Acyclic Programs (extended abstract)

Krzysztof R. Apt
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
and
Department of Computer Sciences, University of Texas at Austin
Austin, Texas 78712-1188, USA

Marc Bezem
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

ABSTRACT

We study here a natural subclass of the locally stratified programs which we call acyclic. Acyclic programs enjoy several natural properties. First, they exhibit good termination behaviour with respect to a large and natural class of general goals, so they could be used as terminating PROLOG programs. Next, their semantics can be defined in several equivalent ways. In particular we show that the immediate consequence operator of an acyclic program \(P \) has a unique fixedpoint \(M_P \), which coincides with the perfect model of \(P \), is the unique Herbrand model of the completion of \(P \) and can be identified with the unique fixedpoint of the 3-valued immediate consequence operator associated with \(P \). The completion of an acyclic program \(P \) is shown to satisfy an even stronger property: addition of a domain closure axiom results in a theory which is complete and decidable with respect to a large class of formulas including the variable-free ones. This implies that \(M_P \) is recursive. On the procedural side we show that SLS-resolution and SLDNF-resolution for acyclic programs coincide, are effective, sound and (non-floundering) complete with respect to the declarative semantics.

Finally, we show that various forms of temporal reasoning, as exemplified by the so-called Yale Shooting Problem, can be naturally described by means of acyclic programs.

1. INTRODUCTION

1.1. Motivation

This paper is about a simple, yet remarkable class of general logic programs. We call them acyclic because, given an acyclic program, for a large class of general goals, including the variable-free ones, no infinite SLDNF-derivations exist.

The class of acyclic programs includes the recursion-free general programs and is included in the class of locally stratified programs defined by Przymusinski [P]. It was originally introduced in CAVEDON [C] under a rather unattractive name of \(\omega \)-locally hierarchical programs. Intuitively, a program is acyclic if a mapping from variable-free literals to natural numbers can be exhibited showing that no recursion
on the variable-free level exists.

The goal of this paper is to show that several ways of defining the semantics of general logic programs including Clark's completion, perfect model semantics, fixpoint semantics based on the immediate consequence operator \(T_P \) and its 3-valued counterpart \(\Phi_P \), and two forms of resolution - SLDNF and SLS - coincide in the case of acyclic programs. Thus the class of acyclic programs can be viewed as a common denominator of various approaches to the proof theory and semantics of general logic programs, approaches which in general yield different results.

This striking uniformity can lead the reader to wonder whether acyclic programs are sufficiently strong for modeling non-monotonic reasoning and for computing in general. It has been argued (see e.g. PRZYMUSINSKI [P1]) that Clark's completion, \(\text{comp}(P) \), is in general too weak to model satisfactorily non-monotonic reasoning.

To ward off such a criticism we show that a large class of problems in temporal reasoning, as exemplified by the so-called Yale Shooting Problem of HANKS and McDERMOTT [HMD], can be naturally formalized using acyclic programs.

In BEZEM [B] it was shown that even without the use of negation every total recursive function can be computed by an acyclic program. Moreover, the guaranteed termination of SLDNF-derivations for a large class of general goals shows that acyclic programs could be used as terminating PROLOG programs. Thus, after all, acyclic programs form a powerful class.

However, not all things are so rosy. It can be shown that the property of being an acyclic program is highly undecidable - it is \(\Pi^0_4 \) complete in the arithmetical hierarchy. In some cases, including the Yale Shooting Problem, we can easily prove that a program is acyclic by exhibiting a simple 'termination function' defined in terms of the program clauses.

1.2. Plan of the paper

The paper is organized as follows. In the next subsection we define acyclic programs and introduce the important concept of a bounded general goal. Bounded general goals include the variable-free ones.

In Section 2 we study the declarative semantics of acyclic programs. We show that for every acyclic program \(P \) its immediate consequence operator \(T_P \) has a unique fixpoint. By the results of PRZYMUSINSKI [P] and APT, BLAIR and WALKER [ABW] this fixpoint is the unique perfect Herbrand model of \(P \) and the unique Herbrand model of Clark's completion, \(\text{comp}(P) \). Moreover, we show that this fixpoint can be identified with the unique fixpoint of the \(\Phi_P \) operator due to FITTING [F], defined on the 3-valued Herbrand interpretations of \(P \).

In Section 3 we study Clark's completion of acyclic programs. We prove that for an acyclic program \(P \), \(\text{comp}(P) \) augmented by a domain closure axiom \(DCA \), is a complete and decidable theory for bounded general goals. This implies that the unique perfect Herbrand model of \(P \) is recursive.

Then we turn to the procedural semantics of acyclic programs. In Section 4 we show that SLDNF-derivations for a bounded general goal and an acyclic program always terminate. Moreover we show that for acyclic programs SLS-resolution and SLDNF-resolution coincide and are effective. The results of CAVEDON [C] and PRZYMUSINSKI [P2] imply (non-floundering) completeness of these two resolution methods.

Finally, in Section 5, we show how a well known problem in temporal reasoning, called the Yale Shooting Problem, can easily be formalized and solved using acyclic programs. We also show how a much larger class of problems in temporal reasoning can be solved by analogous means.
1.3. Preliminaries

For definitions, terminology and notation concerning logic programming we refer the reader to [A] or [L]. More specifically, for a general logic program P we use U_P, B_P, T_P, $\text{comp}(P)$ and $\text{ground}(P)$ as abbreviations of, respectively, the Herbrand Universe of P, the Herbrand Base of P, the immediate consequence operator of P, Clark's completion of P and the set of all variable-free instances of clauses from P. From now on we simply say program and goal instead of general program and general goal. We recall the following notions which are due to Przymusinski [P].

Definition 1.1. A program P is locally stratified if there exists a mapping stratum from B_P to the countable ordinals such that for every $A \leftarrow L_1, \ldots, L_n$ ($n \geq 0$) in $\text{ground}(P)$ the following conditions hold for every $1 \leq i \leq n$:

- if L_i is positive, say $L_i = B$ for some $B \in B_P$, then $\text{stratum}(A) \geq \text{stratum}(B)$;
- if L_i is negative, say $L_i = \neg B$ for some $B \in B_P$, then $\text{stratum}(A) > \text{stratum}(B)$.

Definition 1.2. Let P be locally stratified. A Herbrand model M of P is called a perfect model of P if there exists no Herbrand model of P which is preferable to M. Here preferable is the following relation between Herbrand interpretations: I is preferable (or preferred) to J if for every $A \in I \setminus J$ there exists $B \in J \setminus I$ such that $\text{stratum}(B) < \text{stratum}(A)$.

