computation
should be able to transform a shallow object into a deep one.

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 239

THEOREM (Bennett). Deep strings cannot be quickly computed from shallow ones. More
precisely, there is a polynomial p(t) and a constant c, both depending on U, such that
if x is a program to compute y in time t and if x is less than (d, b)-deep, then y is less than
(d+p(t), b+c)-deep.

EXAMPLE (Bennett). Similarly, depth is reasonably machine-independent. If U, U' are
two optimal universal machines, then there exists a polynomial p(t) and a constant c,
both depending on U, U', such that (p(d), b +c)-depth on either machine is a sufficient
condition for (d, b)-depth on the other.

EXAMPLE (Bennett). This example concerns the distinction between depth and infor­
mation: consider the numbers k and Q (see Section 3.6). k and Q encode the same
information, viz. solution to the halting problem. But k is deep and Q shallow. Because
Q encodes the halting problem with maximal density (the first 2" bits of k can be
computed from the first n + O(log n) bits of Q), it is recursively indistinguishable from
random noise and practically useless: the time required to compute an initial segment
of k from an initial segment of Q increases faster than any computable function. That is,
Barzdin' [9] showed that the initial segments of k are compressible to the logarithm of
their length if unlimited time is allowed for decoding, but they can only be compressed
by a constant factor if any recursive bound is imposed on the decoding time. The
precise statement of this is given at the end of Section 2.5.

6.3. Generalized Kolmogorov complexity

Below we partly follow [56]. Assume that we have fixed a universal Turing machine
U with an input tape, worktapes and an output tape. "A string x is computed from
a string z" (z is a description of x) means that U starting with z on its input tape halts
with x on its output tape.

REMARK. In order to be accurate in the reformulations of notions in the examples
below, we shall assume w.l.o.g. that the set of programs for which U halts is an effective
prefix code: no such program is the prefix of any other such program, i.e., we use
self-delimiting Kolmogorov complexity as described in Section 27.

In the following we distinguish the main parameters we have been able to think of:
compression factor, time, space, and whether the computation is inflating or deflating.
A string x has resource-bounded Kolmogorov complexity W(K, T, S) if x can be
computed from a string z, lzl ~K ~ lxl, in ~ T steps by U using ~S space on its
worktape. A string x of length n is in complexity class KHP[k(n), t(n), s(n)] if K ~
k(n), T ~ t(n) and S ~ s(n). Thus, we consider a computation that inflates z to x. A string
x has resource-bounded Kolmogorov complexity BowN(K, T, S) if some description z
of x can be computed from x, lzl ~ K ~ lxl, in ~ T steps by U using ~ S space on its
worktape. Here we consider a computation that deflates x to z. A string x of length n
is in complexity class KBowN[k(n), t(n), s(n)] if K ~ k(n), T ~ t(n) and S ~ s(n). Clearly,

KB0 WN[k(n),c:o,oo] = KHP[k(n),oo,oo] = K[k(n)]

240 M. LI. P.M.B. VITANYI

with k(n) fixed up to a constant and K[k(n)] (with some abuse of notation) the class
of binary strings x such that K(x):::::; k(n). (Here we denote by K the self-delimiting
Kolmogorov complexity).

It follows immediately by the Hennie-Stearns simulation of many worktapes by
two worktapes (cf. [62]) that there is a U with two worktapes such that, for any
multitape universal Turing machine V, there is a constant c such that

K~P[k(n), t(n), s(n)] s;; KHP[k(n) + c, c • t(n) log t(n) + c, c s(n) + c].

Thus, henceforth we drop the subscripts because the results we derive are invariant
up to such small perturbations. It is not difficult to prove however that larger per­
turbations of the parameters separate classes. For instance,

KuP(Jog n, oo, n2] c Kup[log n, oo, n2log n],

KuP[log n, oo, n2] c Kup[2 log n, oo, n2].

The obvious relation between inflation and deflation is

KUP[k(n), t(n), oo] s;; KDOWN[k(n), t(n)2k<n>, oo],

KDOWN[k(n), t(n), oo J s;; KuP[k(n), t(n)2n, oo]

(there are at most 2k<•l (resp. 2") possibilities to try). Our KuP[f(n), g(n), h(n)] will also be
written as K[f(n), g(n), h(n)] to be consistent with literature as in [56].

In his Ph.D. Thesis [JO 1], Longpre analyzed the structure of the different gene­
ralized Kolmogorov complexity sets, with different time and space bounds (the UP
version). Longpre builds the resource hierarchies for Kolmogorov complexity in the
spirit of classical time and space complexity hierarchies. He related further structural
properties to classical complexity. He also extended Martin-Lof's results to generalized
Kolmogorov complexity: the space-bounded Kolmogorov complexity random strings
pass all statistical tests which use less space than the space bound. Finally, he shows
how to use Kolmogorov randomness to build a pseudorandom number generator that
passes Yao's test [170].

EXAMPLE (Potency). Adleman's potency [2] can now be reformulated as follows:
xE{O,l}*, lxl=n, is k-potent ifxEK[klogn,n\oo].

EXAMPLE (Computation time). Related to the notions potential and logical depth is
Levin's concept of time of computation complexity Kt [88]. In this framework we
formulate it as follows: x E {O, 1 }* has Kl-complexity Kt(x)=m if x E K[m-log t, t, oo],
m minimal.

EXAMPLE (Hartmanis). The sparse set

SATf\K[log n, n2, CfJ]

is a Cook-complete set for all other sparse sets in NP.

In [56] these and similar results are derived for PSPACE and sets of other densities.

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 241

It is also used to give new interpretations to oracle constructions, and to simplify
previous oracle constructions. This leads to conditions in terms of Kolmogorov
complexity under which there exist NP complete sets that are not polynomial-time
isomorphic, as formulated in [15]. In [57] a characterization of the P =NP question is
given in terms of time-bounded Kolmogorov complexity and relativization. Earlier,
Adleman in [2] established a connection, namely NP :f. P exactly when NP machines
can "manufacture" randomness. Following this approach, Hemachandra [60] obtains
unrelativized connections in the spirit of [57].

EXAMPLE (Hartmanis). Hartmanis noticed the following interesting fact: a polynomial
machine cannot from simple input compute complicated strings and hence cannot ask
complicated questions to an oracle A. Using this idea, he constructed several very
elegant oracles. As an example, we construct the Baker-Gill-Solovay oracle A such
that pA =/; NPA: By diagonalization, choose Cs;; { 12": n?; 1} and C E DTIME(n10g")- P.
For every n such that 12" EC, put the first string of length 2" from

K[log n, n10g", oo]- K[log n, n10glogn, oo]

in A. Clearly, C E NPA. But C cannot be in pA since in polynomial time, a PA-machine
cannot ask any question about any string in A. Hartmanis also constructed two others
including a random sparse oracle A such that NPA # pA with probability 1.

