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The steady-state workload at an arbitrary time is considered for several single­
server queueing systems with nonpreemptive services for multiple classes of cus­
tomers (arriving according to Poisson processes) and server vacation (switchover) 
times. The distribution of the workload at an arbitrary point during the vacation 
period is obtained for systems with setup times, and for polling systems with ex­
haustive, gated, or globally gated service disciplines. From the stochastic decom­
position property, this workload is added to the workload in the corresponding M/ 
G / l system without vacations to give the workload at an arbitrary time in vacation 
systems. Dependence of the workload distribution on the vacation parameters is 
studied. 

1. INTRODUCTION 

The workload, also called the backlog, unfinished work, or work in system, 
in a queueing system is defined as the sum of the remaining service times of all 
customers in the system. This article is concerned with the distribution of the 
steady-state workload in several single-server queueing systems with P classes 
of customers (arriving according to independent Poisson arrival processes) and 
server vacation (switchover) times. Note that the workload indicates the system­
wide congestion, while the queue size and the waiting time are interesting for 
customers of each class. Throughout the article, we assume that service times 
and vacation times are independent random variables. We focus on nonpreemp­
tive service disciplines that use only information about the customer class in 
selecting the customer to serve. It is also assumed that the service discipline and 
the vacation process do not affect the amount of service time given to any 
customer. 
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For a broad category of multiclass queueing systems with server vacations, 
including the above-mentioned systems considered in this paper, Boxma and 
Groenendijk [2] (see also Boxma [1]) established the following work decom­
position result. The steady-state workload U is distributed as the sum of the 
steadv-state workload U Mrcii in the corresponding MI GI 1 system without va­
catio~s and the steady-state workload Y in the original system at an arbitrary 
time during a vacation period: 

distr u = UM/Gil + Y. (1) 

Furthermore, UM1c11 and Y are independent. Let A.P, bP, b~2l, and s;(s) be the 
Poisson arrival rate, the mean, the second moment, and the Laplace-Stieltjes 
transform (LST) of the distribution function (DF) for the service time, respec­
tively, of a customer of class p, where p = 1, 2, ... , P. In addition, if U*(s), 
U~1w 1 (s), and Y*(s) denote the LSTof the DFfor U, U MIGi" and Y, respectively, 
we have, for s ::::: 0, 

U*(s) = u~{IG/l(s)Y*(s), (2) 

where 

* (1 - p)s 
u MIG!l(s) = s - ), + A.B*(s )' (3) 

p 

p ~ 2: ).pbp; 
p=l 

a P A. 
B*(s) = 2: ::£ s;(s). 

p=I A 
(4) 

The purpose of this paper is to give Y*(s) for systems with setup times (Section 
3) and for polling systems (Section 4), thus obtaining the LST of the DF for the 
workload in those systems by (2). For general systems with nonpreemptive 
service, the evaluation of the mean workload E[ U] leads to the so-called pseu­
doconservation law with respect to the traffic-intensity-weighted sum of the mean 
waiting times for each class of customers (see Section 2), which has been studied 
for several polling systems. However, as far as the authors know, no results 
have been published for the distribution of the workload. Our results are sum­
marized in Theorems 1 and 2. Concluding remarks are given in Section 5. 

2. PSEUDOCONSERVATION LAWS 

In this section, we first present a general form of the pseudoconservation law. 
It is followed by examples of systems with setup times and polling systems. 

For multiclass systems with a nonpreemptive service discipline that does not 
distinguish customers on the basis of their service times [7, Sec. 6.2], we have 

(5) 
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where 

(6) 

and El WP] is the mean waiting time of a customer of class p. It follows from 
(l) and (3) that 

p).bl2) 

2(1 - p) + E[Y], (7) 

which is called the pseudoconservation law. For systems without vacations, we 
have £[ YJ """ 0, and (7) reduces to Kleinrock's conservation law [8, Sec. 5.2, 9J 
as this intensity-weighted sum of the mean waiting times can never change no 
matter how the service discipline may use the class information. For systems 
with vacations, £[ Y] depends on the structure of the vacation mechanism. 

