
5

Concurrency semantics based on
metric domain equations

J. W. DE BAKKER AND J. J. M. M. RUTTEN

Abstract

We show how domain equations may be solved in the category of
complete metric spaces. For five example languages we demonstrate
how to exploit domain equations in the design of their operational
and denotational semantics. Two languages are schematic or uni­
form. Three have interpreted elementary actions involving individual
variables and inducing state transformations. For the latter group
we discuss three denotational models reflecting a variety of language
notions considered. A central theme is the distinction, within the
non-uniform setting, of linear time versus branching time models.
Throughout, fruitful use is made of the technique of obtaining seman­
tic mappings, operators, etc. as fixed points of higher-order functions.
A brief discussion of the relationship between bisimulation and one
of the domains considered concludes the paper.

5.1 Introduction

Concurrency semantics is concerned with the mathematical modelling of
parallel behaviour. A parallel computation induces some form of simultane­
ous or interleaved execution of the elementary actions from the constituent
(parallel) components. Accordingly, it is to be expected that the math­
ematical description of such a computation involves a detailed modelling
of its intermediate steps - rather than just its input-output behaviour,
as is mostly sufficient in a sequential setting. The collection of intermedi­
ate steps may be said to constitute the history of the computation. Two
histories p1 , p2 are close together if their first difference is exhibited only
after many steps. This observation is at the basis of the metric approach
to concurrency semantics. We introduce distances d such that

(1)

113

114 Metric concurrency semantics

where n =sup {k I P1[k] = P2[k]}, with p[k] a truncation of p after k steps.
It is our aim in this chapter to make this idea precise, and to illustrate
how it may be exploited in the design of semantic models for a variety of
concurrency phenomena.

Section 5.2 introduces a rigorous setting for the metric space tech­
niques to be applied subsequently. The category C of complete metric
spaces is introduced, and it is shown how metric spaces (P, d), or P for
short, can be specified as solutions of domain equations P = F(P) for a
variety of functors F : C -+C. In the formation of these F, several com­
position operators such as x (cartesian product), U (disjoint union), -+
(function space), P (powerset of), etc. are used. The main result of this
section is the following. Provided a rather natural condition is satisfied
for the recursive occurrences of Pin the expression F(P) (which condition
ensures a kind of contractivity of F in P), the equation P = F(P) can
be solved and its solution is unique. The first application of metric spaces
in order to obtain domains as solutions of such equations was described
in (de Bakker and Zucker 1982), a paper in turn inspired by Nivat's gen­
eral metric approach to semantics (for example, (Nivat 1979)). The ideas
of (de Bakker and Zucker 1982) were generalized (to cover equations of
the form P = · · · (P-+ F1 (P)) · · · also, a case missing in (de Bakker and
Zucker 1982)) and put in a category-theoretic framework in (America and
Rutten 1989a). Since the latter reference provides full mathematical de­
tails, including complete proofs, we restrict the treatment in Section 5.2 to
a more concise one, not repeating these proofs, but with sufficient informa­
tion to make the present chapter self-contained. Independently of (America
and Rutten 1989a), the question of how to extend the ideas of (de Bakker
and Zucker 1982) was also investigated by Majster-Cederbaum (1988, 1989,
199?); in these references the issues of the existence and uniqueness of solu­
tions of the equation P = F(P) are also investigated in a category-theoretic
framework.

Section 5.3 constitutes the main body of our chapter. For five ex­
ample languages Li, i = 0, ... , 4, we introduce operational (C:\) and deno­
tational (Di) semantic models, where Oi is a mapping L;-+ R;,, and D; a
mapping Li --+ Pi (here we neglect one refinement to be discussed later),
i = 0, ... , 4. Determined by the range of programming concepts in the
language Li, we shall design a corresponding range of operational domains
R; and denotational domains Pi, i = 0, ... , 4, each time as the solution of a
(pair of) domain equation(s) geared to the construction of an appropriate
model capturing the notions concerned. Of the languages Lo to L 4 , two
are what we like to call uniform (the elementary actions are just symbols)
(de Bakker et al. 1986, 1987, 1988). The other three are non-uniform: the
elementary actions refer to individual variables, and we encounter states,
assignments, etc. The models for L 2 to L4 mention states and state trans­
formations, or, put in mathematical terms, the corresponding functor F

Introduction 115

now has occurrences of the function space constructor. There are some­
what subtle (and not yet fully understood) differences between P 2 , P3 , and
P4. Using a terminology mostly reserved for the uniform case, that is, the
contrast between linear time (models with sets of sequences) versus branch­
ing time (models with trees or tree-like entities) (de Bakker et al. 1984),
we might say that the domains P2 and P3 are (non-uniform and) linear
time, whereas P4 is (non-uniform and) branching time. Understanding the
difference between P2 and P3 requires further study. The introduction and
associated analysis of P2 to P4 appears here for the first time. In earlier
work, we always used P4 (or trivial variants), and for some time we did not
see how to design a satisfactory non-uniform model with the linear time
flavour. The domain P2 was then proposed as a candidate to enable us
to design a fully abstract D2 (with respect to the 0 2 to be given in Sec­
tion 5.3). In the meantime it has been shown by Horita et al. (1990) that a
certain extension P!2 of P2 (P~ ignores details present in P2) indeed allows
us to define a fully abstract denotational D~ (with respect to 0 2 as to be
given). For L 3 , we do not know whether a similar result holds. For L 4 , we
do know that D4 is not fully abstract with respect to 04.

In general, the material in Section 5.3 is organized in such a way
that it brings out the unifying effect of the metric approach. At least the
following definitions and proof techniques all follow the same pattern (for

= 0, .. ' ,4):

• introduction of the transition system Ti (as in Plotkin's structured
operational semantics) and the definition of the associated Oi as the
fixed point of a contracting Wi;

• introduction of the domains R;, Pi, and definition of the various
semantic operators (such as o, JJ), for the Pi setting, in terms of fixed
points of contracting Da, f2 II;

• introducing the denotational semantics D; as the fixed point of a
contracting <I>;;

• relating O; and Di through abstraction mappings absi, themselves
obtained as fixed points of contracting .6.i;

• establishing that O; = abs; o Di, by introducing an intermediate
semantics Ii : Li-+ Pi (with denotational codomain P;, but obtained
from the transition system Ti), deriving that 'Ii = Di (as in (Kok
and Rutten 1988, de Bakker and Meyer 1988) and then proving that
absi o Ii = Oi, once more by a fixed point argument.

In case the reader is not satisfied by the elementary character of Lo to L4,
we emphasize that these languages have been selected for didactic reasons.
Elsewhere we have demonstrated how the metric techniques described in

116 Metric concurrency semantics

the present chapter may be exploited in the treatment of substantially more
complicated language notions. For the case of object-oriented programming
languages, we refer to (America et al. 1989, America and de Bakker 1988,
America and Rutten 1989b, Rutten 1990a); for a treatment of parallel
logic programming semantics, we mention (de Bakker 1988, de Bakker and
Kok 1988, 1990). Earlier introductory or overview presentations of metric
concurrency semantics were given in (de Bakker and Meyer 1988, de Bakker
1989).

The last section of the chapter is devoted to a slightly more special
topic. It is well known that the notion of bisimulation (Park 1981) is a
central tool in concurrency semantics, and the question arises whether it
may be related to results about domains in the style of Po to P4. For
a simple case (Po only), we prove the following theorem. Let s1, s2 be
two states (here used as abstractions of the statements as introduced in
Section 5.3) from a set S. We have that s1 is bisimilar to s2 (with respect
to a given labelled transition system T) if and only if M[s 1] = M[s2],
where M: S-+Po is obtained from Tin a manner which is the same as the
way in which I (from Section 5.3) is obtained from To. Let us also draw
attention to the fact that this result depends critically on the branching
structure for Po.

We conclude this introduction with two remarks about possible ex­
tensions of the reported results. In (Rutten 1989), a beginning has been
made with the exploration of a technique which 'automatically' infers a de­
notational semantics 'D from a given transition system T (of course obeying
the compositionality requirement on 'D). A bonus of this automatic infer­
ence is, in particular, the possibility of avoiding ad hoe equivalence proofs
for 0 = abs o 'D. A second important topic which we want to address
in future work is the design of a fully abstract model for a language with
process creation.

5.2 Metric spaces and domain equations

As mathematical domains for our operational and denotational semantics
we shall use complete metric spaces satisfying a so-called reflexive domain
equation of the following form:

P ~ F(P)

(The symbol~ should be read 'is isometric to' and is defined below.) Here
F(P) is an expression built from P and a number of standard construc­
tions on metric spaces (also to be formally introduced shortly). A few
examples are

Metric spaces and domain equations

p DI Au (Bx P)

P DI AU IP'c0 (B X P)

p DI Au (B - P)

117

(2)

(3)

(4)

where A and B are given fixed complete metric spaces. De Bakker and
Zucker (1982) have first described how to solve these equations in a metric
setting. Roughly, their approach amounts to the following. In order to
solve P ~ F(P) they define a sequence of complete metric spaces (Pn)n by
Po =A and Pn+1 = F(Pn), for n > 0, such that Po s;; P 1 ~ · ·" Then they
take the metric completion of the union of these spaces Pn, say P, and show
P ~ F(F). In this way they are able to solve equations (2), (3) and (4).