EXAMPLE (Longpre, Natarajan [101, 118]). It was noticed that Kolmogorov com­
plexity can be used to obtain space complexity hierarchies in Turing machines. Also it
can be used to prove certain immunity properties. For example, one can prove that if
lim" ... '° S(n)/S'(n)=O, then, for any universal machine U, if S'(n)-;:::n is a nondecreasing
function and if f(n) is a function not bounded by any constant and computable in space
S(n) by U, then we have that the complement of Ku[f(n),oo,S'(n)] is DSPACE(S(n))­
immune for large n.

6.4. Generalized Kolmogorov complexity applied to structural proofs

Generalized Kolmogorov complexity turns out to be an elegant tool for studying
the structure in complexity classes. The first such applications are probably due to
Hartmanis, as we discussed in a previous section. Other work in this area includes
[5, 8, 128]. In this section we try to present some highlights of the continuing research in
this direction. We will present several excellent constructions, and describe some
constructions in detail.

EXAMPLE (an exponentially low set not in P). A set A is exponentially low if EA= E,
where E = DTIME(2c"). Book, Orponen, Russo, and Watanabe [18] constructed an
exponentially low set A which is not in P. We give this elegant construction in detail.
Let K = K[}n, 23", oo] and K its complement. Let A= { x: x is the lexicographically
least element of K of length 22 · .. 2 (stack of m 2s), for some m>O}. Obviously, AEE.
Further A is not in P since otherwise we let A= L(M) and for Ix I~ I Ml and x EA we
would have that x EK, a contradiction. We also need to show that EA= E. To simulate

242 M. LI, P.M.B. VITANYI

a computation of EA by an E machine we do the following: If a query to A is of correct
length (stack of 2s) and shorter than en for a small constant c, then just do exhaustive
search to decide. Otherwise, the answer is "no" since

(1) a string of wrong length (no stack of 2s) is not in A and
(2) a string of length greater than en is not even in .K.

(2) is true since the query string can be calculated from the input of length n and the
exponentially shorter previous queries, which can be encoded in, say, icn bits assuming
c is chosen properly; therefore the query string is in K.

In [168], Watanabe used time/space-bounded Kolmogorov complexity to construct
a more sophisticated set D which is polynomial Turing complete for E but not complete
for E under polynomial truth-table reduction. Allender and Watanabe [6] used
Kolmogorov complexity to characterize the class of sets which are polynomial many­
one equivalent to tally sets, in order to study the question of whether E~(Tally) =
E~u(Tally) is true, where E~(Tally) = { L: for some tally set T, L = ~ T}. In [63, 64],
Huynh started a series of studies on the concept of resource-bounded Kolmogorov
complexity oflanguages. He defined the (time/space-bounded) Kolmogorov complexity
of a language to be the (time/space-bounded) Kolmogorov complexity of

Seq(L <n) = CL(wi)Cdw2) ... CL(Wz•-d,

where w; is lexicographically the ith word and CL(wi)= 1 iff wi e L. In particular, he
shows that there is a language Le DTIME(220("l) (any hard set for this class) such that
the 2P011-time-bounded Kolmogorov complexity of L is exponential almost every­
where. That is, the sequence Seq(L <•) cannot be compressed to a subexponentially
short string within 2Poly time for all but finitely many n's. Similar results were also
obtained for space-bounded classes. He used these results to classify exponential-size
circuits. Compare this with Barzdin's result, cited at the end of Section 2.5.

Allender and Rubinstein studied the relation between small resource-bounded
Kolmogorov complexity and P-printability. Sets like K[k log n, n\ ro] for some con­
stant k are said to have small time-bounded Kolmogorov complexity. A set Sis said to
be polynomial-time printable (P-printable) if there is a k such that all the elements
of S up to size n can be printed by a deterministic machine in time nk + k. Clearly,
every P-printable set is a sparse set in P. Define the ranking function for a language
L, rL: 'E*-+N, given by rL(x)=d({weL: w<x}) [54]. Allender and Rubinstein [7]
proved that the following are equivalent:

(1) S is P-printable.
(2) S is sparse and has a ranking function computable in polynomial time.
(3) S is P-isomorphic to some tally set in P.
(4) S s; K[k log n, n\ oo] for some constant k and Se P.
Note: The equivalence of(l) and (4) is due to Balcazar, and Book [8] and Hartmanis

and Hemachandra [57].

6.5. Time-bounded Kolmogorov complexity and language compression

If A is a recursive set and x is lexicographically the ith element in A, then we know

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 243

K(x)~log i+cA for some constant cA not depending on x. Here we use plain
Kolmogorov complexity as in the introduction of Section 2.

NOTATION. In this section let us write K'(xf y) to denote the conditional t-time­
bounded Kolmogorov complexity of x, given y. Define the unconditional complexity of
x as K'(x) = K1(x[e).

Further let A E P, where P is the class of problems decidable by deterministic Turing
machines in polynomial time. It is seductive to think the following:

CONJECTURE. 3c\fsEAn[KP(s)~logd(An)+cA], where An is the set of elements in A of
length n, and p is a polynomial.

However in polynomial time a Turing machine cannot search through 2" strings
as is assumed with A a recursive set as above. Whether or not the above conjecture
is true is still an important open problem in time-bounded Kolmogorov complexity
which we deal with exclusively in this section. It also has important consequences in
language compression.

DEFINITION (Goldberg and Sipser [51]). (1) A function f: I'*->I'* is a compression of
language Liff is one-to-one on Land, for all except finitely many x EL, [f(x)[< [x[.

(2) A language L is compressible in time T if there is a compression function f for
L which can be computed in time T, and also the inverse f- 1 off with domain f(L),
such that for any x EL, f- 1(f(x))=x, can be computed in time T.

(3) Compression function f optimally compresses a language L if, for any x EL of
length n,

(4) One natural and optimal compression is ranking. The ranking function rL: L->N
maps x EL to its index in a lexicographical ordering of L.

Obviously, language compression is closely related to the Kolmogorov complexity
of the elements in the language. Efficient language compression is closely related to
the time-bounded Kolmogorov complexity of the elements of the language. By using
a ranking function, we can obtain the optimal Kolmogorov complexity of any element
in a recursive set, and hence, optimally compress the total recursive set. That was trivial.
Our purpose is studying the polynomial-time setting of the problem. This is far from
trivial.

6.5.1. Language compression with the help of an oracle
Let if; 1 , if; 2 , .•. be an effective enumeration of partial recursive predicates. Let T"' be

a multitape Turing machine which computes if;. T"'(x) outputs 0 or 1. If T"' accepts x in
t steps (time), then we also write ij;1(x) = 1.

244 M. LI, P.M.B. VITANYI

DEFINITION (Sipser). Let x,y,p be strings in {O, 1}*. Fixing l/J, we can define KD~ of x,
conditional to l/J and y, by

KD~(xjy)=min{lp I: Yv, l/J'(v,p, y)= 1 iff v =x},

and KD~(xly)= oo if there are no such p.

REMARK. One can prove an invariance theorem similar to that of the K 1 version; we
can hence drop the index t/! in KD~.