In a system with setup times, a setup time S P is required prior to the busy 
period when a customer of class p arrives during an idle period in the system, 
where p = 1, 2 .... , P. During the busy period, scheduling of classes to serve 
is arbitrary, for example, first-come-first-served (FCFS), nonpreemptive priority, 
or exhaustive-service polling [6]. Many priority queues with setup times are 
studied by Takagi [llj, who shows, for example, that 

p 

_ (1 - p)E[SeJ J.b12 ) 

E[Wp]m'S - l + ).£[SJ + 2(1 - p) + 

),£[S2] + 2 L p,E[Sd 
k=I (8) 

2(1 + JcE[S]) 

where b<2i is defined in (6), and 

l = 1, 2, ... (9) 

is the ith moment of the setup time aggregated over all classes. For the non­
preemptive priority system with setup times in which class l has the highest 
priority and class P the lowest, we have 

I' 

iE[S2] + 2 L p.E(S.J 

+ (1 + ).E~SD(i - p;_i) [ E[Sp] + 2(1 -·~;) ] ' (JO) 

where p; ;, 2.:LiPk· Both (8) and (HJ) satisfy (7) with 

p 

p).E[S2] + 2 L ppE[Sp] 
[ ] 1= I £ Y setup times = --2-(-l_+_A~: E_[_S_J) __ (11) 
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In the next section, we derive the LST Y*(s) of the OF for Yin a system with 

setup times. 
Pseudoconservation laws are studied extensively for polling systems [l, 2, 10]. 

In a polling system, customers of each class are served in cyclic order with finite 
switchover times. Let R;(s), rP, and ri2l be the LST of the OF, the mean, and 
the second moment, respectively, for the server switchover time from class p to 
class p mod P + 1, where p = 1, 2, ... , P. (Hereafter, all class indices in 
polling systems should read in a similar cyclic fashion, although not shown 
explicitly.) Switchover times are assumed to be independent. In the exhaustive 
service system, the server continues to serve each class until there are no cus­
tomers of that class in the system. In the gated service system, the server continues 
to serve only those customers of each class that were waiting when the server 
started its service to that class, while those customers that arrive during this 
service period are served in the next round. The mean workload E[ Y] at an 
arbitrary time during the switchover times in these polling systems is given by 

R(p2 - ± p2) 
pR(2) p=I P 

E[ Y]exhnustive = 2R + 2(l _ p) (12) 

( 
p ) R pi+ L pi 

pR<2l p=t P 

E[ Y]gated = 2R + 2(1 - p) (13) 

where 

p 

R<2l = L (rfl - r~) + R2. (14) 
p=I 

Note that R and R<2l are the mean and the second moment of the sum of 
switchover times over one round. In the globally gated service system, which 
was recently proposed and analyzed by Boxma, Levy, and Yechiali [3], in each 
cycle of the server, only those customers that were found in the system at the 
start of the cycle (namely, when the server visited class 1) are served. In this 
system, we have 

pRl2l Rp2 P p-1 

£[ Y}glooally gated = 2R + 2(l _ p) + -:;2 Pp ~ ri. (15) 

In this case, E[ Y] depends on the ordering of classes. 

REMARK: For P = 1 (a single-class vacation model), if the waiting time of 
a customer is independent of the part of the arrival process that occurs after the 
customer's arrival time (as in the FCFS system), the LST W*(s) of the OF for 
the waiting time can be expressed also in the decomposition form [5] 

W*(s) = WZt1all(s) x(l - s/ ,1.), (16) 
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where x(z) is the probability generating function of the number of customers in 
the system at an arbitrary time during a vacation period, and 

* (1 - p)s 
W.w1G11(s) = s _ 2 + ).B*(s) = UM1G11(s). (17) 

Since each customer makes a contribution of its service time to the workload in 
system during the vacation period, it follows that 

Y*(s) = x[B*(s)]. (18) 

Hence the relation between U*(s) and W*(s) is given by (2), (16), (17), and 
(18). In particular, we get 

which leads to 

E(Y] 
E[W] = E(W].w1c11 + --, 

p 
(19) 

).b(2) 
E[ U] - pE[W] = - 2-; E(W] - E(U] = (1 - p)E[Y] > 0. (20) 

p 

3. SYSTEMS WITH SETUP TIMES 

In a multiclass system with setup times, a vacation period consists of an idle 
period, exponentially distributed with mean 11 A., and a setup time S P if a customer 
of class p arrives first during the idle period. During a vacation period, the 
system is in the idle period with probability 

1 I). 1 
(21) 

1/ 2 + E[S] 1 + .1.E[S] . 