There is one type of equation for which this approach does not work,
namely

P ~ AU (P -> 1 G(P)) (5)

in which P occurs at the left side of a function space arrow and G(P) is
an expression possibly containing P. This is due to the fact that it is not
always the case that Pn s;; F(Pn)·

In (America and Rutten 1989a) the above approach is generalized in
order to overcome this problem. The family of complete metric spaces is
made into a category C by providing some additional structure. (For an
extensive introduction to category theory we refer the reader to (Mac Lane
1971).) Then the expression Fis interpreted as a functor F: c-c which is
(in a sense) contracting. It is proved that a generalized version of Banach's
theorem (see below) holds, that is, that contracting functors have a fixed
point (up to isometry). Such a fixed point, satisfying P ~ F(P), is a
solution of the domain equation.

We shall now give a quick overview of these results, omitting many
details and all proofs. For a full treatment we refer the reader to (America
and Rutten 1989a). We start by listing the basic definitions and facts of
metric topology that we shall need.

We assume the following notions to be known (the reader might
consult (Dugundji 1966) or (Enkelking 1977)): metric space, ultra-metric
space, complete (ultra-) metric space, continuous function, closed set, com­
pact set. (In our definition the distance between two elements of a metric
space is always bounded by 1.)

An arbitrary set A can be supplied with a metric dA, called the
discrete metric, defined by

{ 0
1

ifx=y
ifx=j:.y

118 Metric concurrency semantics

Now (A,dA) is a metric, even an ultra-metric, space.
Let (M1, d1) and (M2 1 d2) be two complete metric spaces. A function

f : M1 -+ M2 is called non-expansive if for all x, y E M 1

The set of all non-expansive functions from M 1 to M 2 is denoted by M1 -+1

M2· A function j : M 1 -+ M 2 is called contracting (or a contraction} if
there exists f E [O, 1) such that for all x, y E M 1

(Non-expansive functions and contractions are continuous.)
The following fact is known as Banach's theorem. Let (M, d) be

a complete metric space and f : M -+ M a contraction. Then f has a
unique fixed point, that is, there exists a unique solution x E M such that
f (x) = x.

We call M1 and M2 isometric (notation: M 1 <::::: M2) if there exists a
bijective mapping f : M 1 -+ M2 such that, for all x, y E M 1 ,

Definition 1. Let (M, d), (M1, d1), ... , (Mn, dn) be metric spaces.

1. We define a metric dp on the set M 1 -+ M 2 of all functions from M1

to M2 as follows. For every Ji, h E M1 -+ M2 we put

This supremum always exists since the codomain of our metrics is
always [O, l]. The set M1 -+ 1 M2 is a subset of M1 -+ M2, and a
metric on M1 -+ 1 M2 can be obtained by taking the restriction of the
corresponding dp.

2. With MiO· · ·OMn we denote the disjoint union of M1 , ... , Mn, which
can be defined as { 1} x M1 U · · · U { n} x Mn. We define a metric du
on Mi 0 · · · 0 Mn as follows. For every x, y E M1 0 · · · 0 Mn,

d (x) = {dj(x,y) ifx,yE{j}xMj,l~j~n
u ' y 1 otherwise

If no confusion is possible we shall often write U rather than 0.

3. We define a metric dp on the cartesian product M 1 x · · · x Mn by the
following clause. For every (x1, ... ,xn), (y1, ... , Yn) E M1 x · · · x Mn,

Metric spaces and domain equations 119

4. Let Pc1(M) = {X IX~ M /I. X is closed}. We define a metric dH
on P cl (M), called the Hausdorff distance, as follows. For every X, Y E
Pc1(M),

dH(X, Y) = max {sup { d(x, Y)}, sup { d(y, X)}}
xEX yEY

where d(x,Z) = infzez{d(x,z)} for every Z ~ M, x EM. (We use
the convention that sup 0 = 0 and inf 0 = 1.) The spaces

Pc0 (M) = {X IX~ M /\ X is compact}

P nc (M) = { X I X ~ M /\ X is non-empty and compact}

are supplied with a metric by taking the restriction of dH.

5. For any real number t: with t: E [O, 1] we define

ide((M, d)) = (M, d')

where d'(x, y) = t:·d(x, y), for every x and y in M.

Proposition 2. Let (M, d), (M1,d1), ... , (Mn, dn), dp, du, dp, and dH
be as in Definition 1 and suppose that (M, d), (M1, di), ... , (Mn, dn) are
complete. We have that

(M1-+ M2,dF) (M1 -+1 M2,dF)

(M1 0 ... 0 Mn, du)

(M1 x ... x Mn,dP)

(IP c1(M), dH) (P co(M), dH) (IP nc(M), dH)
ide((M, d))

(a)

(b)

(c)

(d)

(e)

are complete metric spaces. If (M,d) and (Mi, di) are all ultra-metric
spaces, then so are these composed spaces. (Strictly speaking, for the
completeness of M1-+ M2 and M1 -+ 1 M2 we do not need the completeness
of M1. The same holds for the ultra-metric property.)

Whenever in the sequel we write Mi -+ M2, Mi -+1 M2, Mi 0 · · · 0 Mn,
M1 x .. · x Mn, Pc1(M), 1Pc0 (M), Pnc(M), or ide(M), we mean the metric
space with the metric defined above.

The proofs of Proposition 2(a), (b), (c), and (e) are straightforward.
Part (d) is more involved. It can be proved with the help of the following
characterization of the completeness of (IP cz(M), dH).

120 Metric concurrency semantics

Proposition 3. Let (IP cz(M), dH) be as in Definition 1. Let (Xi)i be a
Cauchy sequence in 1Pc1(M). We have

)im xi = {)im Xi I Xi E xi, (xi)i a Cauchy sequence in M}
i-+OO t-+00

Proofs of Propositions 2(d) and 3 can be found in, for instance, (Dugundji
1966) and (Enkelking 1977). The proofs are also repeated in (de Bakker
and Zucker 1982). The completeness of the Hausdorff space containing
compact sets is proved in (Michael 1951).

We proceed by introducing a category of complete metric spaces and
some basic definitions, after which a categorical fixed point theorem will
be formulated.

Definition 4. (Category of complete metric spaces) Let C denote
the category that has complete metric spaces for its objects. The arrows i

in C are defined as follows. Let Mi, M2 be complete metric spaces. Then
Mi -+L M2 denotes a pair of maps Mi .=~ M2, satisfying the following
properties:

1. i is an isometric embedding;

2. j is non-distance-increasing (NDI);

(We sometimes write (i, j) fort.} Composition of the arrows is defined in
the obvious way.

We can consider Mi as an approximation to M2 • In a sense, the set M2

contains more information than Mi, because Mi can be isometrically em­
bedded into M2. Elements in M2 are approximated by elements in Mi.
For an element m2 E M2 its (best) approximation in Mi is given by j(m2).
Clause 3 states that M2 is a consistent extension of Mi.

Definition 5. For every arrow Mi -+L M2 in C with t = (i,j) we define

6(i) = dM2 -M1 (ioj,idM2) (= sup {dM2 (ioj(m2),m2)})
m2EM2

This number can be regarded as a measure of the quality with which M 2

is approximated by Mi: the smaller 6(i), the better M2 is approximated
by M1.

Metric spaces and domain equations 121

Increasing sequences of metric spaces are generalized in the following
definition.

Definition 6. (Converging tower)

1. We call a sequence (Dn, ln)n of complete metric spaces and arrows a
tower whenever we have that Vn EN. Dn _,<n Dn+I EC.

2. The sequence (Dn, ln)n is called a converging tower when furthermore
the following condition is satisfied:

Ve> 0 · 3N EN· Vm > n;;:: N · 6(lnm) < <

where lnm = lm-1 o · · · o ln : Dn-+ Dm.

A special case of a converging tower is a tower (Dn, ln)n satisfying, for
some e with 0 ~ t < 1,

Note that

O(lnm) ~ O(ln) + · · · + c5(lm-1)

~ tn·6(lo) + · · · + Em-l·O(lo)
en

~ l-t·O(lo)

We shall now generalize the technique of forming the metric completion of

the union of an increasing sequence of metric spaces by proving that, in

C, every converging tower has an initial cone. The construction of such an

initial cone for a given tower is called the direct limit construction. Before

we treat this direct limit construction, we first give the definition of a cone

and an initial cone.