Although the definition of a perfect model seems to depend on stratum and it is not obvious from this definition that perfect models exist, Przymusinski has shown in [P] that every locally stratified program has a unique perfect model. It is easily seen that the perfect model of P is a minimal Herbrand model of P (a smaller Herbrand model would be preferable to it). Consequently, if P is a positive logic program, then the perfect model of P equals the least Herbrand model of P.

The following three basic definitions are straightforward generalizations of definitions given in [B]. The first two definitions can also be found in [C].

Definition 1.3. Let P be a program. A level mapping for P is a function $| | : B_P \rightarrow \mathbb{N}$ of variable-free atoms to natural numbers. We extend $| |$ to variable-free literals by putting $| \neg A | = | A |$ for all $A \in B_P$. For $A \in B_P$ we call $| (\neg) A |$ the level of $(\neg) A$.

Definition 1.4. Let P be a program and $| |$ a level mapping for P. We call P acyclic with respect to $| |$ if for every $A \leftarrow L_1, \ldots, L_n$ ($n \geq 0$) in $\text{ground}(P)$ the level of A is higher than the level of every L_i ($1 \leq i \leq n$). Moreover P is called acyclic if P is acyclic with respect to some level mapping for P.

A simple example which will play a prominent role in this article is provided by a formalization of the so-called Yale Shooting Problem [HMD] by the program YSP consisting of the clauses (a)-(e) below. In this section YSP serves only as an example of an acyclic program. We postpone the discussion of this program to Section 5, where YSP is considered as a key example of the special form of nonmonotonic reasoning captured by acyclic programs.

\[
\text{holds (alive, [\text{[]}])} \leftarrow \quad (a)
\]
\[
\text{holds (loaded, [load | x_{situation}])} \leftarrow \quad (b)
\]
\[
\text{holds (dead, [shoot | x_{situation}])} \leftarrow \text{holds (loaded, x_{situation})} \quad (c)
\]
\[ab(\text{alive}, \text{shoot}, x_{\text{situation}}) \rightarrow \text{holds}(\text{loaded}, x_{\text{situation}}) \] (d)

\[\text{holds}(x_{\text{fact}}, [x_{\text{event}} | x_{\text{situation}}]) = \neg ab(x_{\text{fact}}, x_{\text{event}}, x_{\text{situation}}), \text{holds}(x_{\text{fact}}, x_{\text{situation}}) \] (e)

In this program, \(x_{\text{situation}}, x_{\text{fact}}, x_{\text{event}} \) are variables, \text{alive}, \text{dead}, \text{loaded}, \text{load}, \text{shoot} are constants and we have used a representation of lists such as in LISP or PROLOG. The empty list is represented by a constant denoted \([\cdot]\). If \(L \) is a list and \(t \) a term, then the list with \(t \) as first element (the head), followed by the list \(L \) (the tail) is represented by the term \([t \mid L]\), denoting the application of a binary function to \(t \) and \(L \). Furthermore \([t_1, \ldots, t_n | L]\) abbreviates \([t_1 | (\ldots (t_n | L) \ldots)]\), and \([t_1, \ldots, t_n]\) abbreviates \([t_1, \ldots, t_n | [\cdot]]\) \((n \geq 1)\). In the alphabet of YSP every variable-free term is either a constant, or a term \([t_1 | t_2]\). Hence we can define a mapping \(l : U_{\text{YSP}} \rightarrow \mathbb{N} \) by \(l(t) = 0 \) if \(t \) is a constant and \(l([t_1 | t_2]) = 1 + l(t_2) \). We define a level mapping \(| | : B_{\text{YSP}} \rightarrow \mathbb{N} \) by \(|\text{holds}(t, t')| = 2l(t') + 1 \), so that we have

\[|\text{holds}(t, [l |]) > ab(t, t', h, l) > |\text{holds}(t'', l) | \]

for all variable-free terms \(t, \ldots, t'', h, l \). Now it is not difficult to see that YSP is acyclic with respect to \(| | \).

Definition 1.5. A literal \(L \) is called bounded with respect to a level mapping \(| | \) if \(| | \) is bounded on the set \([L]\) of variable-free instances of \(L \). If \(L \) is bounded, then \(||L|| \) denotes the maximum that \(| | \) takes on \([L]\). A general goal \(G \leftarrow L_1, \ldots, L_n \) \((n \geq 0)\) is called bounded if every \(L_i \) \((1 \leq i \leq n)\) is bounded. If \(G \) is bounded then \(||G|| \) denotes the (finite) multiset (see [D]) consisting of the natural numbers \([||L_1||, \ldots, ||L_n||]\).

The following easy lemmas are instrumental in proving the termination of a number of inference procedures for acyclic programs and bounded goals.

Lemma 1.6. Let \(| | \) be a level mapping and \(L \) a bounded literal. Then, for every substitution \(\theta \), \(L \theta \) is bounded and \(||L \theta|| \leq ||L|| \).

Proof. Follows immediately from \([L \theta] \subseteq [L] \). \(\square \)

Lemma 1.7. Let \(P \) be acyclic with respect to \(| | \). Then for every clause \(A' \leftarrow L_1, \ldots, L_n \) \((n \geq 0)\) from \(P \) and every substitution \(\theta \) we have: if \(A \theta \) is bounded, then every \(L_i \theta \) is bounded and \(||L_i \theta|| \leq ||A \theta|| \) \((1 \leq i \leq n)\).

Proof. For every \(L_i \in [L, \theta] \) \((1 \leq i \leq n)\) there exists a variable-free instance \(A' \leftarrow L_1, \ldots, L_n \) of \(A \theta \leftarrow L_1, \ldots, L_n \theta \), and hence of \(A \leftarrow L_1, \ldots, L_n \), such that \(L_i \) occurs in the body. Since \(P \) is acyclic and \(A \theta \) is bounded, it follows that \(||A \theta|| \geq ||A'|| \). Now the conclusions of the lemma immediately follow. \(\square \)

2. **Declarative semantics of acyclic programs**

In this section we define the declarative semantics of acyclic programs. We follow the 2-valued and 3-valued approach in successive subsections. In general these approaches lead to different semantics, but, among others, we show that in the case of acyclic programs they lead to the same declarative semantics.
2.1. The 2-valued approach

Let \(| \cdot | \) be a level mapping for a program \(P \). We can view \(| \cdot | \) as a way of partitioning the Herbrand Base \(B_P \). Any partition of \(B_P \) naturally induces a partition on every Herbrand interpretation \(I \subseteq B_P \). Let us denote these partition classes by \(I(n) = \{ A \in I \mid |A| = n \} \) for all \(n \in \mathbb{N} \).