During the vacation period, the system is in the setup time SP with probability 

E[S] x .l.PE[Sp] = A.eE(Sp] 
1/A. + E[S] ). E(S] 1 + A.E[S]' 

p = 1, 2, ... , P. (22) 

Note that the probability generating function of the number of customers that 
arrive from the beginning of the setup time S P till an arbitrary time during S P 

is given by 

1 - s;o. - h) 
2E(Sp](l - z) . 

(23) 

Therefore, the LST of the DF for the workload at an arbitrary time during the 
setup time S P is given by 

* 1 - s;[A. - 2B*(s)] 
BP (s) .l.E[SP][l - B*(s)] · (24) 
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Hence we obtain 

l ~ ).eE[Sp] *( 1 - s;p. - A.B*(s)J 
Y!iup ;;,,,.,,(s) = 1 + ),£[S] X 1 + f:1 1 + A.E[S] BP s) ).E[SP][l - B*(s)J 

p 

l - 2().1,!A.)B,;(s)S;p, - ).B*(s)] 

(1 + ).£[SJ)[l - B*(s)] 
(25) 

from which we get the mean in ( 11), and the second moment 

p p 

1>"1.E[S3] + 3p L ppE[S~J + 3 L Apbi2) E[Sp] 
+ ~~~~~~·=~!~~~~---"-=~I~~~~ 

3(1 + ).E[S]) 
(26) 

Note that the LST of the DF for the workload in the system at an arbitrary time 
is given by (2) using (3) and (25). Thus we have established the following 
theorem. 

THEOREM 1: The LST of the DF for the workload in a multidass system 
with setup times at an arbitrary time in equilibrium is given by 

p 

* (1 - p)s 
U (s) = . + , B*( ) S - ). I. S 

- 2 ().pi).) s;(s)s; [). - ).B*(s)] 
=l 

(I + tlE[Sj)[l - B*(s)] 
0 

4. POLLING SYSTEMS 

For polling systems, we can express Y*(s) only in terms of a certain function 
for which the functional equation is known. Let us focus on a moment at which 
the server completes the service of class k, and denote by Ut(s) the LST of the 
DF for the workload U, in the system at that moment. An arbitrary point in 
time during switchover times falls in the switchover time from class k to k + 1 
with probability rA! R, and the LST of the DF for the workload that is newly 
brought to the system before the arbitrary point during this switchover time is 
given by 

1 - Rt[). - J.B*(s)] 
).rk[l - B*(s)] 

Since this workload and Uk are independent, we have 

Y*(s) = £ ~ l ~ Rt[). - :B*(s)] U:(s). 
H R Ark[l - B (s)] 

(27) 

(28) 
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Therefore, it remains to determine Ut(s) for individual polling systems. Here 
we consider polling systems with exhaustive, gated, and globally gated service 
discipline. 

In the exhaustive service system, we can express Ut(s) in terms of the joint 
LST of the DF of the successive station times. The concept of a station time is 
introduced by Ferguson and Aminetzah [4] (they call it a terminal service time). 
In the exhaustive service system, the station time wP for class p is defined as the 
time interval between the successive instants when the server leaves class p -
1 and class p. In other words, wP consists of the switchover time from class 
p - 1 to class p and the following service period of class p. The joint LST of 
the distributions of P successive station times wk-P+ i. wk-P+ 2, .•• , wk is defined 
by 

(29) 

Ferguson and Aminetzah [4] show that it satisfies the equation 

n:(s,, ... 'Sp) = Rt_,(sp + A.k[l - e;(sp)]). o:_,(O, s, + A-k[l - 0;(sp)], 

S2 + Ak[l - @t(sp)], ... , Sp-1 + A.k[l - @t(sp)]), (30) 

where 0t(s) is the LST of the DF for the length of a busy period in an MIG/ 
1 system consisting only of customers of class k. It satisfies the equation 

(31) 

In order to find Ut (s), we study the set of customers of each class in the 
system when the server completes the service of class k. Because of exhaustive 
service, there are no customers of class kin the system at that moment. Cus­
tomers of class k - 1 in the system are those that arrived during the station 
time wk. Customers of class k - 2 in the system are those that arrived during 