Definition 7. (Cone) Let (Dn, ln)n be a tower. Let D be a complete

metric space and (In)n a sequence of arrows. We call (D, (In)n) a cone for

(Dn, ln)n whenever the following condition holds:

'r:/n E N · Dn-+ -Yn D EC /\ In = ln+l o ln

Definition 8. (Initial cone) A cone (D, bn)n) for a tower (Dn, ln)n is

called initial whenever for every other cone (D', (T~)n) for (Dn,ln)n there

exists a unique arrow l : D -+ D' in C such that

122 Metric concurrency semantics

Definition 9. (Direct limit construction) Let (Dn, Ln)n, with Ln =
(in,in), be a converging tower. The direct limit of (Dn, ln)n is a cone
(D, ('Yn)n), with /n = (gn, hn), that is defined as follows:

is equipped with a metric d : D x D -+ (0, 1] defined by

for all (xn)n and (Yn)n E D. The function 9n : Dn --> D is defined by
9n(x) = (xk)k, where

{
ikn(x) if k < n

Xk = X if k = n
ink(x) if k > n

Lemma 10. The direct limit of a converging tower (as defined in Defini­
tion 9) is an initial cone for that tower.

As a category-theoretic equivalent of a contracting function on a metric
space, we have the following notion of a contracting functor on C.

Definition 11. (Contracting functor) We call a functor F: C -+C con­
tracting whenever the following holds. There exists an f, with 0 ~ € < 1,
such that, for all D -->"EEC,

A contracting function on a complete metric space is continuous, so it pre­
serves Cauchy sequences and their limits. Similarly, a contracting functor
preserves converging towers and their initial cones.

Lemma 12. Let F: C-+ C be a contracting functor, and let (Dn, Ln)n be
a converging tower with an initial cone (D, bn)n)· Then (F(Dn), F(in))n
is again a converging tower with (F(D), (F(-yn))n) as an initial cone.

Theorem 13. (Fixed point theorem) Let F be a contracting functor
F: C ->C and let Do _.•o F(Do) EC. Let the tower (Dn, ln)n be defined by
Dn+l = F(Dn) and Ln+l = F(in) for all n ~ 0. This tower is converging,
so it has a direct limit (D, bn)n)· We have D ~ F(D).

Concurrency semantics 123

In (America and Rutten 1989a) it is shown that contracting functors that
are moreover contracting on all hom-sets (the sets of arrows in C between
any two given complete metric spaces) have unique fixed points (up to isom­
etry). It is also possible to impose certain restrictions upon the category C
such that every contracting functor on C has a unique fixed point.

Let us now indicate how this theorem can be used to solve Equa­
tions (2)-(5) above. We define

Fi(P) = AU id1; 2(B x P)

F2(P) = Au IPCO(B x id1;2(P))

F3(P) = AU(B--+id 1; 2 (P))

(6)

(7)

(8)

If the expression G(P) in Equation (5) is equal to P, for example, then
we define F4 by

(9)

Note that the definitions of these functors specify, for each metric space
(P, dp), the metric on F(P) implicitly (see Definition 1). These metrics all
satisfy Equation (1) given in the introduction (Section 5.1) for a suitably
defined truncation function.

Now it is easily verified that F 1, F2, F3, and F4 are contracting
functors on C. Intuitively, this is a consequence of the fact that in the
definitions above each occurrence of P is preceded by a factor id1; 2 • Thus
these functors have a fixed point, according to Theorem 13, which is a
solution for the corresponding equation. (In the sequel we shall usually
omit the factor id1; 2 in the reflexive domain equations, assuming that the
reader will be able to fill in the details.)

In (America and Rutten 1989a) it is shown that functors like F1

through F4 are also contracting on horn-sets, which guarantees that they
have unique fixed points (up to isometry).

The results above hold for complete ultra-metric spaces too, which
can easily be verified.

In the next section, we shall encounter pairs of reflexive equations

of the form

P ~ F(P,Q) Q ~ G(P,Q)

where F and G are functors on C x C. Equations like this can be solved by
a straightforward generalization of the above theory.

5.3 Concurrency semantics

Introduction

In this section we demonstrate how (solutions of) metric domain equa­
tions can be exploited in the design of semantics for languages with some

124 Metric concurrency semantics

form of concurrency. Altogether we shall be concerned with five languages,
and for each of them we shall develop operational (0) and denotational
('D) semantics, and discuss the relationships between 0 and D. The first
two languages (Lo, L 1) are what may be called schematic or uniform: the
elementary actions are uninterpreted symbols from some alphabet, and
the meanings assigned to the language constructs concerned will have the
flavour of formal (tree) languages. Next, we shall discuss three non-uniform
languages (L2, £3, L4), where the elementary actions are (primarily) as­
signments. These have state transformations as meanings, and the domains
needed to handle them involve state-transforming functions in a variety
of ways.

The domains employed to define the operational semantics for Lo to
£ 4 are comparatively easy. For L 0 , £ 1 we introduce the domain of streams,
that is, of finite or infinite sequences over the relevant alphabets. Finite
sequences end in t (8) signalling proper (improper or deadlock) termina­
tion. Meanings of statements in L 0 , £ 1 will be (non-empty compact) sets
of such streams, and the corresponding domains will be denoted by Ro,
R1. In order to bring out the (dis)similarities between the operational and
denotational models, the stream domains R0 , R 1 are defined here as well,
through domain equations. (At this stage, the reader may want to refer
to the table in Section 5.3, surveying all domain equations.) For L2 to L4,
the operational semantics domains (R2 to R4) are functions from states to
sets of streams of states. Altogether, all operational models have streams
as their basic constituents, and they may be collectively called linear time
(LT) models.

The situation is rather different for the various denotational models.
For Lo, £ 1 we use (purely) branching time (BT) models, that is, we use
the domain of 'trees' over some alphabets. 'Trees' are not just ordinary
trees: they are commutative (no order on the successors of any node),
what may be called absorptive (nodes have sets rather than multisets as
successors), and compact (for this we omit a precise definition, since we use
the technical framework of Section 5.2 anyhow). These properties taken
together ensure that the domain of 'trees' does indeed fit into the general
domain theory of Section 5.2. From now on, we use the term 'processes'
(elements of a domain P solving P ~ F(P)) rather than 'trees'. (For a
discussion concerning the relationship between the process domains and
the class of process graphs modulo bisimulation we refer to (Bergstra and
Klop 1989), where, under some mild conditions, isomorphism of the two
structures is established.) The processes in Po and P1, serving as mod­
els for Lo and L1, have as special elements the nil process { t} and the
empty process 0. Again, these model proper and improper termination.
For the languages £2 to £4, we introduce domains of processes (P2 to P 4)

which in some manner involve function spaces. Domain P2 is the simplest
of these: it consists of all non-empty compact subsets of a domain Q2 ,

Concurrency semantics 125

where Q2 is built recursively from itself and constant domains using the
operators ~, x, and U, but without the use of the power domain oper­
ator. Though slightly different from P2, P3 shares with P2 the property
that the power domain operator does not appear in a recursive way. Only
when we define P4 do we have that the power domain operator occurs
combined with recursion. Since this kind of combination constitutes the
essence of a domain being branching time, we are justified in calling P4

a non-uniform BT model, whereas P2, P3 are, though non-uniform, more
of the LT variety.

(In previous papers such as (de Bakker and Zucker 1982, de Bakker
et al. 1988, de Bakker and Meyer 1988, de Bakker 1989) we have always
considered, for the non-uniform case, only domains which are fully BT
(such as P4). The present models P2, P3 are new for us. A major motive
for their introduction is our desire to understand full abstractness issues
better. Domains which are fully branching time are likely to provide too
much information to qualify as fully abstract. We shall return to these
matters below.)

We use five languages to illustrate the use of domains as outlined
above. For our present purposes, the languages themselves are not our
primary concern. Our first aim is to present a representative sample of the
variety of domains one may employ in semantic design. Secondly, we want
to emphasize the resemblance between the definitional tools. Through­
out, (unique) fixed points of (contracting) higher-order mappings play a
central role. For f a contracting mapping on a complete metric space,
let fix f denote its unique fixed point (which exists by Banach's theorem,
cf. Section 5.2). For the operational semantics definitions we shall, for
i = 0, ... , 4, define Oi = fix \Iii, for suitable operators Wi. In the defi­
nitions of the \II i, we shall make fruitful use of transition systems in the
sense of Plotkin's structured operational semantics (SOS), from (Hennessy
and Plotkin 1979, Plotkin 1981, 1983). In the denotational case, we put
Di =fix 4>i, i = 0, ... , 4. Here <I>i is defined (on appropriate domains) using
semantic operators such as sequential (o) and parallel (II) composition. In
the definition of those operators as well, use is made of the definitional tech­
nique in terms of higher-order mappings. In four out of the five cases con­
sidered, Oi is not compositional. That is, in these cases we do not have that,
for each syntactic operator OPsyn, there exists a corresponding semantic op­
erator OPsem such that, for all s1, s2, O[s1 OPsyn s2] = O[s1] OPsem O[s2].
(For example, for L 2 and L4 , II violates this condition.) In order to obtain
compositionality, we have to add information to the codomains concerned:
in going from Oi to 'Di, we replace Ri by Pi, and Pi is more complex than
~- In this way we manage to define Di in a compositional way, but we
have lost the equivalence Oi = Di, i = 0, ... , 4. Rather, we shall apply
abstraction mappings absi : Pi~~' i = 0, ... , 4. These mappings delete
information from the Pi, and they enable us to establish that

126 Metric concurrency semantics

i = 0, ... ,4 (10)

The question concerning full abstractness asks whether these (Vi, absi) are
the best possible (in a sense to be defined precisely below). Not much is
known on this question. Apart from a few negative results (Vi is not fully
abstract on the basis of known facts), essentially all we have to report here
is a few open problems.