The intuition of the above definition is that while K'(x) is the length of the shortest
program generating x in t(lxl) time, KD1(x) is the length of the shortest program
accepting only x in t(lxl) time. In pure Kolmogorov complexity, these two measures
differ by only an additive constant. In the resource-bounded Kolmogorov complexity,
they appear quite different. The KD version appears to be somewhat simpler, and the
following were proved by Sipser [146]. Let p, q be polynomials, c be a constant, and
NP be an NP-complete oracle.

(1) 'v'p3q[KDq(s)~KP(s)+O(l)].
(2) 'v'p3q[Kq(s I NP)~KDP(s)+ 0(1)].
(3) 'v'c3d, if A£ .r" and A is accepted by a circuit of size n', then for each s e A,

KDd(s I A, iA)~log d(A)+ log log d(A)+ 0(1),

where iA depends on A and has length about n log d(A).
(4) 'v' c3d, if A £ E" is accepted by a circuit of size nc and there is a string i A such that

for each s e A,

Kd(s I A, iA, NP)~log d(A)+ log logd(A)+O(l),

then

Kd(s I A, L2)~ log d(A) +log log d(A)+O(l).

In order to prove the above results, Sipser needed an important coding lemma
which will be proved again below using Kolmogorov complexity. Let A c;;;.E", k=d(A)
and m = 1 +flog kl Let h: E"-+ .rm be a linear transformation given by a randomly
chosen mxn binary matrix R={rii}, i.e. for xel:", Rx is a string yel:m where y;=
(:Lirii x x i) mod 2. Let H be a collection of such functions. Let A, B £ l:" and x e E".
h separates x within A if for every ye A, different from x, h(y) =I= h(x). h separates B within
A if it separates each x e B within A. H separates B within A if for each x e B some he H
separates x within A. In order to give each element in A a (logarithmic) short code, we
randomly hash elements of A into short codes. If collision can be avoided, then
elements of A can be described by short programs.

CODING LEMMA (Sipser). Let Ac;;;, .rn, where d(A) = k. Let m = 1 +flog kl There is a
collection Hof m linear transformations E"-.rm such that H separates A within A.

PROOF. We give the main idea ignoring relevant issues as self-delimiting descriptions,
etc. Fix a random strings oflength nm2 such that K(sl A)~ lsl. Cut x into m equal pieces.

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 245

Use the nm bits from each piece to form an n x m binary matrix in the obvious way.
Thus we have constructed a set Hof m random matrices. We claim that H separates
A within A.

Assume this is not true. That is, for some x EA, no h EH separates x within A. Hence
there exist y 1 , •. • , Ym EA such that h;(x) = h;(y;). Hence h;(x - y;) = 0. Since x - Yi =f. 0,
the first column of h; corresponding to a 1 in x -y; can be expressed by the rest
of the columns using x- y;. Now we can describes using the following:
• index of x in A, using flog kl bits,
e indices of y1 , • •• , Ym, in at most m flog kl bits,
e matrices h1 , •.• , hm each minus the redundant column, in m2n -m2 bits.
From the above information, given A, a short program will reconstruct h; by the rest
columns of h; and x, Yi- The total length is only

m2n-m(log k + l)+log k+m(log k)~ nm 2 -1.

Hence, K(s I A)< lsl, a contradiction. O

From this lemma, Sipser also proved BPP s; L4 n04 . Gacs improved this to
BPPs;:[2 nil 2 . We provide Gacs' proof: Let BEBPP be accepted by a probabilistic
algorithm with error probability at most 2-n on inputs of length n, which uses m=nk
random bits. Let Ex c I:m be the collection of random inputs on which M rejects x.
For XEB, 1Ex1~2m-n. Letting l=l+m-n, the Coding Lemma states that there is
a collection H of! linear transformations from Em to J:1 separating Ex within Ex. If x
is not in B, IExl > 2"'- 1 and by the pidgeon hole principle, no such collection exists.
Hence x E B iff such an H exists. The latter can be expressed as

3H Ve E Ex 3h EH Ve' E Ex[e =f. e' implies h(e) =f. h(e')].

The second existential quantifier has polynomial range, hence can be eliminated. Hence
BPP£L2 • Since BPP is closed under complement, BPPsll2 • Hence BPPs;E2 nI1 2 •

6.5.2. Language compression without oracle
Without the help of oracles, Sipser and Goldberg [51] obtained much weaker

and more difficult results. For a given language L, define the density of L to
be PL = max{µL(n)}, where µ1,(n) = d(L")/2". Goldberg and Sipser proved that if
LEP, k>3, and µL~n-k, then L can be compressed in probabilistic polynomial
time; the compression function f maps strings of length n to strings of length n -
(k- 3)1og n + c with probability approaching I.

The above result is weak in two senses:
(1) If a language Lis very sparse, say µL ~ r n/Z, then one expects to compress !n bits

instead of only O(log n) bits given by the theorem; can this be improved?
(2) The current compression algorithm is probabilistic; can this be made deter­

ministic?
In computational complexity, oracles sometimes help us to understand the

possibility of proving a new theorem. Goldberg and Sipser show that when S, the
language to be compressed, does not need to be in P and the membership query of Sis
given by an oracle, then the above result is optimal. Specifically, we have the following:

246 M. LI, P.M.B. VITANYI

(1) There is a sparse language S which cannot be compressed by more than O(log n)
bits by a probabilistic polynomial-time machine with an oracle for S.

(2) There is a language S, of density µ5 < 2-n12 , which cannot be compressed by any
deterministic polynomial-time machine that uses the oracle for S.

See [151] for practical data compression techniques.

6.5.3. Ranking: optimally compressible languages
Ranking is a special and optimal case of compression. The ranking function rL maps

the strings in L to their indices in the lexicographical ordering of L. If rL: L-+N is
polynomial-time computable, then so is rL: 1 : N-+L in terms of the length of its output.
We are only interested in polynomial-time computable ranking functions. In fact, there
are natural language classes that are easy to compress. Goldberg and Sipser [54], and
Allender [4] show that if a language L is accepted by a one-way logspace Turing
machine, then rL can be computed in polynomial time. Goldberg and Sipser also prove
by diagonalization that

(a) there is an exponential-time language that cannot be compressed in deterministic
polynomial time; and

(b) there is a double exponential-time language that cannot be compressed in
probabilistic polynomial time.

Call CP-rankable if for all LE C, rL is polynomial-time computable. Hemachandra in
[61] proved that P is P-rankable iff NP is P-rankable, and P is P-rankable iff P = p#P,

and PS PACE is P-rankable iff P =PS PACE. Say a set A is k-enumeratively-rankable if
there is a polynomial-time computable function f so that for every x, f(x) prints a set of
k numbers, one of which is the rank of x with respect to A. Cai and Hemachandra [21]
proved P = p#P iff each set A E P for some kA has a kA-enumerative-ranker.

6.6. A Kolmogorov random reduction

The original ideas of this section belong to U. Vazirani and V. Vazirani [159]. We
reformulate their results in terms of Kolmogorov complexity.