the station times wk-i + wk> and so on. Finally, customers of class k - P + 1 
in the system are those that arrived during wk-<P- 2> + wk-(P-J) + · · · + wk. 

In other words, only those customers of class j, k - P + 1 ::;;; j::;;; k - P + 
i - 1, that arrived during the station time wk-P+i remain in the system when 
the server leaves class k, where i = 2, 3, ... , P. Hence, using the definition 
of the joint LST Ot(si. ... , s p) of the distributions of the station times wk-P+I> 

wk-P+2• .•• , wk in (29), we get 

Vt(s) = Ot(O, e2As), ... , eP;k(s)), (32) 

where 

k-P+i-1 

e;;k(s) ~ 2: A.Jl - Bt(s)], i = 2, ... , P. (33) 
j=k-P+I 
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Substituting (32) into (28) we get 

p 

L {1 - Rt[), - A.B*(s)]}Ot(O, ezAs), ... , eP;k(s)) 
* ( ) - ~k='..!_l _____ --:-::-:----:-:-:-:---:7"------Y •• 1111us1ive S - RA.(1 - B*(s)] (34) 

where Ot(si. ... , Sp) is the solution to (30). 
from the mean station times given by Ferguson and Aminetzah [4], we can 

derive E{ Y]exhaustive in (12) from (34), as shown in the Appendix. It is als~ possible 
to calculate the second moment E[ Y2]exhaustive from (34) in terms of~ pq = cov[ w P, 
wq]; the set of equations for { ~pq; p, q = l, 2, ... , P} is al~o given in Ferguson 
and Aminetzah [4]. Note that the first moment E[ YJexhaustive m (12) depends only 
on the total switchover time. It turns out, however, that the second moment 
E[ Y2]exh<tl!Slive depends on the individual switchover times. 

In the gated service system, the station time wP for class p is defined as the 
time interval between the successive instants when the server visits class p and 
class p + 1. The joint LST of the distributions of P successive station times 
wk-P+I• wk-P+ 2, .•. , wk is again defined by (29). It satisfies the equation [4] 

In order to find Ut(s), we first consider the set of customers of each class in 
the system when the server starts the service of class k. From the definitions 
of the gated service and its associated station time, those customers of class j, 
(k - 1) - P + 1 :s j :s (k - 1) - P + i, that arrived during the station time 
w\k-1)-P+i remain in the system at that moment, where i = 1, 2, ... , P. In 
particular, the number of customers of class k - P = k mod P in the system 
equals the number of customers of class k that arrived during the entire cycle 
time wk-P + wk-P+i + · · · + wk-i· The service period of class k consists of 
the service times of this number of customers, and those customers that arrive 
during this service period are added by the time when the server completes the 
service of class k. Therefore, the LST of the DF for the workload in the system 
when the server leaves class k is given by 

(36) 

where 

k-P+i-1 

+ 2: A.i[l - B/(s)], i = 1, ... , P. (37) 
j=k-P+I 
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However, using Eq. (35) for 11,\"(s 1, ••• , Sp), this can be rewritten as 

(38) 

where 

k-P+i 

g;,k(s) A 2: .lci[l - Bt(s)], i = 1, ... , p - 1 
1~k-P+I 

~ ).[l - B*(s)], i = P. (39) 

Substituting (38) into (28), we obtain 

p 

2: {l - R;[). - ).B*(s)]} n;(g1,h), gv(s), ... , gn(s))/ R;[). - ).B*(s)] 
k~ I 

R).[1 - B*(s)] 

(40) 

where n;(s 1, ••• , s p) is the solution to (35). As in the exhaustive service system, 
we can derive E[ Y]gaied in (13) from (40). 

In the globally gated service system, let C*(s) be the LST of the OF for the 
length of a polling cycle, that is, the time interval between two successive starts 
of service for class 1. The functional equation for C*(s) is given by [3] 

l' 

C*(s) = C*[). - ).B*(s)] fl Rt[). - ).B*(s)]. (41) 
/;I 

It is clear that the workload in the system when the server completes the service 
to class k consists of the following parts: the workload brought by those customers 