Definition 2.1. Let \(P \) be acyclic with respect to \(| \cdot | \). The declarative semantics of \(P \) is defined as a specific Herbrand interpretation \(M(0), M(1), \ldots \) of subsets of \(B_P \) such that \(M(n) \) contains only atoms of level \(n \) (thus conforming to the notation just introduced). This sequence is defined as follows:

\[
M(0) = \{ A \mid |A| = 0 \text{ and } A \in \text{ground}(P) \}
\]

\[
M(n + 1) = \{ A \mid |A| = n + 1 \text{ and there exists } A \leftarrow L_1, \ldots, L_k \ (k \geq 0) \text{ in } \text{ground}(P) \text{ such that } \bigcup_{i < n} M(i) \vdash L_1 \land \cdots \land L_k \}
\]

Alternatively, for all \(n \)

\[
M(n) = T_P(\bigcup_{i < n} M(i)) \cap B_P(n).
\]

At first sight the declarative semantics \(M \) of \(P \) seems to depend on the level mapping. However, it follows from the Lemmas 2.3 and 2.4 below that this is not the case. Therefore we denote from now on the declarative semantics of an acyclic program \(P \) by \(M_P \).

Lemma 2.2. For all interpretations \(I \) and variable-free literals \(L \) we have \(I \vdash L \) iff \(I(|L|) \vdash L \).

Proof. Trivial. \(\square \)

Lemma 2.3. Let \(P \) be acyclic. Then \(M_P \) is a fixpoint of \(T_P \).

Proof. Let \(P \) be a program which is acyclic with respect to a level mapping \(| \cdot | : B_P \rightarrow \mathbb{N} \). As to \(M_P \subseteq T_P(M_P) \), suppose that \(A \in M_P \). Then \(A \in M_P(|A|) \). If \(|A| = 0 \), then \(A \in T_P(M_P) \) by the definition of \(M_P(0) \). If \(|A| > 0 \), then \(A \in T_P(M_P) \) by the construction of \(M_P(|A|) \), the acyclicity of \(P \) and Lemma 2.2.

Conversely, if \(A \in T_P(M_P) \), then there exists \(A \leftarrow L_1, \ldots, L_k \ (k \geq 0) \) in \(\text{ground}(P) \) such that \(M_P \vdash L_1 \land \cdots \land L_k \). Since \(P \) is acyclic, we have \(|A| > |L_i| \) for all \(1 \leq i \leq k \).

Now, again by the construction of \(M_P \) and by Lemma 2.2, it follows that \(A \in M_P \). \(\square \)

Lemma 2.4. The \(T_P \) operator of an acyclic program has at most one fixpoint.

Proof. Let \(I \) and \(J \) be fixpoints of \(T_P \) for some general program \(P \) which is acyclic with respect to a level mapping \(| \cdot | : B_P \rightarrow \mathbb{N} \). We shall prove by induction on \(n \) that \(\bigcup_{i < n} I(i) = \bigcup_{i < n} J(i) \), which immediately implies \(I = J \). For \(n = 0 \) there is nothing to prove. Assume \(\bigcup_{i < n} I(i) = \bigcup_{i < n} J(i) \). We have to prove \(I(n) = J(n) \). Let \(A \in I(n) \); then \(A \in T_P(I) \), so there exists \(A \leftarrow L_1, \ldots, L_k \ (k \geq 0) \) in \(\text{ground}(P) \) such that \(I \vdash L_1 \land \cdots \land L_k \). Since \(P \) is acyclic, we have \(|L_i| < |A| \leq n \) for all \(1 \leq i \leq k \). It follows by Lemma 2.2 above that \(\bigcup_{i < n} I(i) \vdash L_1 \land \cdots \land L_k \). So by the induction
hypothesis we have $\bigcup_{i \leq n} J(i) \models L_1 \land \cdots \land L_k$. By Lemma 2.2 $J \models L_1 \land \cdots \land L_k$ so we have $A \in \mathcal{T}_p(J) = J$, hence $A \in J(n)$. We have proved $I(n) \subseteq J(n)$, and the converse follows by symmetry. This completes the induction step. □

Theorem 2.5. Let P be an acyclic program. Then we have:
(i) T_P has a unique fixpoint, M_P;
(ii) M_P is a minimal model of P;
(iii) M_P is the perfect model of P;
(iv) M_P is the unique Herbrand model of comp(P).

Proof.
(i) By the Lemmas 2.3 and 2.4.

(ii) Assume by contradiction that $N \subseteq M_P$ is a model of P. Let n be the smallest natural number such that $N(n) \neq M_P(n)$. Now a contradiction follows by inspection of the construction of M_P, the acyclicity of P and Lemma 2.2.

(iii) We first observe that a level mapping naturally induces a local stratification (see [Pi]) of the acyclic program. Hence every acyclic program has a unique perfect model. To show that M_P is perfect, assume by contradiction that a model N of P is preferable to M_P. Since M_P is minimal by (ii), it follows that there exists an atom $A \in N$ such that $A \notin M_P$. Let A be such a variable-free atom having the lowest level. By the definition of the preference relation between the models M_P and N there exist $B \in M_P$ such that $B \in N$ and $|B| < |A|$. Let B be such a variable-free atom having the lowest level. It follows that $\bigcup_{i < |B|} M_P(i) = \bigcup_{i < |B|} N(i)$ and $N(|B|) \subseteq M_P(|B|)$.

Now the desired contradiction follows in a similar way as under (ii).

(iv) We recall that fixpoints of the T_P operator of a general program are exactly the Herbrand models of the completion of that program (see [A, Lemma 7.1 (ii)]). □

2.2. The 3-valued approach

In this subsection we provide yet another characterization of the model M_P of an acyclic program - in terms of 3-valued models. First we recall the necessary background results, due to FITTING [F], which use a 3-valued logic due to KLEENE [Kl].

In Kleene's logic there are three truth values: t for true, f for false and u for undefined. Every connective takes the value t or f if it takes that value in 2-valued logic for all possible replacements of its t or f, otherwise it takes value u.

A Herbrand interpretation for this logic (called a 3-valued Herbrand interpretation) is defined as a pair (T,F) of disjoint sets of variable-free atoms. Given such an interpretation $I = (T,F)$ a variable-free atom A is true in I if $A \in T$, false in I if $A \in F$ and undefined otherwise. Given $I = (T,F)$ we denote T by I^+ and F by I^-. Thus $I = (I^+, I^-)$.

Every (2-valued) Herbrand interpretation I for a program P determines a 3-valued Herbrand interpretation $(I, B_p - I)$. Therefore, in the remainder of this subsection we identify every 2-valued Herbrand interpretation I with its 3-valued counterpart $(I, B_p - I)$.