We conclude this introduction with a listing of the programming no­
tions appearing in languages Lo to 1 4 .

Lo, 1 1 (the uniform case). Both have elementary actions, sequential
composition, non-deterministic choice, and guarded recursion.
Guardedness is a syntactic restriction reminiscent of Greibach normal
form for context-free grammars. It is imposed to ensure contractivity
(of an operator corresponding to (the declarations of) the program).
Moreover:

• Lo has parallel composition;

• L1 has process creation and (CCS-like) synchronization.

L 2 , L3 , L 4 (the non-uniform case). Each language has assignment, se­
quential composition, the conditional statement, and (arbitrary) re­
cursion. In addition:

• L2 has parallel composition;

• L 3 has process creation and (a form of) local variables;

• L4 has parallel composition and (CSP-like) communication.

In each of Lo to L4 , a program consists of a (main) statements and a set D
of declarations. This set 'declares' procedure variables x with correspond­
ing bodies g (the guarded case) ors (the general case). These declarations
are (therefore) simultaneous and they may involve mutually recursive con­
structs. Note that we do not utilize some form of µ-notation (in the form of
µx[s], say) to introduce recursion syntactically. The simultaneous format
has technical advantages here (the interested reader may want to compare
the technicalitites of (Kok and Rutten 1988) with those of (de Bakker and
Meyer 1988)).

Concurrency semantics 127

Lo: a uniform language with parallel composition

Our first language, Lo, is quite simple. It is introduced for the purpose
of illustrating the definitional techniques on an elementary case. We shall
design LT operational and BT denotational models for L 0 • The motivation
for using a BT model for Lo is solely didactic: we want to explain the some­
what complicated machinery of BT models first for a very simple language
(for which even the operational semantics 0 0 is already compositional, thus
obviating the need for a more complex domain Va).

(From now on we employ the terminology 'let (xE) M be ... ' to
introduce a set M with a variable x ranging over M.) Let (aE) A be
an alphabet of elementary actions, and let (xE) Pvar be an alphabet of
procedure variables. We introduce the language Lo and its guarded version
Lg in the following.

Definition 14. (8E) L0 , (gE) Lg and (DE) Decl0 are given by

1. 8 ::=a Ix I 81; 82 I s1 + s2 I s1 II 82

2. g ::= a I g; 8 I g1 + 92 I gi 11 g2

3. A declaration D consists of a set of pairs (x, g) and a program consists
of a pair (D, 8).

Remarks.

1. We find it convenient not to worry about the ambiguity in the syntax
for Lo (Lg) - and the other languages we shall define in the sequel.
If required, the reader may add parentheses around the composite
constructs, or assign priorities to the operators.

2. In a guarded g, each occurrence of a procedure variable x is 'guarded'
by a sequentially preceding occurrence of some a E A.

We proceed with the definitions leading up to the operational semantics
0 0 for L 0 . Let Ebe a new symbol (not in A or Pvar) with as connotation
'the terminated statement', and let (rE)Lt =Lo U {E}. Transitions are
four-tuples of the form (8, a, D, r), with 8 E Lo, a EA, DE Declo, r E Lt.
A transition relation -+ is any subset of Lo x A x Declo x Lt. Instead of
(8, a, D, r) E-+ we write 8 .!!:.+Dr. From now on, we shall suppress explicit
mention of D in our notation. For example, we shall use 8 ~ r rather than
8 .!!:.+Dr, and, at later stages, we use 0[8] rather than O[(D, s)], etc. We
feel free to do so since D is in no way manipulated in our considerations.
Each time, where relevant, some fixed D may be assumed.

As the next step, we introduce a specific transition relation -+o in
terms of what may be called a formal transition system To (consisting of
some axioms and some rules).

128 Metric concurrency semantics

Definition 15. -+o is the least relation satisfying the following system To:

1. a ~o E

2. Ifs ~o r then

s;s a r;s -+o

s 11 s a r II s -+o

s 11 s a s II r -+o

s+s a
-+o r

s+s a
-+o r

3. If g ..::,or then x ~or, where (x, g) ED.

Remark. In Clause 2 we use the convention that (in the case r = E)
E ; s = E II s = s II E = s.

We now introduce the operational domains (rE) Ro, (uE) So, and show
how to define Oo : Lo -+ Ro.

Definition 16.

1. Ro= F\c(So), So= (Ax So) U {8, i:}

2. Let (FE) Mo = Lci-+ Ro, and let Wo : Mo-+ Mo be defined as follows:

llfo(F)(E)

llfo(F)(s)

= {€}

= {{(a,u)ls~or fl. uEF(r)}
{8}

3. Oo =fix Illa

Remarks.

if this set is non-empty
otherwise

1. In Clause 1, i: and f5 are new symbols which denote proper and im­
proper termination respectively.

2. By the definition of -+o, { 8} will never be delivered in Clause 2. We
have included this case for consistency with later definitions, where
the set {(a, u) I · · ·} may well be empty.

3. For each F and s, Wo(F)(s) is a non-empty compact set (this follows
from the definition of T0). Moreover, 111 0 is a contracting operator
(on the complete metric space Mo). This depends essentially on our
convention (see the remark following Theorem 13) that in a domain
equation such as that for So, recursive occurrences are implicitly pro­
ceeded by the id 1; 2 operator.

Concurrency semantics

Examples 17.

1. O[(a1; a2) + a3] = {(a1, (a2,E)), (a3,c)}

2. O[((x, (a; x) + b), x)]
={(a, (a, ...))} U {(a, (a,. .. , (b,c) ...))Ii= 0, 1, ... }

'---..--"'
w times a i times a

(In a less cumbersome notation, we would write {aw} U a*b.)

129

We continue with the denotational definition for L0 . We shall. here and

subsequently, follow a fixed pattern, in that we first introduce the denota­

tional domains, then define the necessary semantic operators. and finally

define a higher-order mapping <I>i which has the desired 'Di as fixed point.

Definition 18.

l. Po= 1Pc0 (Qo) U {{c}}, Qo =Ax Po

2. Let (c/>E) IP0 = Po x Po-+ P0 . The operator + E Po is defined by

p + {c} = {E} + p = p, and, for p1, P2 # {E}, P1 + P2 is the set­

theoretic union of p1 and p2 . Also, the operators o and II are defined

by 0 =fix Do, II= fixi111, where no, i111: Po-+ Po are given by

3. Let (FE) No= Lo-+ Po, and let <Po: No-+ No be given by

(for g E L6)

(for s E Lo)

if?o(F)(a) = {(a,{c})}

if.J 0(F)(g; s) = <I>o(F)(g) o F(s)

<I>o(F)(g1 + g2) = <I>o(F)(g1) + if.io(F)(g2)

<I>o(F)(g1 II 92) = <I>o(F)(g1) II <I>o(F)(g2)

if?o(F)(a) = {(a, {c})}

<I> 0 (F)(x) = iI>0 (F)(g) with (x,g) ED

<I> 0 (F)(s1 ; s2) = <I>o(F)(s1) o <I>o(F)(s2)

and similarly for s1 + s2, s1 II s2.

130 Metric concurrency semantics

4. Let 'Do =fix <I>o.

Examples 19.

1. We use an abbreviated notation for processes in P0 : we write a · p
for (a, p}, we omit final · { c }, and we write q1 + q2 + · · · for process
p(-:j:; { c}) with elements q1, q2, Examples of elements in Po are 0,
{.: }, (a1 · a2) + (a1 · a3), a1 · (a2 + a3), a1 · (a2 · a3 + a3 · a2) + a3 · a1 · a2,
and the processes p', p", p"' defined by

p' = limi p; p~ = {c} P:+1 a. P;
p" = limi p:' p~ = {.:} P:'t-1 = a·p:'+b

p111 = limi Pt p~' = {E} p'" i+l = a·p;"

2. Putting IL = Do(ll), we have P1 II P2 = (P1 IL P2) + (p2 IL P1). Also,
(a1·a2)1ia3 = al'(a2·a3+a3·a2)+a3·a1·a2. Moreover, ©+p = p+© = p,
0 op = 0 (but p o 0 = 0 only if p = {.:} or p = 0). Also, for p', p", p111

as in 19(1), we have, for any p, p' op= p', p" op= a· p" + b · p, and
p'" 0 p = p"'.