In 1979 Adleman and Manders defined a probabilistic reduction, called UR-reduction,
and showed several number-theoretic problems to be hard for NP under UR-reductions
but not known to be NP-hard under Turing reductions. In [159] the notion is refined as
follows.

DEFINITION. A is PR-reducible to B, denoted by A ~PR B, iff there 1s probabilistic
polynomial-time TM T and b > 0 such that

(1) xEA implies T(x)EB, and
(2) x not in A implies Pr(T(x) not in B);:: b.

A problem is PR-complete if every NP problem can be PR-reduced to it.

Vazirani and V azirani obtained a nonnumber-theoretic PR-complete problem, which is
still not known to be NP-complete up to today.

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 247

ENCODING BY TM
Instance: Two strings x,yE{O, 1,2,ix,/3}*, integer k.
Question: Is there a TM M with k or fewer states that on input x generates yin IYI steps.

(M has one read-write tape initially containing x and a write-only tape to write y. M must
write one symbol of y at each step, i.e. real time.)

PR-COMPLETENESS PROOF. We reduce ENCODING BY FST to our problem, where the former
is NP-complete and is defined as follows.

ENCODING BY FST
Instance: Two strings x,yE{O, 1,2}*, lxl=lyl, and integer k.
Question: Is there a finite-state transducer M with k or less states that outputs yon input

x. (Each step, M must read a symbol and output a symbol.)

The reduction is now as follows: any instance {x, y, k) of ENCODING BY FST is transformed
to (xr, yr, k) for ENCODING BY TM, where K(rix, y) ;:;-; lrl-c and r E {a, /3} *. For c:5 = 2-c,
Pr(generate such an r) ;:;-; I - .:5. Clearly, if there is an FST F of at most k states that outputs
y on input x, then we can construct a TM which outputs yr on input xr by simply adding
two new transitions from each state back to itself on a, /3 and outputing what it reads. If
there is no such FST, then the k-state TM must reverse its read head on prefix x, or halt,
when producing y. Hence it produces r without seeing r (notice the real-time requirement).
Hence K(rlx,y)=O(l), a contradiction. D

7. Conclusion

The opinion has sometimes been voiced that Kolmogorov complexity has only very
abstract use. We are convinced that Kolmogorov complexity is immensely useful in
a plethora of applications ranging from very theoretic to quite practical. We believe that we
have given conclusive evidence for that conviction by this collection of applications.

In our view the covered material represents only the onset of a potentially enormous
number ofapplications ofKolmogorov complexity in mathematics and the sciences. By the
examples we have discussed, readers may get the feel how to use this general-purpose tool
in their own applications, thus starting the golden spring of Kolmogorov complexity.

Acknowledgment

We are grateful to Greg Chaitin, Peter Gacs, Leonid Levin and Ray Solomonoff for
taking lots of time to tell us about the early history of our subject, and introducing us to
many exciting applications. Additional comments were provided by Donald Loveland and
Albert Meyer. Juris Hartmanis and Joel Seiferas introduced us in various ways to
Kolmogorov complexity. P. Berman, R. Paturi, and J. Seiferas and Y. Yesha kindly
supplied to us (and gave us permission to use) their unpublished material about the prime
number theorem, lower bounds for probabilistic machines and Boolean matrix rank

248 M. LI, P.M.B. VITANYI

respectively. 0. Watanabe and L. Longpre supplied to us interesting material in connection
with the structure of complexity classes. A.Kb. Shen' and A. Verashagin translated an initial
draft version of this article into Russian, and pointed out several errors. Comments of
Charles Bennett, Peter van Emde Boas, Jan Heering, Evangelos Kranakis, Ker-I Ko,
Danny Krizanc, Michiel van Lambalgen, Lambert Meertens, John Tromp, Umesh
Vazirani, and Mati Wax are gratefully acknowledged. Th. Tsantilas and J. Rothstein
supplied many useful references. We dedicate this work to A.N. Kolmogorov, who
unexpectedly died while this paper was being written.

The work of the first author was supported in part by National Science Foundation
Grant DCR-8606366, Office of Naval Research Grant N00014-85-k-0445, Army Research
Office Grant DAAL03-86-K-0171, and NSERC Operating Grant OGP0036747. His
current affiliation is: Department of Computer Science, University of Waterloo, Ontario,
Canada N2L 3G 1.

Preliminary versions of parts of this article appeared as: "Two decades of applied
Kolmogorov complexity; In memoriam A.N. Kolmogorov 1903-1987", in: Proc. 3rd IEEE
Structure in Complexity Theory Conference (1988) 80-102; and: "Kolmogorovskaya
swozhnost': dvadsat' let spustia'', Uspekhi Mat. Nauk 43(6) (1988) 128-166 (in Russian)
(=Russian Mathematica/ Surveys).

References

[l) AANDERAA, S.O., On k-tape versus (k-1)-tape real-time computation, in: R.M. Karp, ed., Complexity of
Computation (Amer. Mathematical Soc., Providence, RI, 1974) 75-96.

[2) ADLEMAN, L., Time, space, and randomness, Report MIT/LCS/79(fM-131, Laboratory for Computer
Science, Massachusetts Institute of Technology, 1979.

[3) ALEKSANDROV, P.S., A few words on A.N. Kolmogorov, Russian Math. Surveys 38 (1983) 5-7.
[4) ALLENDER, E., Invertible functions, Ph.D. Thesis, Georgia Institute of Technology, Atlanta 1985.
[5] ALLENDER, E., Some consequences of the existence of pseudorandom generators, J. Comput. System Sci. 39

(1989) 101-124.
[6) ALLENDER, E. and 0. WATANABE, Kolmogorov complexity and degrees of tally sets, in: Proc. 3rd Ann.

Conf IEEE on Structure in Complexity Theory (1988) 102-111.
[7] ALLENDER, E.A. and R.S. RUBINSTEIN, P-printable sets, SIAM J. Comput. 17 (1988) 1193-1202.
[8] BALCAZAR, J. and R. BooK, On generalized Kolmogorov complexity, in: A.L. Selman, ed., Structure in

Complexity Theory, Lecture Notes in Computer Science, Vol. 223 (Springer, Berlin, 1986) 334-340.
[9] BARZDIN', Y.M., Complexity of programs to determine whether natural numbers not greater than n belong

to a recursively enumerable set, Soviet Math. Dok/. 9 (1968) 1251-1254.
[IO] BEAME, P., Limits on the power of concurrent-write parallel machines, Inform. and Comput. 76(1988)

13-28.
[11] BENNETT, C.H., On random and hard to describe numbers, Mathematics Tech. Report RC 7483 (# 32272),

IBM T.J. Watson Research Center, Yorktown Heights, 1979; also in: M. Gardner, Mathematical Games,
Scientific American (November 1979) 20-34.

[12] BENNETT, C.H., On the logical "depth" of sequences and their reducibilities to random sequences, Un­
published manuscript, IBM T.J. Watson Research Center, Yorktown Heights (1981/2).