Given a program P, the 3-valued Herbrand interpretations for P form a complete lattice with the ordering defined by $I \subset J$ if $I^+ \subset J^+$ and $I^- \subset J^-$. Following FITTING [F], given a program P we define an operator Φ_P on the complete lattice of 3-valued Herbrand interpretations for P as follows:

$\Phi_P(I) = (T, F)$,
where
\[T = \{ A \mid \text{there exists } A \leftarrow L_1, \ldots, L_k \text{ in ground}(P) \text{ with } L_1 \land \cdots \land L_k \text{ true in } I \} \]
\[F = \{ A \mid \text{for all } A \leftarrow L_1, \ldots, L_k \text{ in ground}(P), L_1 \land \cdots \land L_k \text{ is false in } I \} \]

It is easy to see that \(T \) and \(F \) are disjoint, so \(\Phi_P(I) \) is indeed a 3-valued Herbrand interpretation. \(\Phi_P \) is a natural generalization of the operator \(T_P \) to the case of 3-valued logic.

The powers of \(\Phi_P \) are defined in analogy to those of \(T_P \):
\[
\Phi_P \uparrow 0 = (\varnothing, \varnothing),
\]
\[
\Phi_P \uparrow (\alpha + 1) = \Phi_P(\Phi_P \uparrow \alpha),
\]
\[
\Phi_P \uparrow \alpha = \bigcup_{\beta < \alpha} \Phi_P \uparrow \beta \text{ for any limit ordinal } \alpha.
\]

\(\Phi_P \) is easily seen to be monotonic, so \(\Phi_P \uparrow \alpha \subseteq \Phi_P \uparrow \beta \) whenever \(\alpha \leq \beta \).

We have the following result.

Lemma 2.6. Let \(P \) be an acyclic program. Then \(M_P = \Phi_P \uparrow \omega \).

Proof. Let \(P \) be acyclic with respect to a level mapping \(| \cdot | \). Consider the sequence \(M(0), M(1), \ldots \) of subsets of \(B_P \) constructed in Definition 2.1. The proof proceeds by first establishing by simultaneous induction on \(n \) the following two claims:

(i) \(A \in M(n) \) iff \(A \in \Phi_P \uparrow (n + 1) \cap B_P(n) \),

(ii) \(A \in B_P(n) - M(n) \) iff \(A \in \Phi_P \uparrow (n + 1) \cap B_P(n) \),

and is omitted. \(\square \)

Corollary 2.7. Let \(P \) be an acyclic program. Then \(M_P \) is the unique fixpoint of \(\Phi_P \).

Proof. We have \(\Phi_P \uparrow \omega \subseteq \Phi_P \uparrow (\omega + 1) \), so by Lemma 2.6 \(M_P \subseteq \Phi_P(M_P) \). But for no 3-valued Herbrand interpretation \(I \), \(M_P \subseteq I \) (otherwise \(I \cap I \neq \varnothing \)), so \(M_P = \Phi_P(M_P) \), i.e. \(M_P \) is a fixpoint of \(\Phi_P \). Moreover, by the monotonicity of \(\Phi_P \), every fixpoint of the form \(\Phi_P \uparrow \alpha \) is contained in any other fixpoint, so in fact \(M_P \) is the unique fixpoint of \(\Phi_P \). \(\square \)

The advantage of the characterization of \(M_P \) by Lemma 2.6 over its original definition is that the construction of \(\Phi_P \uparrow \omega \) does not refer to any level mapping.

Remarks 2.8.
(a) Theorem 2.5 has been found independently by Cavedon [C] in the slightly stronger version for locally hierarchical programs. Most of the results in Section 2 can be easily generalized to locally hierarchical programs. However, this is not true for the next sections.

(b) Recall that \(T_P(I) \subseteq I \) if and only if \(I \uparrow P \) [A, Proposition 5.12], so that (i) and (ii) of Theorem 2.5 imply that the unique fixpoint of the \(T_P \) operator of an acyclic program is also its minimal pre-fixpoint.

(c) In [P, Proposition 1] it is proved that every perfect model is minimal, so (iii) implies (ii) in Theorem 2.5 above. Note that in our proof (ii) is used to prove (iii) and that the proof that \(M \) is a perfect model is particularly simple as compared to the argument in [P].

(d) It is tempting to think that Theorem 2.5 (iv) could be sharpened in the sense that the completion of an acyclic program might be a complete theory (proving or
disproving every sentence), or even a categorical theory (all models being isomorphic). This, however, is not the case as shown by the following example. Let P be the acyclic program consisting of the two clauses $p(0) \leftarrow q$, $q \leftarrow p(x)$ (with $|p(0)|=0$ and $|q|=1$). Then $\text{comp}(P)$ consists, apart from the axioms of free equality (which do not play a role here and are given in the next section), of the following two completed definitions:

\[
p(z) \leftrightarrow z = 0
\]
\[
q \leftrightarrow \exists x \neg p(x)
\]

The unique Herbrand model of $\text{comp}(P)$ is \{p(0)\}. However, $\text{comp}(P)$ has non-Herbrand models in which q is valid, for example \mathbb{N} with p interpreted as zero, where q is true since $\text{zero}(1)$ does not hold. Note that addition of a domain closure axiom $\forall x (x = 0)$ to $\text{comp}(P)$ yields a categorical theory in the special case of this example. Although this phenomenon does not hold for acyclic programs in general, we show in the sequel that adding a domain closure axiom to the completion of an acyclic program yields a complete theory with respect to formulas in which only bounded atoms occur.

3. Completions semantics of acyclic programs

In this section we investigate in detail the completion of acyclic programs. We show that any bounded atom can be effectively reduced to an equality formula that is equivalent to that atom modulo the completion of the acyclic program. Apart from suggesting an interpreter for bounded atoms, this reduction enables us to prove that the declarative semantics of an acyclic program is decidable.

Notation 3.1. We use the vector notation t (resp. x) to denote a sequence of zero or more terms (resp. distinct variables). Furthermore, $t = s$ abbreviates the conjunction $t_1 = s_1 \land \ldots \land t_n = s_n$, where $t = t_1, \ldots, t_n$ and $s = s_1, \ldots, s_n$. Similarly L abbreviates the conjunction $L_1 \land \ldots \land L_n$ of the literals occurring in L. Also $\forall x$ abbreviates $\forall x_1 \ldots \forall x_n$. The empty conjunction stands for \text{Verum}, a true proposition, dually to the convention that an empty disjunction, such as the empty goal, stands for \text{Falsum}, a false proposition. If, for any syntactic expression E, we write $E(x)$, then no other variables occur in E than those explicitly shown in x. If we abbreviate sequences of variables in a different way, say x and y, then all the variables occurring in x and y are supposed to be distinct. We do not use this convention for abbreviations of sequences of terms and literals. Syntactical identity is denoted by \equiv.