3.

'Do[a1; (a2 + a3)] = a1·(a2+a3)

'Do[(a1; a2) + (a1; a3)] = (a1 · a2) + (a1 · a3)

'Do[(a1; az) II a3] a1 · ((a2 · a3) + (a3 · a2)) + a3 · a1 · a2

'Do[((x,a;x),x)] = p' as in 19(1)

'Do[((x, a; x + b), x)] = p" as in 19(1)

'Do[((x,a;x+b;x),x)] = p"' as in 19(1)

Remark. Well-definedness of <1> 0 follows by induction on the complexity
of first g and then any s. Contractivity follows, essentially, from the way
we have defined <I>o (F) (g; s), together with the fact that, for d the metric as
determined by the definitions in Section 5.2, we have that d(pop1 ,pop2) ~
d(p1,P2)/2, for p # {c}.

We now discuss how to relate Oo and 'Do, using the abstraction mapping
abso : Po__, Ro. We shall define abso in such a way that each process p is
mapped onto the set of all its 'paths'. For compact p, we have that abs0 (p)
is indeed a non-empty compact set; hence abs 0 (p) is a well-defined element
of Ro. (We refer to (de Bakker et al. 1984) for a discussion including full
proofs of these issues.)

Concurrency semantics

Definition 20.

1. Let (7rE)PRo =Po-+ R0 , and let Ao: PR0 -+ PR0 be given by

Ao(7r)(0) = {8}

Ao(7r)({€}) = {€}

131

Ao(7r)(p) = {(a,u}j(a,p'}Ep A uE7r(p')} forpi::.0,{f}

2. Let abso = fix Ao.

Example 21.

abso((a1 · a2) + (a1 · a3)) = abso(a1 · (a2 + a3))

= {(a1, (a2,f}}, (a1, (a3,f})}

Also, abso(0) = { 8}.

We need one slight extension to 'Do before we can relate 'Do and Oo. Let
Vo : Lt-+ Po be given by: V0[E] = {€}, V0 [s] = 'Do[s]. We have the
following theorem.

Theorem 22. Oo = abso o Vo.

Proof (outline). First we introduce an intermediate operational seman­
tics I : Lt-+ Po, defined as follows. Let (FE) Nft = Lt -1- Po, and let
Wr: Nit-+ Nit be given by

Wr(F)(E) = {€}

Wr(F)(s) = {(a,F(r)} Is ~or}

Let I ~f fix Wr. Following (de Bakker and Meyer 1988, Kok and Rut­
ten 1988) we may show that I = Vo by establishing that Wz(Vo) = Do
(followed by an appeal to Banach's theorem). Next, we have, by the various
definitions,

Wo(abso o F)(r) = abso(Wx(F)(r))

Hence Wo(abso oI)(r) = abso(Wz(I)(r)) = (abso oI)(r). Thus, abso oI =
abs 0 o Vo is a fixed point of illo, and abso o Vo = Oo follows. 0

132 Metric concurrency semantics

L1: a uniform language with process creation and
synchronization

We next consider the language L1 embodying two important variations on
L0 . Firstly, the construct of parallel composition is replaced by that of
process creation (here 'process' refers to a programming concept, and not
to a mathematical process pin some domain P). Secondly, we add a notion
of (CCS-like) synchronization. We now take the set of elementary actions
A to consist of two disjoint subsets (bE) B and (cE) C, where the actions
in B may be taken as independent. Moreover, for each c in C we assume
a counterpart c in C (where c = c), with the understanding that execution
of c in some component has to synchronize with execution of c in a parallel
component (and then delivers a special action r in B as a result). Process
creation is expressed through the construct new(s): its execution amounts
to the creation of a new process which has the task of executing 8 in parallel
with the execution of the already existing processes (each with its already
associated task). In addition, we stipulate that termination of a number
of parallel processes requires termination of all its components. This brief
description of the meaning of new(8) (many details are given in (America
and de Bakker 1988)) is elaborated in the formal definitions to follow.

Definition 23. (8E) L1, (gE) Lf and the auxiliary (hE) L~ are defined by:

1. 8 ::=a Ix I 81; s2 I 81 + 82 I new(.~)
2. g ::= h I g1; g2 I 91 + 92 I new(g)

3. h ::= a I h ; s I h1 + h2

4. A program is a pair (D, s), where D consists of pairs (x, g)

Remark. Using only 9 E Lf (and no h EL~) would lead us to the defi­
nition 9 ::=a I g; s I 91 + g2 I new(g). Then new(a); x would qualify as
guarded, which is undesirable since this will obtain the same effect as the
Lo-statement a II x (which is unguarded since it may start with execution
of x).

We proceed with the definitions for the operational semantics 0 1.

Definition 24.

1. (rE) Lt is given by r ::= E I 8; r (r may be seen as a syntactic
continuation). (pE) Par1 is given by p ::= (r1, r2, ... , rn), n ~ 1.
We shall identify (r} and r. Concatenation of tuples pi, p2 will be
denoted by P1 : P2.

Concurrency semantics 133

2. Transitions are written as p1 ~1 p2, where -+ 1 is the smallest relation
satisfying the formal system T1 given by

3. a; r ~1 r

Ifs; r ~1 p then (s + s); r ~1 p and (s + s); r ~1 p

If g; r ~1 p then x; r ~1 p, where (x, g) ED

If s1; (s2; r) ~ 1 p then (s1; s2); r ~1 p

If (r, s;E) ~1 p then new(s); r ~1 p

If P1 ~1 P2 then p: P1 ~1 p: P2 and P1 : P ~1 P2 : P

If C / C II h T I II
P1 --+1 p and P2 --+1 p t en P1 : P2 -+1 P : P

We present the next definition of (the domain for) 01.

Definition 25.

1. R1 =IP nc(81), 81 ==(Bx 81) U {6, c}

2. Let (FE) M1 = Par 1 --+ R1, and let W1 : M1--+ M1 be given by

w1 (F)(p) = {t:} for p= (E, ... ,E)

Otherwise

{
{(a,u) I p~1 p' /\ u E F(p') /\a E B},

w 1 (F) (p) = if this set is non-empty
{ 6} otherwise

3. 01 =fix '111

Examples 26.

1.

2.

0 1[b;E] = 01[new(b);E] = {(b,E)}

01[b1 ;b2;E] = {(b1,(b2.t:))}

0 1[new(b1);b2;E] = {(b1,(hc)),(b2,(b1,E))}

0 1[c; E] = 01[c; E] = {6}

0 1[(c;E,c;E)] = {r}

134

3.

Metric concurrency semantics

4.

From the examples we see that 0 1 is not compositional (Examples 26(1)
and 26(2) show this with respect to ; and :). We remedy this as follows:
in order to handle : we introduce the BT domain P1 (refining R 1). P1 is
the same as Po from the previous section, but now its branching structure
is indeed exploited. Process creation (and the ensuing problems with ;) is
dealt with in a different way, namely by using the technique of so-called
semantic continuations. We shall define 'D1 : L1--+ (P1--+ P1), rather than
just 'D1 : L 1 --+ P1. Details follow in the next definition.

Definition 27.

1. P1 ==Po, Q1 = Qo

2. Let (cpE) P\ = P1 x P1--+ P1. We define+ E P1, and Slo : P1 --+ P1
as in Definition 18. Also, D11 : P1-+ If\ is given by D11(.P)(p1,P2) =
rlo (.;b)(p1, P2) +Do (.;b)(p2, P1) + 01 (.;b)(p1, P2), where

n1(<P)(P1,P2) = {(T,.:,b(p',p")) I (c,p') Ep1 /\ (c,p") E P2}

Let II == fix n11.

3. In the definition of if?1 we use an extra argument (from P1), namely
the semantic continuation. Let (FE) N1 = L1 --+ (P1 ---. P1), and let
if?1 : Ni __, N1 be given by

(for h EL~)

<I>1(F)(a)(p) = { (a,p)}

<I>1(F)(h; s)(p) = <I>1 (F)(h) (F(s)(p))

<I>1(F)(h1 + h2)(p) = <I>1(F)(h1)(p) + if.>1(F)(h2)(p)

(for g E Li)

<Ii1(F)(h)(p) = as above

<I>1(F)(g1; 92)(p) == <I>1 (F)(g1)(iJ?1 (F) (92) (p))

<I>1(F)(g1 + g2)(p) = <tii(F)(g1)(p) + <I>1(F)(g2)(p)

<I>1 (F) (new(g))(p) = <P1 (F)(g)({ E}) II p

Concurrency semantics

<I>1(F)(x)(p) = <I>1(F)(g)(p) where (x,g) ED

<I>1(F)(new(s))(p) = <I>1(F)(s)({c}) II p

The cases s = a, s1 ; s2 , s1 + Sz are similar to the above.