[13] BENNETT, C.H., Dissipation, information, computational complexity and the definition of organization, in:
D. Pines, ed., Emerging Syntheses in Science (Proc. Founding Workshops of the Santa Fe Institute, 1985)
(Addison-Wesley, Reading, MA, 1987) 297-313.

[14] BENNETT, C.H., Logical depth and physical complexity, in: R. Herken, ed., The U niversa/ Turing Machine;
A Half-Century Survey (Oxford University Press, Oxford and Kammerer & Unverzagt, Hamburg, 1988)
227-258.

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 249

[15] BERMAN, L. and J. HARTMANIS, On isomorphisms and density of NP and other complete sets, SIAM J.
Comput. 6 (1977) 305-327.

[16] BLUMER, A., A. EHRENFEUCHT, D. HAUSSLER and M. WARMUTH, Classifying learnable geometric concepts
with the Vapnik-Chervonenkis dimension, in: Proc. I Bth Ann. ACM Symp. on Theory of Computing (1986)
273-282.

[17] BoGOLYUBOV, N.N., B.V. GNEDENKO and S.L. SOBOLEV, Andrei Nikolaevich Kolmogorov (on his
eightieth birthday), Russian Math. Surveys 38 (1983) 9-27.

[18] BOOK, R., P. 0RPONEN, D. Russo and 0. WATANABE, Lowness properties of sets in the exponential-time
hierarchy, SIAM J. Comput. 17 (1988) 504-516.

[19] BORODIN, A., M.J. FISCHER, D.G. KIRKPATRICK, N.A. LYNCH and M. TOMPA, A time-space tradeofffor
sorting and related non-oblivious computations, in: Proc. 20th Ann. IEEE Symp. on Foundations of
Computer Science (1979) 319-328.

[20] BORODIN, A. and S. CooK, A time-space tradeofffor sorting on a general sequential model of computation,
in: Proc. 12th Ann. ACM Symp. on Theory of Computing (1980) 294-301.

[21] CAI, J. and L. HEMACHANDRA, Enumerative counting is hard, Inform and Comput. 82 (1989) 34-44.
[22] CARNAP, R., Logical Foundations of Probability (Univ. of Chicago Press, Chicago, IL, 1950).
[23] CARTER, J. and M. WEGMAN, Universal classes of hashing functions, J. Comput. System Sci. 18 (1979)

143-154.
[24] CHAITIN, G.J., On the length of programs for computing finite binary sequences, J. Assoc. Comput. Mach.

13 (1966) 547-569.
[25] CHAITIN, G.J., On the length of programs for computing finite binary sequences: statistical considerations,

J. Assoc. Comput. Mach. 16 (1969) 145-159.
[26] CHAITIN, G.J., Information-theoretic limitations of formal systems, J. Assoc. Comput. Mach. 21 (1974)

403--424.
[27] CHAITIN, G.J., Randomness and mathematical proof, Scientific American 232 (May 1975) 47-52.
[28] CHAITIN, G.J., A theory of program size formally identical to information theory, J. Assoc. Comput. Mach.

22 (1975) 329-340.
[29] CHAITIN, G.J., Information-theoretic characterizations of recursive infinite strings, Theoret. Comput. Sci.

2 (1976) 45--48.
[30] CHAITIN, G.J., Algorithmic information theory, IBM J. Res. Develop. 21 (1977) 350--359.
[31] CHAITIN, G.J., Toward a mathematical definition of "life'', in: M. Tribus, ed., The Maximal Entropy

Formalism (MIT Press, Cambridge, MA, 1979) 477--498.
[32] CHAITIN, G.J., Godel's theorem and information, Internat. J. Theoret. Phys. 22 (1982) 941-954; reprinted

in: T. Tymoczko, ed., New Directions in the Philosophy of Mathematics (Birkhiiuser, Boston, 1986).
[33] CHAITIN, G.J., Algorithmic Information Theory (Cambridge Univ. Press, Cambridge, 1987).
[34] CHAMPERNOWNE, D.G., The construction of decimals normal in the scale of ten, J. London Math. Soc. (2)

8 (1933) 254-260.
[35] CHROBAK, M., Hierarches of one-way multihead automata languages, Theoret. Comput. Sci. 48 (1986)

153-181.
[36] CHROBAK, M. and M. L1,k + 1 heads are better thankfor PDAs,J. Comput. System Sci. 37 (1988) 144-155.
[37] CHURCH, A., On the concept of a random sequence, Bull. Amer. Math. Soc. 46 (1940) 130-135.
[38] COVER, T.M., Universal gambling schemes and the complexity measures of Kolmogorov and Chaitin,

Tech. Report 12, Statistics Dept., Stanford Univ., Palo Alto, CA, 1974.
[39] CUYKENDALL, R.R., Kolmogorov information and VLSI lower bounds, Ph.D. Thesis, Univ. of California,

Los Angeles, CA, 1984.
[40] DALEY, R.P., On the inference of optimal descriptions, Theoret. Comput. Sci. 4 (1977) 301-309.
[41] DIETZFELBINGER, M., Lower bounds on computation time for various models in computational

complexity theory, Ph.D. Thesis, Dept. of Computer Science, Univ. of Illinois at Chicago, 1987.
[42] DURIS, P., Z. GAUL, W. PAUL and R. REISCHUK, Two nonlinear lower bounds for online computations,

Inform. and Control 60 (1984) 1-11.
[43] ERDOS, P. and J. SPENCER, Probabilistic Methods in Combinatorics (Academic Press, New York, 1974).
[44] FLOYD, R., Review 14, Comput. Rev. 9 (1968) 280.
[45] GAcs, P., On the symmetry of algorithmic information, Soviet Math. Dok/. 15 (1974) 1477-1480;

Correction, Ibidem IS (1974) 1480.

250 M. LI, P.M.B. VITANYI

[46] GAcs, P., Randomness and probability__,;omplexity of description, in: Kotz-Johnson, ed., Encyclopedia of
Statistical Sciences (Wiley, New York, 1986) 551-555.

[47] GAcs, P., Lecture notes on descriptional complexity and randomness, Unpublished manuscript, Boston
University, Boston, MA, 1987.

[48] GALIL, z. and J. SEIFERAS, Time-space optimal matching, in: Proc.13th Ann. ACM Symp. on Theory of
Computing (1981) 106-113.

[49] GALIL, Z., R. KANNAN, and E. SzEMEREDI, On non trivial separators fork-page graphs and simulations by
nondetenninistic one-tape Turing machines, J. Comput. System Sci. 38 (1989) 134-149.

[50] GALLAIRE, H., Recognition time of context-free languages by on-line Turing machines, Iriform. and
Control 15 (1969) 288-295.

[51] GAO, Q. and M. LI, An application of minimum description length principle to online recognition of
handprinted alphanumerals, in: Proc. I Ith Internat. Joint Conf. on Artificial Intelligence, Detroit, MI
(1989).

[52] GNEDENKO, B.V., Andrei Nikolaevich Kolmogorov (on the occasion of his seventieth birthday),
Russian Math. Surveys 28 (1973) 5-16.