Definition 3.2. The theory of free equality, denoted by EQ, is defined by the following axiom schemata.

\[
f(x) = f(y) \rightarrow x = y \quad \text{for all function symbols } f
\]
\[
\neg (f(x) = g(y)) \quad \text{whenever } f \neq g
\]
\[
\neg (x = t) \quad \text{for all terms } t \not\equiv x \text{ such that } x \text{ occurs in } t
\]

As usual for first order logic with equality we interpret \equiv as the identity relation on the domain of interpretation. Consequently, we do not have to axiomatize \equiv as a congruence relation. \square
Lemma 3.3. (Clark [Cl])

(i) If \(t(x) \) and \(s(y) \) do not unify, then \(EQ \vdash \forall x \forall y \neg (t(x) = s(y)) \).

(ii) If \(t(x) \) and \(s(y) \) do unify, then there exists an mgu \(\theta = \{ \ldots, x_i/u_i, \ldots, y_j/v_j, \ldots \} \) of \(t(x) \) and \(s(y) \) such that all the variables occurring in \(\theta \) are among \(x, y \) and

\[EQ \vdash \forall x \forall y [t(x) = s(y) \iff (x = u \land y = v)] \]

Here and below it is understood that \(u_i \equiv x_i \) (resp. \(v_j \equiv y_j \)) if \(\theta \) does not contain a binding for \(x_i \) (resp. \(y_j \)). □

For a simple proof of the above lemma, based on the use of the Martelli-Montanari unification algorithm, see APT [A, Lemma 5.21].

Theorem 3.4. (Equivalence Theorem, or substitutivity for logical equivalents)

Let \(T \) be a theory and \(\phi' \) a formula obtained from a formula \(\phi \) by replacing some occurrences of formulas \(\psi_1, \ldots, \psi_n \) by \(\psi'_1, \ldots, \psi'_n \) respectively. If \(T \vdash \psi \iff \psi' \), then \(T \vdash \phi \iff \phi' \).

Proof. This is just a mild generalization of the Equivalence Theorem in [Sh, 3.4]. It should be noted that the replacement of formulas may involve renaming of variables to avoid variable clashes. □

Lemma 3.5. Let \(P \) be acyclic with respect to \(\mid \mid : B_\rightarrow \mathbb{N} \). For every bounded atom \(A \) there exists a formula \(\phi_A \), all whose free variables occur in \(A \), such that \(\text{comp}(P) \vdash A \iff \phi_A \) and all atoms \(A' \) occurring in \(\phi_A \) are either equality atoms, or are bounded with \(\|A'\| < \|A\| \).

Proof. The proof is essentially by unfolding completed definitions. The decrease in the bound on the level of variable-free instances is ensured since the atom is bounded and the program is acyclic, but the price is the introduction of equality formulas which express the unification process. Let \(A \equiv p(s(y)) \) be a bounded atom. Consider the completed definition

\[p(z) \iff (F_1(z) \lor \cdots \lor F_n(z)) \quad (n \geq 0) \]

of \(p \) in \(\text{comp}(P) \). Fix \(1 \leq i \leq n \) and assume that \(F_i(z) \) originates from the program clause \(p(t(x)) \leftarrow L(x) \) from \(P \). (The denotation \(p(t(x)) \leftarrow L(x) \) is meant to express that \(x \) are all the variables occurring in the clause, and not that these variables occur all both in the head and in the body of the clause.) We have

\[F_i(z) \equiv \exists x (z = t(x) \land L(x)) \]

and distinguish the following two cases.

Case 1: \(p(t(x)) \) and \(p(s(y)) \) do not unify. Then by Lemma 3.3 (i), we have

\[EQ \vdash \forall x \forall y \neg (t(x) = s(y)) \]

and so

\[\text{comp}(P) \vdash \forall y \neg F_i(s(y)). \]

Case 2: \(p(t(x)) \) and \(p(s(y)) \) do unify. Let \(\theta \) be as in Lemma 3.3 (ii). Then by the Theorem 3.4 we have

\[\text{comp}(P) \vdash \forall y [F_i(s(y)) \iff \exists x (x = u \land y = v \land L(x))], \]

Since \(= \) is interpreted as identity, we obviously have
Since \(L(u) \equiv L(x) \theta \), it follows that
\[
\text{comp}(P) \Rightarrow \forall y \left[F_i(s(y)) \leftrightarrow \exists x \left(x = u \land y = v \land L(x) \theta \right) \right].
\]
This completes the second case of the case distinction.

After these preparations the construction of \(\phi_A \) can be given. We have
\[
\text{comp}(P) \Rightarrow A \leftrightarrow (F_1(s(y)) \lor \cdots \lor F_n(s(y))). \tag{7}
\]
Let \(1 \leq i \leq n \) and consider \(F_i(s(y)) \). In Case 1 we simply delete \(F_i(s(y)) \) from \(\{\} \). In Case 2 we replace \(F_i(s(y)) \) by \(\exists x(x = u \land y = v \land L(x) \theta) \). Let \(\phi_A \) be the resulting right hand side. By the Theorem 3.4 it follows that \(\text{comp}(P) \Rightarrow A \leftrightarrow \phi_A \). It remains to show that all atoms \(A' \) occurring in \(\phi_A \) that are not equality atoms are bounded and satisfy \(||A'|| < ||A|| \). This can be seen as follows. Recall that \(A \equiv p(s(y)) \) and \(A' \equiv L_i(x) \theta \) for some \(L_i \) occurring in the body of a program clause \(p(\tau(x)) \rightarrow L(x) \). We obviously have \(||p(s(y))|| \geq ||p(\tau(x))|| \). Moreover \(p(s(y)) \theta \equiv p(\tau(x)) \theta \). Finally, by Lemma 1.7, \(||p(\tau(x))|| \geq ||L_i(x) \theta|| \) since \(p(\tau(x)) \rightarrow L(x) \) is a clause of the acyclic program \(P \). It follows that \(||L_i(x) \theta|| < ||p(s(y))|| \), i.e. \(||A'|| < ||A|| \). □

The following theorem is to be compared to Lemma 4.3 from Apt and Blair [AB]. The class of acyclic programs is considerably larger than the class of recursion-free programs. On the other hand, the reduction to equality formulas can no longer be obtained for arbitrary atoms, but only for bounded atoms.