Examples 28.

135

1. D1[c](p) = { (c,p) }, and, using the abbreviated notation for processes
in Po (= P1) from the previous section, D1 [new(c) ; c]({ E}) = c · c +
C · c+ T.

We see that D1 makes more distinctions than does (Ji: 0 1 [c1 ; E] = {8} =
01[c2 ; E], whereas D1 [ci] = >.p · { (c1,P)} i >.p · { (c2, p)} = V1 [c2]. Also,
01[b;E] = {(b,{c})} = 01[new(b);E], whereas V 1 [b] = >.p·{(b,p)} i
>.p· ({(b,{c})} llP) = D1[new(b)].

We next introduce the abstraction mapping abs 1 : P 1 ---> R 1 , which
will be used to relate 01 and D1.

Definition 29. Let (7rE)PR1 = P1---> Ri, and let 61: PR1 ---> PR1 be
given by

and, for p i { c},

6 1 (7r) (p) = if this set is non-empty {
{(a,u) I (a,p') Ep /\ u E 7r(p') /\a E B},

{ 8} otherwise

Remark. abs 1(p) yields the set of all paths from p which involve no c­
steps.

Since not only the codomains, but also the domains of 0 1 and V1 differ, we
first introduce an auxiliary semantic mapping £1, and then relate 0 1 and £1.

We define £1: Par1 ->Pi by putting E1[E] = {c}, t'1[s; r] = D1[s](£1[r]),

and £1 [(r1, ... , rn)] = £1[r1] II··· II E1[rn]. We have the following theorem.

136 Metric concurrency semantics

Theorem 30. Oi = absi o t\

Proof (Sketch). First introduce an intermediate operational semantics
Ii (in the style of the I of the previous section), and show that Ii = Ei
(the reader may consult (de Bakker and Meyer 1988) for this). Then prove
that 'Di = absi o Ii by an argument as in the proof of Theorem 22. D

We conclude this section with a few remarks concerning the question
whether 'D1 is the 'best possible' with respect to 01. In technical terms,
we ask whether 'D1 is fully abstract with respect to Oi. Recall that we
added information in the denotational domain P1 (as compared with R 1)

in order to make 'D1 compositional. In principal, it may be envisaged
that more information has been added than is necessary to achieve this
purpose. For a language with parallel composition (rather than process
creation) and synchronization this is indeed the case. A so-called failure set
model (which preserves less information than the full BT model) suffices.
See (Brookes et al. 1984) for the notion of failure set model; (Rutten 1989)
gives a theorem from (Bergstra et al. 1988) stating that this model is fully
abstract is translated into a metric setting. This result makes it likely
that, for Li as well, we do not have that 'D1 is fully abstract with respect
to 01. A rigorous formulation of this fact (see (Rutten 1989) for alternative
formulations and further discussion) is the following. We expect that it is
not true that, for each si, s2 E Li, the following two facts are equivalent:

1. 'Di[si] = 'Di[s2];

2. for each 'context' C[•] we have that Oi[C[si]] = 0 1 [C[s2]].

Here a context C[•J is a text with a 'hole' such that C[s], the result of
filling the hole with s, is a well-formed element of Par1 .

Clearly, it would already be of some interest to investigate these ques­
tions for a language Li with only process creation (and no synchronization).

L2: a non-uniform language with parallel composition

We now engage upon the discussion of a number of languages of the non­
uniform variety. In the first (£2) elementary actions are replaced by as­
signments v := e, where (vE) lvar is the set of individual variables, and
(eE) Exp is the set of expressions. We also introduce the set (bE) Test,
which is the set of logical expressions. We assume a simple syntax (not
specified here) for e, b. 'Simple' ensures at least that no side effects or non­
termination occurs in their evaluation. Furthermore, we introduce a set of
states (<7E) :E = Ivar-+ V, where (aE) Vis some set of values. It is conve­
nient (for later purposes) to postulate that V ~Exp. The notation <7[o:/v]

Concurrency semantics 137

denotes a state such that a-[a/ v] (v') = if v = v' then a else a-(v') fi. Fi­
nally, note that for non-uniform languages we shall not distinguish guarded
recursion from the general case. (Contractivity of the operator correspond­
ing to the program will be ensured by (semantically) proceeding each call
of a procedure by the equivalent of a skip statement.)

The syntax for L2 is given in the following definition.

Definition 31.

1. (sE) L2 is given by

s ::= v := e I x I s1 ; s2 I if b then s1 else s2 fi I s1 II s2

2. Declarations D are sets of pairs (x, s), and a program is a pair (D, s).

The operational semantics 0 2 is given in terms of a relation --+2: transitions
are now of the form (s, a-) --+2 (r, a-'), with u, u' E :E, s E L2, r E Lt =
£ 2 U {E}, and --+2 the smallest relation satisfying the transition system T2
given in the following definition.

Definition 32. (v := e, a-) --+2 (E, o-[a/v]), where a= [e](o-)
(x,u)--+2 (s,o-), where (x,s) ED
If (s, a-) --+2 (r, u') then

(s; s, a-) --+2 (r ; s, a-')

(s II s, a-) -+2 (r II s, a-')
(s 11 s, a-) -2 (s 11 r, a-')

with the convention that E; s = E 11 s = s II E = s.
If (s, u) -+2 (r, u'), then

if [b] (a-) = tt then (if b then s else s2 fi, a-) --+2 (r, a-')
if [b](o-) =ff then (if b then s1 else s fi, a-) -+2 (r, a-')

The operational domains and semantics are given in the following defini­
tion.

Definition 33.

1. R2 = :E--+ Pnc(82), 82 =(:Ex 82) U {6,E}

2. Let (FE) M2 =Lt--+ R2 , and let '112: M2--+ M2 be given by

IJl2 (F)(E) = AO"· {1:}

{
{(o-',u) I (s,0-)--+2 (r,o-') /\ u E F(r)(o-')},

IJI 2 (F) (s) = AO" · if this set is non-empty
{ 6} otherwise

138 Metric concurrency semantics

Example 34.

02[v := 0; v := v + 1] = 02[v := 0; v := l]

= A<7 · { (<7[0/v], (<7[1/v], 1:))}

but

02[(v := 0; v := v + 1) II (v := 2)] =/:- 02[(v := 0; v := 1) II (v := 2)]

From this example we see that 02 is not compositional. We therefore add
information to the domains R2, 82 obtaining P2, Q2 in such a way that 'D2
is indeed compositional. The definitions are collected below.

Definition 35.

I. P2 = r nc(Q2), Q2 =(I>-+ (I: x Q2)) u {1:}

2. Let (<PE) IP2 = P2 x P2 __, P2. The operator + E IP 2 is defined by:
{ c} +p = p+ { 1:} = p, and, for p1, P2 =/:- { E }, P1 +P2 is the set-theoretic
union ofp1 and P2· The mappings Slo, 011 : P'2 __, P'2 are given by

f10(</i)(p1,p2) = LJ{~(q1)(q2)lq1EP1 /\ q2EP2}

~(E)(q) = {q}

and, for q1 =/:- i:,

~(q1)(q2) = {q I v(j. q(<7) E ~(q1(a))(q2)}

~((a,q'))(q) = {(a,q) I q E ef>({q'})({q})}

Also, S111(<P)(p1,p2) = Do(<P)(p1,P2) + Oo(ef>)(p2,P1), o = fixOo, and
II= fixD11.

3. Let (FE) N2 = L2 __, P2, and let \1>2 : N2 __, N2 be given by

\I>2(F)(v := e)
\I>2(F)(x)

iP2(F)(s1; s2)

and similarly for II

= {>.<7 · (a[a/v], i:)}
= {A<7· (a,1:)}0F(s)
= iP2(F)(si) o <P2(F)(s2)

\1>2 (F) (if b then s1 else s2 fi)

a= [e](<7)
(x,s) ED

= {>.<7 ·if [b](<7) then q1 (a) else q2 ((j) fi }
I Q1 E 4>2(F)(s1) /\ q2 E iP2(F)(s2)

Concurrency semantics 139

4. D2 = fix 1>2

We conclude this section with the introduction of the abstraction operator
abs2 : P2 ---+ R2·

Definition 36. (The structure of this definition slightly deviates from the
previous abstraction definitions.)

1. Let (7rE) QL,S2 = Q2 (L,---+ S2). We define 6.~ : QL,S2 QL,S2 by
putting

6.~(7r)(E) =)..a· E

and, for q f. E,

6.~(7r)(q) = >.a· ir(q(a))

ir((a,q)) = (a,7r(q)(a))

2. Let abs~ =fix 6.~. Let abs2 : P2 ---+ P2 be given by

abs 2 (p) _ >. . { {abs; (q) (a) I q E p} if this set is non-empty
- a { 8} otherwise

We have (putting 1\[E] ={>.a·•}, D2[s] = D2[s]) the following theorem.