[53] GOLD, E.M., Language identification in the limit, Inform. and Control 10 (1967) 447-474.
[54] GOLDBERG, Y. and M. SIPSER, Compression and ranking, SIAM J. Comput. 19 (1990).
[55] HARRISON, M.A. and O.H. IBARRA, Multi-head and multi-tape pushdown automata, Inform. and

Control 13 (1968) 433-470.
[56] HARTMANIS, J., Generalized Kolmogorov complexity and the structure of feasible computations, in:

Proc. 24th Ann. IEEE Symp. on Foundations of Computer Science (1983) 439-445.
[57] HARTMANIS, J. and L. HEMACHANDRA, On sparse oracles separating feasible complexity classes, in:

Proc. 3rd Symp. on Theoretical Aspects of Computer Science (ST ACS '86), Lecture Notes in Computer
Science, Vol. 210 (Springer, Berlin, 1986) 321-333.

[58] HAUSSLER, D., N. LITTLESTONE and M. WARMUTH, Expected mistake bounds for on-line learning
algorithms, Manuscript, 1988.

[59] HEIDE, F. MEYER AUF DER and A. WIGDERSON, The complexity of parallel sorting, in: Proc. 17th Ann.
ACM Symp. on Theory of Computing (1985) 532-540.

[60] HEMACHANDRA, L., Can P and NP manufacture randomness?, Tech. Report TR86-795, Dept. of
Computer Science, Cornell Univ., Ithaca, NY, 1986.

[61] HEMACHANDRA, L., On ranking, in: Proc. 2nd Ann. IEEE Conf. on Structure in Complexity Theory
(1987) 103-117.

[62] HoPCROFT, J.E. and J.D. ULLMAN, Introduction to Automata Theory, Languages, and Computation
(Addison-Wesley, Reading, MA, 1979).

[63] HUYNH, D.T., Non-uniform complexity and the randomness of certain complete languages, Tech.
Report TR 85-34, Iowa State Univ., 1985.

[64] HUYNH, D.T., Resource-bounded Kolmogorov complexity of hard languages, in: Structure in
Complexity Theory, Lecture Notes in Computer Science, Vol. 223 (Springer, Berlin, 1986)
184-195.

[65] IBARRA, O.H. and C.E. KIM, On 3-head versus 2-head finite automata, Acta Inform. 4(1975) 193-200.
[66] ISRAELI, A. and S. MORAN, Private communication.
[67] JEFFREYS, Z., Theory of Probability (Oxford at the Clarendon Press, Oxford, 3rd ed., 1961).
[68] KEARNS, M., M. LI, L. PITT and L. VALIANT, On the learnability of Boolean formulae, in: Proc. 19th

Ann. ACM Symp. on Theory of Computing (1987) 285-295.
[69] KEARNS, M., M. LI, L. PITT and L. VALIANT, Recent results on Boolean concept learning, in: T.

Mitchell, ed., Proc. 4th Workshop on Machine Learning, (Morgan Kaufmann, Los Altos, CA, 1987)
337-352.

[70] KEMENY, J.G., The use of simplicity in induction, Philos. Rev. 62 (1953) 391-408.
[71] KNUTH, D., Semi-numerical Algorithms (Addison-Wesley, Reading, MA, 2nd ed., 1981).
[72] KNUTH, D.E., Big Omicron and big Omega and big Theta, SIGACT News 8 (2) (1976) 18-24.
[73] Ko, K.-1, Resource-bounded program-size complexity and pseudorandom sequences, Tech. Report,

Dept. of Computer Science, Univ. of Houston, Houston, TX, 1983.
[74] KoLMOGOROV, A.N., Grundbegrif.fe der Wahrscheinlichkeitsrechnung (Springer, Berlin, 1933~

Osnovnye Poniatija Teorii Verojatnostej (Nauka, Moscow, 2nd Russian ed., 1974).

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 251

[75] KoLMOGORov, A.N., On tables of random numbers, Sankhyii Ser. A 25 (1963) 369-376.
[76] KOLMOGOROV, A.N., Three approaches to the quantitative definition of information, Problems

Inform. Transmission 1 (1) (1965) 1-7.
[77] KOLMOGOROV, A.N., Logical basis for information theory and probability theory, IEEE Trans. on

!reform. Theory 14 (5) (1968) 662-664.
[78] KoLMOGOROV, A.N., Combinatorial foundations of information theory and the calculus of

probabilities, Russian Math. Surveys 38 (1983) 29-40.
[79] KOLMOGOROV, A.N., Information Theory and Theory of Algorithms, Selected Works Vol. 3 (Nauka,

Moscow, 1987) (in Russian).
[80] KOLMOGOROV, A.N. and V.A. USPENSKII, Algorithms and randomness, SIAM J. Theory Probab.

Appl. 32 (1987) 389-412.
[81] LAMBALGEN, M. VAN, Von Mises' definition of random sequences reconsidered, J. Symbolic Logic 52

(1987) 725-755.
[82] LAMBALGEN, M. VAN, Random sequences, Ph.D. Thesis, Faculty of Mathematics and Computer

Science, Univ. van Amsterdam, Amsterdam, 1987.
[83] LAPLACE, P.S., A Philosophical Essay on Probabilities (Dover, New York; original publication, 1819).
[84] LEVIN, L.A., Universal search problems, Problems Inform. Transmission 9 (1973) 265-266.
[85] LEVIN, L.A., On the notion of a random sequence, Soviet Math. Dok/. 14 (1973) 1413--1416.
[86] LEVIN, L.A., Laws of information conservation (non-growth) and aspects of the foundation of

probability theory, Problems Inform. Transmission 10 (1974) 206-210.
[87] LEVIN, L.A., Do chips need wires?, Manuscript/NSF proposal MCS-8304498, Computer Science

Dept., Boston Univ., 1983.
[88] LEVIN, L.A., Randomness conservation inequalities; information and independence in mathematical

theories, Inform. and Control 61 (1984) 15-37.
[89] LI, M., Simulating two pushdowns by one tape in O(n i. 5 (log n)0 5) time, J. Comput. System Sci. 37

(1988) 101-116.
[90] LI, M., Lower bounds in computational complexity, Ph.D. Thesis, Report TR-85-663, Computer

Science Dept., Cornell Univ., Ithaca, NY, 1985.
[91] LI, M., L. LONGPRE and P.M.B. VITANYI, On the power of the queue, in: Structure in Complexity

Theory, Lecture Notes in Computer Science, Vol. 223 (Springer, Berlin, 1986) 219-233.
[92] LI, M. and Y. YESHA, String-matching cannot be done by 2-head I-way deterministic finite automata,

Inform. Process. Lett. 22 (1986) 231-235.
[93] LI, M. and Y. YESHA, New lower bounds for parallel computation, J. Assoc. Comput. Mach. 36 (1989)

671-680.
[94] LI, M. and P.M.B. V1TANYI, Tape versus queue and stacks: the lower bounds, Inform. and Comput. 78

(1988) 56--85.
[95] LI, M. and P.M.B. VITANYI, A new approach to formal language theory by Kolmogorov complexity,

in: Proc. l 6th Internat. Coll. on Automata, Languages and Programming, Lecture Notes in Computer
Science, Vol. 372 (Springer, Berlin, 1989) 506-520.