Theorem 3.6. Let \(P \) be acyclic with respect to \(\mid \mid \mid B \rightarrow \mathbb{N} \). For every bounded atom \(A \) there exists a formula \(\phi_A \), all whose free variables occur in \(A \), such that \(\phi_A \) contains only equality atoms and \(\text{comp}(P) \Rightarrow A \leftrightarrow \phi_A \).

Proof. By induction on \(||A|| \), using Theorem 3.4 and Lemma 3.5 above. □

Corollary 3.7. Let \(P \) be acyclic. For every formula \(F \) in which only bounded atoms occur there exists a formula \(\phi_F \), all whose free variables occur in \(F \), such that \(\phi_F \) contains only equality atoms and \(\text{comp}(P) \Rightarrow F \leftrightarrow \phi_F \).

Proof. By induction on the length of the formula using Theorem 3.6. □

Definition 3.8. \(DCA \) is the axiom
\[
\forall x \lor \exists y_1 \cdot \exists y_r \cdot \exists f_{x} \cdot x = f(y_1, \ldots, y_r). \tag{8}
\]
In this definition constants are taken as function symbols of arity 0 and \(r_f \) denotes the arity of \(f \). Thus, \(DCA \) depends on the alphabet of the language \(L \) and hence on the program \(P \). Since it will always be clear from the context which \(P \) is meant, we do not express this dependence in the denotation. Note that \(DCA \) is satisfied in all Herbrand interpretations of \(P \).

Theorem 3.9. Let \(P \) be acyclic. Then for every bounded atom \(A \) we have either \(\text{comp}(P) \cup DCA \vdash \forall A \) or \(\text{comp}(P) \cup DCA \vdash \neg \forall A \). Moreover, it is decidable which of these two possibilities holds.
PROOF. Follows from the Theorem 3.6 and a result of Malcev [M1] recently rediscovered independently in Maher [M], that $EQ \cup DCA$ is a complete and decidable theory. □

Before we finish this section with a simple corollary of this theorem we show that both DCA and the condition that the goal is bounded are necessary. Consider the program P from Remarks 2.8 (d). Then $\text{comp}(P) \vdash \neg q \leftrightarrow \forall z (z = 0)$. Now q is true in the non-Herbrand model given in Remarks 2.8 (d), but false in any model satisfying $DCA \equiv \forall z (z = 0)$, such as M_P.

Regarding the condition that the goal is bounded, consider $P = \{ p(0) \leftarrow, p(f(x)) \leftarrow p(x) \}$. Then P is obviously acyclic and the goal $\leftarrow p(x)$ is not bounded. Furthermore, the completed definition of p is $p(z) \leftarrow (z = 0 \lor \exists x (z = f(x) \land p(x)))$. We have $M_P \vdash \text{comp}(P) \cup DCA \cup \{ \forall p(x) \}$, but for M with domain $\omega + \omega$, with $p(x)$ interpreted as $x < \omega$, 0 as the ordinal 0 and f as the successor function we have $M \vdash \text{comp}(P) \cup DCA \cup \{ \neg \forall p(x) \}$.

Corollary 3.10. Let P be acyclic. Then M_P is recursive and satisfies for all $A \in B_P$

$$A \in M_P \iff \text{comp}(P) \cup DCA \vdash A.$$

PROOF. By Theorem 2.5, Theorem 3.9 and the fact that variable-free atoms are bounded. □

4. Procedural semantics of acyclic programs

Among the various approaches to the procedural semantics of logic programming with negation, the most prominent are SLDNF-resolution, see [1], and SLS-resolution from [P1,P2]. One of the difficulties concerning SLDNF-resolution is that for certain programs and goals no SLDNF-derivation needs to exist. (Consider for example the program $P = \{ p \leftarrow p \}$ and the goal $G = \leftarrow p$.) We show that this problem does not arise for acyclic programs. The major distinction between SLDNF- and SLS-resolution lies in the way they treat negation. SLS uses a negation as failure rule, whereas SLDNF uses negation as finite failure. A minor distinction between SLDNF and SLS is the way they treat floundering, i.e. the appearance of a goal consisting entirely of negative literals containing variables. Since floundering is not our main concern here, we shall simply ignore this distinction. More precisely, by SLDNF we mean a variant of SLDNF in which floundering is treated in the same systematic way as done in SLS. The following results can be established about these forms of resolution for acyclic programs.

Lemma 4.1. Let P be an acyclic program and G a bounded goal. Then every SLS-tree as well as every SLDNF-tree of G contains only bounded goals and is finite.

PROOF. We argue in a way similar to [B, Lemma 2.5 and Corollary 2.6]. For the multiset ordering we refer to [D]. Let G be a bounded goal. We distinguish the following three cases. If a positive literal of G is selected, then it follows by Lemma 1.6 and Lemma 1.7 that every resolvent G' of G is bounded and that indeed $\| G' \|$ is smaller than $\| G \|$ in the multiset ordering. If G consists entirely of negative literals containing variables, then there is no resolvent at all. If a variable-free negative literal is selected, then both for SLS- and SLDNF-resolution we trivially have that the resolvent (if any) of G is bounded and smaller than G in the multiset ordering. Now use that the multiset ordering over \mathbb{N} is well-founded. □
Corollary 4.2. Let P be an acyclic program and G a goal. Then, for any selection rule, the SLS-tree and the SLDNF-tree of G coincide.

Proof. We recall that the difference between SLS and SLDNF amounts to negation as failure versus negation as finite failure. Since all goals $\leftarrow A$ with $A \in B_P$ are bounded, it follows by Lemma 4.1 that $\leftarrow A$ fails if and only if $\leftarrow A$ fails finitely. Now the corollary easily follows.

Since SLS-derivations always exist for locally stratified programs (so a fortiori for acyclic programs), this corollary implies that for all acyclic programs and goals SLDNF-derivations exist. Additionally we have:

Corollary 4.3. Let P be an acyclic program. Then both SLS- and SLDNF-resolution are decidable rules of inference.

Proof. If a positive literal is selected in a goal, then every inference step is obviously decidable. If a goal consists entirely of negative literal containing variables, then there is no resolvent at all. Now assume a negative literal $\neg A$ with $A \in B_P$ is selected. Then $\leftarrow A$ is bounded, so for any selection rule both the SLS- and the SLDNF-tree of $\leftarrow A$ are finite. So $\leftarrow A$ either succeeds, flounders or (finitely) fails. Moreover it is decidable which of these cases hold. It follows that the inference step (if any) is decidable.

We close this section by combining results previously obtained in this paper with results from Cavedon [C] and Przymusinski [P2] to obtain the following characterizations of the model M_P.