that arrived during the service periods of class 1, 2, ... , k, the workload of 
customers of class k + 1, . . . , P that are still present since the beginning of 
the cycle, and the workload brought by those customers that arrived during the 
switchover times since the beginning of the cycle. Hence we get 

k-1 

x fl R/[). - ).B*(s)]. (42) 
1~ I 
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Substituting (42) into (28), we obtain 

p 

2: {I - R;[Jc - lB*(s)]} 

Y~1y ptcd(s) = k=I Rl[l - B*(s)] 

x c·[~ l;[l - Bt(Jc - lB*(s))J 

+ i=tl .ql - Bt(s)] J }] Rt[l - ).B*(s)], (43) 

where C*(s) is the solution to (41). Differentiation of ( 43) readily leads to E[ Y] 
in (15). 

Our results for polling system can be summarized as the following. 

THEOREM 2: The LST of the DF for the workload in a polling system at 
an arbitrary time in equilibrium is given by 

U*( ) (1 - p)s Y*( ) 
s = s - Jc + A.B*(s) . s ' 

where 

p 

2: {1 - R:[A. - lB*(s)]}fil(O, ez;h), ... , eP;k(s)) 
Y*(s) = ::.:k=...:..1 _______________ _ 

Rl[l - B*(s)] 

for the exhaustive service model, where fi:(si. ... , Sp) is the solution to (30), 

Y*(s) = 

p 

2: {1 - R:[l - A.B*(s)]}fil(g1;k(s), gz;k(s), ... , gpAs))/ R:[A. - A.B*(s)] 
k=I 

RA.[1 - B*(s)] 

for the gated service model, where fif(si. ... , Sp) is the solution to (35), and 

p 

2: {1 - Rl[A. - lB*(s)]} 

Y*(s) = k=I RA.[1 - B*(s)] 

x c·[~ A.;[1 - Bt(Jc - A.B*(s))] 

+ i=ti J.;[1 - Bt(s)] J }] Rt(A. - JcB*(s)] 

for the globally gated service model, where C*(s) is the solution to (41). O 
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5. CONCLUDING REMARKS 

The workload decomposition in (2) for single-server multiclass systems 
(Boxma and Groenendjik [2] and Boxma [1]) was initially derived in an attempt 
to interpret, unify, and generalize the pseudoconservation laws of Ferguson and 
Aminetzah [4] and of Watson [12]. Calculating the mean workload from (2) 
indeed easily leads to those conservation laws, as special cases of a much more 
general pseudoconservation law. However, (2) has until now not been exploited 
to obtain insight into the workload distribution of single-server multiclass systems 
with vacations (switchover times). 

In the present paper, we have obtained the LST of the DF for the workload 
in the MIG/I system with P classes and server vacations for the cases of (a) 
setup times, and (b) cyclic service of the classes with exhaustive, gated, or 
globally gated service, respectively. For case (a), an explicit expression for the 
workload LST has been derived; for case (b), the workload LST has been 
expressed in terms of a certain function for which the functional equation is 
known [the functional equations (30), (35), and (41), respectively]. Workload 
moments can then be obtained. Perhaps more importantly, our results may be 
used to analyze the tail behavior of the workload distribution by studying the 
poles of the workload LST and identifying the pole with the largest real part. 
Such an analysis could be useful, as often information about mean values of 
waiting times or workload is not sufficient for judging the performance of a 
system. 
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APPENDIX 

Derivation of (12) from (34) 

Ferguson and Aminetzah [4] show that 

Thus, from (34) we have 

p,R 
E[w,] = r,_, + -- . 

I - p 

' r, [' ,_,,,_, rl"] 
E[Y],..,..., .. , = t:, R ~ E[w,_p.,J ,_,L, .. , p, + p 2r, 

(Al) 

} P P k-P<t-1- I p I' 

+ -1 _ L r, L P•-P•• L p, + ?R L rl". (A2) 
p k:J I""~ 1=k- P-t l .... • .. 1 
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However, after some manipulation, we get 

(A3) 

and 

p p k-P+i-1 R ( p ) 

2: rt}:. Pk-r+1 . 2: P; = 2 P' - 2: P; 
1:=1 1•2 1=k-P+I p=l 

(A4) 

Substituting (A3) and (A4) into (A2), we get (12). 
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