[96] LI, M. and P.M.B. VITANYI, Inductive reasoning and Kolmogorov complexity, in: Proc. 4th Ann.
IEEE Structure in Complexity Theory Conf. (1989) 165-185.

[97] LI, M. and P.M.B. VITANYI, An Introduction to Kolmogorov Complexity and Its Applications
(Addison-Wesley, Reading, MA, to appear).

[98] LIPTON, R. and R. SEDGEWICK, Lower bounds for VLSI, in: Proc. 13th Ann. ACM Symp. on Theory of
Computing (1981) 300-307.

[99] LITTLESTONE, N., Learning quickly when irrelevant attributes abound: a new linear threshold
algorithm, in: Proc. 28th Ann. IEEE Symp. on Foundations of Computer Science (1987) 68-77.

[100] LITTLEWOOD, J.E., The dilemma of probability theory, in: B. Bollobas, ed., Littlewood's Miscellany
(Cambridge Univ. Press, Cambridge, revised ed., 1986) 71-73.

[IOI] LONGPRE, L., Resource bounded Kolmogorov complexity, a link between computational complexity
and information theory, Ph.D. Thesis, Tech. Report TR-86-776, Computer Science Dept., Cornell
Univ., Ithaca, NY, 1986.

[102] Lou1, M., Optimal dynamic embedding of trees into arrays, SIAM J. Comput. 12 (1983) 463-
472.

252

[103]

[104]

[105)

[106]

[107)

[108)

[109]
[110)
[Ill]

[112]

[113]

[114)
[115]

[116]

[117]

[118)
[119)

[120)

[121)
[122)

[123)

[124)

[125)
[126)

[127]

[128]

[129]
[130]

[131)

[132]

M. LI, P.M.B. VITANYI

LOVELAND, D.W., On minimal-program complexity measures, in: Proc. ACM Symp. on Theory of

Computing (1969) 61-65. .
LOVELAND, D. w., A variant of the Kolmogorov concept of complexity, Iriform. and Control IS (1969)

510-526.
MAASS, W., Combinatorial lower bound arguments for deterministic and nondeterministic Turing
machines, Trans. Amer. Math. Soc. 292 (1985) 675-693.
MAASS, W. and G. SCHNITGER, An optimal lower bound for Turing machines with one work tape and
a two-way input tape, in: Structure in Complexity Theory, Lecture Notes in Computer Science, Vol.
223 (Springer, Berlin, 1986) 249-264.
MAASS, W., G. ScHNITGER and E. SzEMEREDI, Two tapes are better than one for off-line Turing
machines, in: Proc. /9th A1111. ACM Symp. 011 Theory of Computing (1987) 94-100.
MAIRSON, H.G., The program complexity of searching a table, in: Proc. 24th IEEE Symp. on

Foundations of Computer Science (1983) 40-47.
MARTIN-LOF, P., The definition of random sequences, Inform. and Control 9 (1966) 602-619.
MARTIN-LOF, P., Algorithmen und zufallige Folgen, Lecture notes, Univ. of Erlangen, 1966.
MARTIN-LOF, P., Complexity oscillations in infinite binary sequences, Z. Wahrsch. Verw. Gebiete 19
(1971) 225-230.
MEHL HORN, K., On the program-size of perfect and universal hash functions, in: Proc. 23rd Ann. IEEE
Symp. on Foundations of Computer Science (1982) 170-175.
METROPOLIS, N.C., G. REITWEISER and J. VON NEUMANN, Statistical treatment of values of the first
2,000 decimal digits of e and 7t calculated on the ENIAC, in: A.H. Traub, ed., John von Neumann,
Collected Works, Vol. V (MacMillan, New York, 1963).
MINSKY, M.L., Steps towards Artificial Intelligence, Proc. l.R.E. (January 1961) 8-30.
MISES, R. VON, Probability, Statistics and Truth (MacMillan, New York, 1939; reprint, Dover, New
York, 1981).
MIYANO, S., A hierarchy theorem for multihead stack-counter automata, Acta Inform. 17 (1982)
63-67.
MIYANO, S., Remarks on multihead pushdown automata and multihead stack automata, J. Comput.
System Sci. 27 (1983) 116-124.
NATARAJAN, B.K., Personal communication, 1988.
NELSON, C.G., One-way automata on bounded languages, Tech. Report TR 14-76, Aiken Computer
Lab., Harvard Univ., 1976.
NEUMANN, J. VON, Various techniques used in connection with random digits, in: A.H. Traub, ed.,
John von Neumann, Collected Works, Vol. V(MacMillan, New York, 1963).
Obituary, Mr. Andrei Kolmogorov-giant of mathematics, Times (October 26, 1987).
PARBERRY, I., A complexity theory of parallel computation, Ph.D. Thesis, Dept. of Computer Science,
Warwick Univ., Coventry, UK, 1984.
PA TURI, R. and J. SIMON, Lower bounds on the time of probabilistic on-line simulations, in: Proc. 24th
Ann. IEEE Symp. on Foundations of Computer Science (1983) 343-350.
PAUL, W., Kolmogorov's complexity and lower bounds, in: L. Budach, ed., Proc. 2nd Internat. Corif.
on Fundamentals of Computation Theory (Akademie Verlag, Berlin, 1979) 325-334.
PAUL, W., On heads versus tapes, Theoret. Comput. Sci. 28 (1984) 1-12.
PAUL, W.J ., J.I. SEIFERAS and J. SIMON, An information theoretic approach to time bounds for on-line
computation, J. Comput. System Sci. 23 (1981) 108-126.
PAUL, W.J., On-line simulation of k+ I tapes by k tapes requires nonlinear time, Inform. and Control
(1982) 1-8.

PETERSON, G., Succinct representations, random strings and complexity classes, in: Proc. 21 st Ann.
IEEE Symp. on Foundations of Computer Science (1980) 86-95.
POPPER, K.R., The Logic of Scientific Discovery (Univ. of Toronto Press, Toronto, 1959).
QUINLAN, J. and R. RIVEST, Inferring decision trees using the minimum description length principle,
Iriform. and Comput. 80 (1989) 227-248.

REISCH, S. and G. SCHNITGER, Three applications of Kolmogorov-complexity, in: Proc. 23rd Ann.
IEEE Symp. on Foundations of Computer Science (1982) 45-52.
RISSANEN, J., Modeling by the shortest data description, Automatica-J. /FAC 14 (1978) 465-471.

KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 253

[133] RISSANEN, J., A universal prior for integers and estimation by minimum description length, Ann.
Statist. l1(1982)416-431.

[134] RIVEST, R., Learning decision-lists, Unpublished manuscript, Lab. for Computer Science, Massa­
chusetts Institute of Technology, Cambridge, MA, 1986.

[135] ROGERS JR., H., Theory of Recursive Functions and Effective Computability (McGraw Hill, New York,
1967).