Theorem 4.4. Let P be an acyclic program. Then we have:

(i) T_P has a unique fixpoint, M_P;
(ii) M_P is the perfect model of P;
(iii) M_P is the unique Herbrand model of $\text{comp}(P)$;
(iv) M_P is the unique fixpoint of Φ_P;
(v) for all variable-free atoms A,
 $A \in M_p \iff \text{comp}(P) \cup DCA \vdash A$;
(vi) for all variable-free atoms A that do not flounder,
 $A \in M_P \iff$ there exists an SLDNF-refutation of $P \cup \{\leftarrow A\}$;
(vii) for all variable-free atoms A that do not flounder,
 $A \in M_P \iff$ there exists an SLS-refutation of $P \cup \{\leftarrow A\}$;
(viii) M_P is recursive.

Proof. (i), (ii) and (iii) follow from Theorem 2.5, (iv) from Corollary 2.7, (v) from Corollary 3.10, (vi) from [C] and (vii) is implied by results from [P2]. In fact (vi) and (vii) are special cases of more general completeness results. Note that (vi) and (vii) are equivalent by Corollary 4.2. Finally, (viii) follows from Theorem 3.9 and Corollary 3.10.

It is worthwhile to note here that some of the results listed in the above theorem can also be derived using more general results concerning general programs and their subclasses, proved by Kunen [K], Shepherdson [S], and Przymusinski [P2]. However, our proofs are more direct and simpler.
5. Application - Temporal Reasoning

5.1. Yale Shooting Problem

In Hanks and McDermott [HMD] a simple problem in temporal reasoning is discussed. It became known in the literature as the ‘Yale Shooting Problem’. Hank’s and McDermott’s interest in this problem arose from the fact that apparently all theories about nonmonotonic reasoning, when used to formalize this problem, led to too weak conclusions. The problem has been extensively discussed in the literature and several solutions to it have been proposed, e.g., by means of circumscription (see Lifschitz [L2]) or epistemic logic (see Gelfond [G]). In [HMD] some of these solutions are discussed and critically evaluated.

In this section we present a particularly simple solution to the above problem by means of acyclic programs. First, let us explain the problem. We closely follow here [HMD, p. 387]. Consider a single individual who in any situation can be either alive or dead, and a gun that can be either loaded or unloaded. The following statements are stipulated.

1. At some specific situation s_0, the person is alive.
2. The gun becomes loaded any time a load event happens.
3. Any time the person is shot with a loaded gun, he becomes dead. Moreover, the fact of staying alive is abnormal with respect to the event of being shot with a loaded gun.
4. Facts which are not abnormal with respect to an event remain true.

To formalize these statements [HMD] use McCarthy and Hayes’ [MCH] situation calculus in which one distinguishes three entities: facts, events and situations.

Facts can hold true in situations and situations can be changed by the occurrence of events. To express statements involving facts, events and situations, relation symbols t and ab and a function symbol $result$ are used.

Given a fact f, event e and a situation s

- $t(f,s)$ means that fact f is true in situation s,
- $result(e,s)$ denotes the situation resulting from occurrence of event e in situation s,
- $ab(f,e,s)$ means that ‘fact f is abnormal with respect to event e occurring in situation s’ or ‘occurrence of event e in situation s causes f to stop being true in $result(e,s)$’.

Using this notation [HMD] formulate the above statements (1)-(4) as the following formulas:

\[t(\text{alive}, s_0), \quad (1) \]
\[\forall s \ t(\text{loaded}, result(\text{load}, s)), \quad (2) \]
\[\forall s(t(\text{loaded}, s) \rightarrow (ab(\text{alive}, \text{shoot}, s) \land t(\text{dead}, result(\text{shoot}, s))))), \quad (3) \]
\[\forall f \forall e \forall s((t(f,s) \land \neg ab(f,e,s)) \rightarrow t(f, result(e,s))). \quad (4) \]

Thus

- alive, dead and loaded are interpreted as constants ‘of type fact’,
- load and shoot are interpreted as constants ‘of type event’.
- s_0 is interpreted as a constant ‘of type situation’.

(While an explicit use of types in the underlying first order language would result in a more rigorous description, their use is not needed for the purpose at hand.)

The last formula - (4) - is often called inertia axiom. It is a formalization in the situation calculus of the frame problem.

To draw the desired conclusions from the above formulas (1)-(4), [HMD] uses
the circumscription method of McCarthy [MC] to circumscribe over the relation \(ab \).

In their analysis [HMD] notice that there exist two Herbrand models in which the circumscribed relation \(ab \) is minimal. In only one of them, say \(M_t \), the formula
\[
\forall s(t(\text{dead},s) \rightarrow \text{ab}(\text{alive},\text{shoot},s)),
\]
(3a)
\[
\forall s(t(\text{loaded},s) \rightarrow t(\text{dead},\text{result}(\text{shoot},s))).
\]
(3b)
This obviously does not affect the description of the discussed problem. Then interpret the resulting set of formulas as a logic program. That is all.

Since for logic programs we adopted a different vocabulary (\(s \) and \(t \) denote expressions etc.), we rewrite the formulas (1), (2), (3a), (3b), (4) by
- using the relation \(\text{holds} \) instead of \(t \),
- using variables \(x_{	ext{far}}, x_{\text{even}} \) and \(x_{\text{situation}} \) instead of, respectively, the variables \(f,e \) and \(s \).

Also, we write the empty list \([\] \) for \(s_0 \) and \([t,L] \) for \(\text{result}(t,L) \), and use the clausal form as customary in logic programming. Thus, by using the abbreviations concerning lists as given in 1.3, for example \([\text{shoot},\text{wait},\text{load}] \) stands for the situation \(s_3 \). To be formally correct we add a constant \(\text{wait} \) to the alphabet of \(\text{YSP} \).

As a result the formulas (1), (2), (3a), (3b), (4) translate into the program \(\text{YSP} \) given in Section 1. We proved there that \(\text{YSP} \) is an acyclic program by exhibiting a simple level mapping. Consequently, to analyze it we can use any of the theorems concerning acyclic programs which are proved in Sections 2, 3 and 4.

By virtue of Theorem 4.4 and the observation that goals of the form \(\leftarrow A \), where \(A \) is a variable-free atom, do not flounder with respect to \(\text{YSP} \), we have:

Corollary 5.1.