The proof is a non-essential variation on previously given proofs (in turn
relying on (Kok and Rutten 1988) and (de Bakker and Meyer 1988)). For
the intermediate semantics definition we use the clauses

Wr(F)(E)

Wx(F)(s)

= {>.a.•}

{ql'v'a·q(a)E{(a1,q))(s,a)--->2(r1 a 1) A qEF(r)}}

As before, we have the issue of full abstractness. Is it true that, for all
s1, s2, D2[si] = '.D2[s2] iff, for all contexts C[•], 02[C[s1)] = 02[C[s2]]? It
has been shown by E. Horita that the answer to this question is negative.

140 Metric concurrency semantics

£ 3 : a non-uniform language with process creation and locality

We continue with the treatment of the language £3 which has process
creation (as for L1, but this time without some form of synchronization)
and the notion of local declaration of an individual variable. We find it
convenient to discuss only initialized declarations (cf. (de Bakker 1980
, Chapter 6)). Our first aim in this section is to motivate a type of
domain of the form P3 = E-+ l?nc(Q3), rather than the previous case
P2 = IP' nc(Q2): the elements of P3 are (apart from special cases) of the
form >..a· {-··,(a', q'), · · · }, where the 'resumptions' q' depend, in general,
on the argument a. With £ 3 we intend to illustrate the need for this type
of construction.

The syntax of L3 is given in the next definition.

Definition 38.

1. (sE) £ 3 is given by

s ::= v := e I x I s1 ; s2 I if b then s1 else s2 fi I new(s)

I begin int v := e ; s end where v does not occur in e

2. Declarations and programs are as usual.

The operational semantics domains for £ 3 are the same as those for £ 2 • We
again (cf. the section on L1) introduce (pE) Par3 , where p = (r1, ... ,rn),
n ~ 1 (and where we identify (r) and r). Also, r (E Lt) is given by
r ::= EI s; r.

The transition system T3 employs transitions of the form (p, o') -+ 3

(p',a'), where -+3 is the least relation satisfying the following.

Definition 39.

1. (v := e; r,a) -+ 3 (r,a[a/v]), where o: = [e](a)

2. (x;r,a)-+3(s;r,a), where(x,s)ED

3. If (s1; (s2; r), a) -+3 (p, a') then ((s1; s2); r, a) -+3 (p, a')

4. If ((s; E, r), a) -+3 (p, a') then (new(s); r, a) -+ 3 (p, a')

5. If (v := e; s; v := a(v); r,a) -+3 (p,a')
then (begin int v := e; send; r, a) -+3 (p, a')

6. if ... fi: omitted

Concurrency semantics

(P1 : p, ai) ->3 (p2 : p, a2)

(p: p1,a1) ->3 (p: P2,a2)

03 is obtained from T3 in the usual manner.

Definition 40.

141

1. Let (FE) ParR3 = Par3 ->R3, and let W3: ParR3-" ParR3 be given
by

W3(F)((E, ... ,E)) = >.a·{c}

and, for p 'f. (E, ... , E),

W 3 (F) (p) = >.a · if this set is non-empty {
{ (<71 , u) I (p, a) /\ u E F(p') (a')},

{ 8} otherwise

Example 41.

03[begin int v := 0; begin int v := 1; v' :=vend; v' :=vend; E]

>.a·{[O'[O/v], [O'[l/v], [cr[l/v][l/v'], [a[O/v][l/v'), [a[O/v][O/v'],

[0'[0 / v][O / v'][a(v) /v], c]]]]]]}

03 is not compositional (cf. the discussion for 0 1), and we resort to a more
complex domain for the denotational semantics. In the remainder of this
section we shall employ the following notation.

Notation 42. Let f : A_,. P(B) be a function from A to subsets of B. We
then put

ft= {g:A->BIV'a·g(a)Ef(a)}

The denotational definitions are collected in the next definition.

Definition 43.

1. P3 =I:_,. P nc(Q3), Q3 = (L: x (I:_,. Q3)) U {c}. We shall use X to
range over P nc (Q3), and ~ to range over L: -" Q3.

142 Metric concurrency semantics

2. Let (<PE) IP3 = P3 x P3-+ P3, and let Do, !111 : IP3-+ IP3 be given as
fallows

Do(c/J)(p1,P2) = ACT· ~(p1(CT))(p2)

;j;(X)(p) = LJ{J(q)(p)iqEX}

J(c)(p) = {(l1,~) lu EI:/\ ~Ept}

J((l1,~))(p) = {(l1,E)IEEo/(M·{E(a)})(p)t}

f! II (</>) (P1, P2) (<7) = Do (tP) (P1 , P2) (er) U f!o (et>) (P2, P 1) (er)

Leto= fixf!o, II= fixD11.

3. Let (FE) N3 = L3-+ (P3 -+ P3), and let <l>3 : Ns-+ N3 be given by

and

iP3(F)(v := e)(p) = ACT· { (cr[a/v], 0 IEE pt}

where a= [e](a)

<l>s(F)(x)(p) = Aa · {(er, E) IEE F(s)(p)t}

where (x,s) ED

iP3(F)(s1; s2)(p) = <l>3(F)(s1)(<'P3(F)(s2)(p))

<'P3(F)(if ... fl.)(p) = ACT· if[b](cr)
then <'P3(F)(s1)(p)(cr)
else <'P3 (F) (s2) (p) (er)

fi

<'P3(F)(new(s))(p) = iP3(F)(s)(,\cr · {c}) II p

<I>s(F)(begin int v := e; s end)(p)

= Aa · <I>s(F)(v := e; s)(M · {(a[cr(v)/v], E) I~ E pt})(er)

4. Let 1)3 =fix <'P3, and let £3 : Pars-+ P3 be obtained from 'Ds similar
to the definitions of £1 for L 1 (where £3[E] =ACT· {c}).

We finally relate 03 and Es in the usual manner through the abstraction
function abs3.

Definition 44.

I. Let (7rE) QSs = Qs-+ S3, and let Li~: QS3-+ QS3 be given by

Ll~ (7r) (€) = f

.Ll~(7r)((a, 0) = (lT, 7r(E(u)))

Concurrency semantics

2. Let abs~ = fix t.~, and let abs3 : P3 --+ P3 be given as

abs3 (p) = >.a . { {{ ~}bs~ (q) I q E p(a)} if this set is non-empty
u otherwise

We have the, now familiar, result.

Theorem 45. 0 3 = abs 3 o £3

We do not know whether £3 is fully abstract with respect to 0 3 .

L4: a non-uniform language with parallel composition and
communication

143

The language £ 4 is an extension of £ 2 in that now (CSP-like) communica­
tion over channels c(E Chan) is added. A send statement has the form c ! e.
a receive statement has the form c? v, and synchronized execution of these
(in two parallel components) amounts to the execution of the assignment
v :=e.

The syntax for £ 4 is given in the next definition.

Definition 46.

1. (sE)L4 has as syntax

s ::= v := e Ix I s 1 ; s2 I if b then s1 else s2 fi I s1 II s2 I c? v I c ! e

2. Declarations and programs are as usual.

The operational semantics for L4 employs the sets

('yE)r = {c?vlcE Chan/\ vEJvar}U{c!alcE Chan/\ o:EV}

(77E) H = ~ U f

Transitions are of the form (s, a) ---+ 4 (r, 77), with r E Lt = L4 U {E}. The
transition system T4 is given in the following definition.

Definition 4 7.

1.

(v := e, a),.4 (E, a[a/v]) a as usual
(c? v, a) ---+4 (E, c? v)
(c ! e, a) --+4 (E, c ! a) a as usual

144 Metric concurrency semantics

2. The rules for x, ;, if ... fi, II are as those in T2 (with -+4 replacing
-+2). For II we have in addition the following rule.

3. If (s1, a) -+4 (r', c? v) and (s2, a} -+4 (r", c ! a) then (s1 II s2, a) -+4
(r' II r", a[a/v]). (We assume the usual convention that Ellr = rllE =
r.)

The operational domains and semantics are given in the next definition.

Definition 48.

1. R4 = E-+ IP nc(S4), S4 =(Ex 84) U {6, c}

2. Let (FE) M4 =Lt-+ R4, and let '\Il4: M4-+ M4 be given by

'\Il4(F)(E) = M·{c}

\ll4 (F)(s) = >.a· if this set is non-empty {
{ (s', u} I (s, a) -+4 (r, a') /\ u E F(r')(s')},

{ 6} otherwise

Remark. Note that, in the definition of '\Il4(F)(s)(a), no contributions are
made by steps (s, a) -+4 (r, -y).

Once more 0 4 is not compositional. The denotational definitions assume
a domain P4 which combines the BT structure of P1 with the non-uniform
structure of P3.

Definition 49.