[136] ROSENBERG, A., Nonwriting extensions of finite automata, Ph.D. Thesis, Aiken Computer Lab.,
Harvard Univ., Cambridge, MA, 1965.

[137] ROSENBERG, A., On multihead finite automata, IBM J. Res. Develop. lO (1966) 388-394.
[138] SCHNORR, C.P., Eine Bemerkung zum Begriff der zufalligen Folge, Z. Wahrsch. Verw. Gebiete 14

(1969/70) 27-35.
[139] SCHNORR, C.P., Z!!falligkeit und Wahrscheinlichkeit; Eine algorithmische Begrundung der Wahr­

scheinlichkeitstheorie, Lecture Notes in Mathematics, Vol. 218 (Springer, Berlin, 1971).
[140] SCHNORR, C.P., Process complexity and effective random tests, J. Comput. System Sci. 7 (1973)

376-388.
[141] SCHNORR, C.P., A survey of the theory of random sequences, in: R.E. Butts and J. Hintikka, eds., Basic

Problems in Methodology and Linguistics (Reidel, Dordrecht, 1977) 193-210.
[142] SEIFERAS, J., The symmetry of information, and an application of the symmetry of information, Notes,

Computer Science Dept, Univ. of Rochester, 1985.
[143] SE!FERAS, J., A simplified lower bound for context-free-language recognition, Inform. and Contro/ 69

(1986) 255-260.
[144] SHANNON, C.E. and W. WEAVER, The Mathematica/ Theory of Communication (Univ. of Illinois Press,

Urbana, IL, 1949).
[145] SHANNON, C.E., A universal Turing machine with two internal states, in: C.E. Shannon and J.

McCarthy, eds., Automata Studies (Princeton Univ. Press, Princeton, NJ, 1956).
[146] SIPSER, M., A complexity theoretic approach to randomness, in: Proc. 15th Ann. ACM Symp. on

Theory of Computing (1983) 330-335.
[147] SKIENA, S.S., Further evidence for randomness in 11, Complex Systems l (1987) 361-366.
[148] SOLOMONOFF, R.J., A preliminary report on a general theory of inductive inference, Tech. Report

ZTB-138, Zator Company, Cambridge, MA, 1960.
[149] SOLOMONOFF, R.J., A formal theory of inductive inference, Part 1 and Part 2, Iriform. and Control

7 (1964) 1-22 and 224-254.
[150] SoLOMONOFF, R.J., Complexity-based induction systems: comparisons and convergence theorems,

IEEE Trans. Iriform. Theory 24 (1978) 422-432.
[151] STORER, J., Data Compression: Met hod and Theory (Computer Science Press, Rockville, MD, 1988).
[152] SuosoROUGH, l.H., Computation by multi-head writing finite automata, Ph.D. Thesis, Pennsylvania

State Univ., University Park, PA, 1974.
[153] SuosoROUGH, l.H., One-way multihead writing finite automata, Inform. and Control 30 (1976) 1-

20.
[154] THOMPSON, C.D., Area-time complexity for VLSI, in: Proc. I Ith Ann. ACM Symp. on Theory of

Computing (1979) 81-88.
[155] TURING, A.M., On computable numbers with an application to the Entscheidungsproblem, Proc.

London Math. Soc. 42 (1936) 230-265; Correction, Ibidem 43 (1937) 544-546.
[156] VALIANT, Land G. BREBNER, Universal schemes for parallel communication, in: Proc. 13th Ann.

ACM Symp. on Theory of Computing (1981) 263-277.
[157] VALIANT, LG., A theory of the learnable, Comm. ACM 27 (1984) 1134-1142.
[158] VALIANT, LG., Deductive learning, Philos. Trans. Royal Soc. Land. Ser. A 312 (1984) 441-446.
[159] VAZIRANI, U. and V. VAZIRANI, A natural encoding scheme proved probabilistic polynomial complete,

Theoret. Comput. Sci. 24 (1983) 291-300.
[160] VILLE, J., Etude Critique du Concept de Collect!/"(Gauthier-Villars, Paris, 1939).
[161] VITA NY!, P.M.B. and L MEERTENS, Big Omega versus the wild functions, SIGACT News 16 (4) (1985)

56-59.
[162] V1TANYI, P.M.B., On two-tape real-time computation and queues, J. Comput. System Sci. 29 (1984)

303-311.

254 M. LI, P.M.B. VITANYI

[163] VITANYI, P.M.B., On the simulation of many storage heads by one, Theoret. Comput. Sci. 34 (1984)
157-168.

[164] VITANYI, P.M.B., Square time is optimal for the simulation of a pushdown store by an oblivious
one-head tape unit, Inform. Process. Lett. 21 (1985) 87-91.

[165] VITANYI, P.M.B., An N 1•618 lower bound on the time to simulate one queue or two pushdown stores
by one tape, Inform. Process. Lett. 21 (1985) 147-152.

[166] VITANYI, P.M.B., Andrei Nikolaevich Kolmogorov, CW/ Quarterly 1 (2) (June 1988) 3-18.
[167] WALD, A., Sur la notion de collectif dans le calcul des probabilites, C.R. Acad. Sci. 202 (1936)

1080-1083.
[168] WATANABE, 0., Comparison of polynomial time completeness notions, Theoret. Comput. Sci. 53

(1987) 249-265.
[169] WILLIS, D.G., Computational complexity and probability constructions, J. Assoc. Comput. Mach. 17

(1970) 241-259.
[170] YAO, A., Theory and application of trapdoor functions, in: Proc. 23rd Ann. IEEE Symp. on

Foundations of Computer Science (1982) 80-91.
[171] YAO, A.C.-C. and R.L. RIVEST, k+ 1 heads are better thank, J. Assoc. Comput. Mach. 2S (1978)

337-340.
[172] YESHA, Y., Time-space tradeoffs for matrix multiplication and discrete Fourier transform on any

general random access computer, J. Comput. System Sci. 29 (1984) 183-197.
[173] ZvoNKIN, A.K. and L.A. LEVIN, The complexity offinite objects and the development of the concepts

of information and randomness by means of the theory of algorithms, Russ. Math. Surveys 25 (1970)
83-124.

[174] COVER, T.M., P. GAcs and R.M. GRAY, Kolmogorov's contributions to information theory and
algorithmic complexity, Ann. Probab. 17 (1989) 840-865.

[175] lTKIS, G. and L.A. LEVIN, Power of fast VLSI models is insensitive to wires' thinness, in: Proc. 30th
Ann. IEEE Symp. on Foundations of Computer Science (1989) 402--409.

[176] LI, M. and P.M.B. V1TANYI, A theory of learning simple concepts under simple distributions and
average case complexity for the universal distribution, in: Proc. 30th Ann. IEEE S ymp. on Foundations
of Computer Science (1989) 34-39.

[177] WALLACE, C.S. and P.R. FREEMAN, Estimation and inference by compact coding, J. Royal Statist. Soc.
Ser. B 49 (1987) 240-251; Discussion, Ibidem 49 (1987) 252-265.