(i) \(T_{\text{YSP}} \) has a unique fixpoint, \(M_{\text{YSP}} \);
(ii) \(M_{\text{YSP}} \) is the perfect model of \(\text{YSP} \);
(iii) \(M_{\text{YSP}} \) is the unique Herbrand model of \(\text{comp}(\text{YSP}) \);
(iv) \(M_{\text{YSP}} \) is the unique fixpoint of \(\Psi_{\text{YSP}} \);
(v) for all variable-free atoms \(A \),
\[
A \in M_{\text{YSP}} \iff \text{comp}(\text{YSP}) \cup \text{DCA} \models A;
\]
(vi) for all variable-free atoms \(A \),
\[
A \in M_{\text{YSP}} \iff \text{there exists an SLDNF-refutation of } \text{YSP} \cup \{ \leftarrow A \};
\]
(vii) for all variable-free atoms \(A \),
\[
A \in M_{\text{YSP}} \iff \text{there exists an SLS-refutation of } \text{YSP} \cup \{ \leftarrow A \};
\]
(viii) \(M_{\text{YSP}} \) is recursive.

This corollary provides overwhelming evidence that among all Herbrand models of \(\text{YSP} \), \(M_{\text{YSP}} \) is the preferred one. This model is characterized in several, vastly different ways and naturally arises when studying both declarative and procedural semantics of the program \(\text{YSP} \).

It is useful to see that \(M_{\text{YSP}} \) coincides with the model \(M_t \) considered in the previous subsection. Thanks to Corollary 5.1 there are several ways of checking it. Perhaps the simplest is the one using the SLDNF-resolution. We only concentrate
on the crucial statement \(t(\text{dead}, s_1) \) or, using the notation adopted in this section, \(\text{holds}(\text{dead}, [\text{shoot}, \text{wait}, \text{load}]) \).

We have the following SLDNF-refutation:

\[
\begin{align*}
\leftarrow & \text{holds}(\text{dead}, [\text{shoot}, \text{wait}, \text{load}]) \\
& \begin{array}{l}
\rightarrow \text{holds}(\text{loaded}, [\text{wait}]) \\
\rightarrow \text{ab}(\text{loaded}, \text{wait}, [\text{load}], \text{holds}(\text{loaded}, [\text{load}]) \quad | \\
\rightarrow \text{holds}(\text{loaded}, [\text{load}]) \\
\end{array} \\
\end{align*}
\]

The subsidiary derivation of \(\neg \text{ab}(\text{loaded}, \text{wait}, [\text{load}]) \) by means of negation as failure is trivial as \(\text{ab}(\text{loaded}, \text{wait}, [\text{load}]) \) does not unify with any head of the clauses (a)- (e).

It is also easy to check that the statement \(t(\text{alive}, s), \) or in other words \(\text{holds}(\text{alive}, [\text{shoot}, \text{wait}, \text{load}]) \), cannot be derived using SLDNF-resolution since \(\neg \text{ab}(\text{alive}, \text{shoot}, [\text{wait}, \text{load}]) \) cannot be established by means of negation as failure. In fact, it is easy to prove the converse by exhibiting an SLDNF-refutation of \(\text{YSP} \cup \{ \neg \rightarrow \text{holds}(\text{alive}, [\text{shoot}, \text{wait}, \text{load}]) \} \).

5.3. Temporal reasoning using acyclic programs

How general are the considerations concerning the Yale Shooting Problem? It is an instance of a problem in temporal reasoning and it is by no means clear that our proposed solution also applies to other problems of a similar kind. In this subsection we exhibit a large class of problems in temporal reasoning which can be solved by analogous means.

Let us adopt the notation used in the previous subsection. In case of a temporal reasoning we can naturally identify the following four types of statements.

(1) In some set of situations a certain fact holds unconditionally. Each such statement can be represented by an unconditional clause

\[
\text{holds}(f, t) \leftarrow
\]

for some fixed fact represented by a constant \(f \) and a term \(t \) (possibly containing variables) representing a set of situations.

(2) In a certain situation a certain fact holds provided some other fact holds in a previous situation. Each such statement can be represented by a clause

\[
\text{holds}(f, [e|s]) \leftarrow \text{holds}(f', s)
\]

for some facts \(f, f' \), event \(e \) and situation \(s \).

(3) In a given situation a certain event affects certain facts unconditionally. Each such statement can be represented by an unconditional clause

\[
\text{ab}(f, e, s) \leftarrow
\]

for some fact \(f \), event \(e \) and situation \(s \).

(4) In a given situation a certain event affects a certain fact provided some other fact holds in this situation. Each such statement can be represented by a clause

\[
\text{ab}(f, e, s) \leftarrow \text{holds}(f', s)
\]

for some facts \(f, f' \), event \(e \) and a situation \(s \).
Denote clause \((e)\) of the program \(YSP\) by \(IA\) (for inertia axiom). The following observation is crucial.

Lemma 5.2. Let \(P\) be a program consisting of clauses of the form (1)-(4). Then \(P \cup \{IA\}\) is acyclic.

Proof. We can use here the same level mapping as the one used for the general program \(YSP\), i.e.,

\[
\begin{align*}
|holds(t, t')| &= 2l(t'), \\
|ab(t, t', t'')| &= 2l(t'') + 1
\end{align*}
\]

where \(l(t) = 0\) if \(t\) is a constant, and \(l([t_1 | t_2]) = 1 + l(t_2)\) otherwise. It is easy to check that \(P \cup \{IA\}\) is acyclic w.r.t. \(|\cdot|\). \(\Box\)

This lemma allows us to apply our theory of acyclic programs to any temporal reasoning problem which can be described by means of statements (1)-(4). Thus any such problem naturally yields a model which can be viewed as a solution to the problem. This model - the perfect Herbrand model of the corresponding acyclic program \(P \cup \{IA\}\) - can be characterized in a number of equivalent ways, both semantically and proof theoretically.

Moreover, by virtue of Theorem 4.4, for a large number of questions, namely those which can be expressed as bounded and non-floundering goals, we can use SLDNF-resolution to compute the desired answers. The level mapping \(|\cdot|\) exhibited in the proof of Lemma 5.2 permits a simple characterization of bounded goals: a goal is bounded w.r.t. \(|\cdot|\) if and only if the last argument in each of its literals is a list of fixed length. This amounts to saying that a goal is bounded w.r.t. \(|\cdot|\) if and only if all its literals refer to situations that are bounded in time. In contrast, we do not see a simple characterization of non-floundering goals.

Since SLDNF-derivations always terminate for non-floundering and bounded goals and acyclic programs, we can also use SLDNF-resolution (or PROLOG) to effectively compute all answers to such goals.

Acknowledgement.

We thank V. Lifschitz, P. Mancarella and D. Pedreschi for helpful comments on the subject of this paper. The research has been partially supported by ESPRIT BRA 3020 'Integration'.

References