1. P4 = (E-+ Pc0 (Q4)) U {{c}}, Q4 =(EU r) x P4

2. Let X range over Pc0 (Q4). Let (q'>E) IP4 = P4 x P4-+ P4, and let no,
nu: IP4-+ P4 be given by

no (4>) (P1, P2) = P2 if P1 = { f}
= Aa · ~(p1 (a))(p2) if P1 ':/; { c}

~(X)(p) = {~(q)(p) I q EX}

~(('fJ,p'))(p) = ('fJ, if>(p')(p))

(
no (q'>)(p1,P2)(a))

011(4>)(p1,P2) = AO'· U no(4>)(p2,P1)(a)
U n1 (q'>)(p1,P2).(a)

Concurrency semantics 145

where

D1 (if>) (p1, P2) (a)

= >.a. {(a[a/v],cf>(p')(p")) }
\ (c? v,p') E P1 /\ (c ! o:,p") E P2 or vice versa

o = fixna, \I= fixD11·

3. Let (FE) N4 = L4---+ P4, and let <ll4: N4---+ N4 be given by

4i4(F)(v:=e) = >.a·{(a(o:/v],{E})} a as usual
<l>4(F)(c?v) = >.a·{(c?v,{€})}
4i4(F)(c ! e) = >.a· { (c ! o:, { E})} o: as usual

<ll4(F)(x) = >.a·{(a,F(s))} (x,s)ED

4. Let 'D4 =fix 4i4.

We conclude with the abstraction mapping between 0 4 and 'D4 .

Definition 50. Let (7rE)PR4 = P4---+ R4, and let 6.4 : PR4---. PR4 be
defined as follows:

6.4 (7r) ({ E}) =).a · { E}

and, for p =/:- {t:},

6.4(rr)(p)

?T({a,p))

7T((l,p))

= >.a. { LJ {i(q) \ q E p(a)}
{8}

= {(O',q) \ q E 7r(p)(a)}

::: 0

if this set is non-empty
otherwise

We have (for 7\ similar to D2) the following theorem.

As to the question of full abstractness, since D1 is (probably) not fully
abstract with respect to 0 1 (cf. the discussion for L1), there is no reason
to expect D4 to be fully abstract with respect to 04. (In (Horita et al.
1990) full abstractness with respect to a non-uniform version of the failure
set model is shown.)

146 Metric concurrency semantics

Conclusion

We conclude with a table which surveys the domain equations encountered
in Section 5.3.

Operational Denotational
Uniform
Lo Ro = IP nc(8o) Po = l?co(Qo) U {{€}}

So = (Ax80)U{6,E} Qo = Ax Po
L1 R1 = IP nc(S1) P1 = IPCO(Q1) u {{€}}

81 = (BxS1)U{6,E} Q1 = (B UC) x P1
Non-uniform
L2 R2 = E-+ IP nc(82) P2 = 1Pnc(Q2)

82 = (Ex 82) U {6, €} Q2 = (E-+(ExQ2))U{E}
L3 R3 = R2 P3 = E -+ IP nc(Q3)

83 = 82 Q3 = (Ex(E-+Qs))U{E}
L4 R4 = R2 P4 = (E-+ Pc0 (Q4)) U {{€}}

84 = 82 Q4 = (EU r) x P4

5.4 Labelled transition systems and bisimulation

In this section we shall use the domain Po of the previous section to give
a general model for bisimulation equivalence (Park 1981), a well-known
notion in the theory of concurrency. (The same result holds for P1 . For
the domains used for the non-uniform languages some further study is still
needed.) It is based on the basic notion of a labelled transition system
(LTS).

Definition 52. (LTS) A labelled transition system is a triple A =
(8, L,-+) consisting of a set of states 8, a set of labels L, and a transi­
tion relation -+ ~ 8 x L x S. We shall write s ~ s' for (s, a, s') E -+.
Following the approach of the previous section, we assume the presence of
a special element E E S that syntactically denotes successful termination.
An LTS is called finitely branching if for alls E 8, {(a, s') Is~ s'} is finite.

Every LTS induces a bisimulation equivalence.

Definition 53. Let A = (S, L, -+) be an LTS. A relation R ~ S x 8 is
called a (strong) bisimulation if it satisfies for alls, t E 8 and a E A:

(s Rt /\ s ~ s') =?- 3t' E S · t ~ t' /\ s' Rt'

and

(s Rt /\ t ~ t') =?- 3s' E 8 · s ~ s' /\ s' Rt'

Labelled transition systems and bisimulation 147

We require that E R s or s R E implies s = E. Two states are bisimilar
in A, notation s tt t, if there exists a bisimulation relation R with s Rt.
(Note that bisimilarity is an equivalence relation on states.)

Next we define, for every LTS A, a model assigning to every state a process
in P0 •

Definition 54. Let A = (S, L,-.) be a finitely branching LTS. Here we
have taken for the set of labels the alphabet A of elementary actions used
in the definition of Po. We define a model MA : S-. Po by

MA[s] = {(a, MA[s1]) Is~ s'}

ifs =f. E, and by MA[E] = {E}.

We can justify this recursive definition by taking MA as the unique fixed
point (Banach's theorem) of a contraction <I> : (S-. 1 P)-. (S-. 1 P) defined
by

<I>(F)(s) = {(a,F(s')}js~s'}

if s =f. E, and by <I>(F)(E) = { t:}. The fact that <I> is a contraction can
be easily proved. The compactness of the set <I>(F)(s) is an immediate
consequence of the fact that A is finitely branching.

As an example we can take in the above definition the LTS of Defini­
tion 15. We then obtain the function I given in the proof of Theorem 22.

This model is of interest because it assigns the same meaning to
bisimilar states. This we prove next.

Theorem 55. Let tt s;; S x S denote the bisimilarity relation induced by
the labelled transition system A = (S, A, -.) . Then

Proof. Let s, t E S.

<== Suppose MA[s] = MA[t]. We define a relation = : S x S by

s' = t' ~ MA[s'] = MA[t 1]

From the definition of MA it is straightforward that = is a bisimula­
tion relation on S. Supposes'= t 1 and s' ~ s11 • Then (a, MA[s"]) E

MA[s'] = MA[t']; thus there exists t" E S with t' ~ t11 and
MA[s"] = MA[t"], that is, s11 = t 11 • Symmetrically, the second
property of a bisimulation relation holds. From the hypothesis we
have s = t. Thus we have s tt t.

148 Metric concurrency semantics

=> Let R ~ S x S be a bisimulation relation with s Rt. We define

E = sup {d(MA[s'],MA[t']) Is' Rt'}
s' ,t'ES

We prove that E = 0, from which MA[s] = MA[t] follows, by
showing that E :::;; E /2. We prove for all s', t' with s' R t' that
d(MA[s'],MA[t']) :::;; i:/2. Consider s',t' ES with s' Rt'. From
the definition of the Hausdorff metric on P it follows that it suffices
to show

d(x, MA[t']) :::;; c/2 and d(y, MA[s']) :::;;: t./2

for all x E MA[s'] and y E MA[t']. We shall only show the first
inequality; the second is similar. Consider (a,MA[s"]) in MA[s']
with s' .!!:+s11 • (The case that MA[s'] = {t} is trivial.) Because s' Rt'
and s' .!!:.. s" there exists t" E S with t' .!!:.. t" and s" Rt". Therefore

d((a, MA[s"]), MA[t'])

= d((a, MA[s"]), {(a, MA[l]) It'~ l})
:::;; [we have: d(x, Y) = inf {d(x, y) I y E Y}]

d((a, MA[s"]), (a, MA[t"]))

= d(MA[s"],MA[t"])/2
:::;; [because s" Rt"]

i:/2
D

The proof above makes convenient use of the Hausdorff metric on P. It
was first given in (Rutten 1989). An alternative proof, using so-called
non-well-founded sets, can be found in (van Glabbeek and Rutten 1989,
Rutten 1990b).

References

America, P., and de Bakker, J. W. (1988). Designing equivalent semantic
models for process creation, Theoretical Computer Science, Vol. 60,
pp. 109-176.

America, P., and Rutten, J. J. M. M. (1989a). Solving reflexive domain
equations in a category of complete metric spaces, Journal of Com­
puter and System Sciences, Vol. 35, No. 3, pp. 343-375.

America, P., and Rutten, J. J. M. M. (1989b). A parallel object-oriented
language: Design and semantic foundations, in: J. W. de Bakker
(Ed.), Languages for Parallel Architectures: Design, Semantics, Im­
plementation Models, Wiley Series in Parallel Computing, pp. 1-49.

References 149

America, P., de Bakker, J. W., Kok, J. N., and Rutten, J. J.M. M. (1989).
Denotational semantics of a parallel object-oriented language, Infor­
mation and Computation, Vol. 83, No. 2, pp. 152-205.

de Bakker, J. W. (1980). Mathematical Theory of Program Correctness,
Prentice Hall International.

de Bakker, J. W. (1988). Comparative Semantics for Flow of Control in
Logic Programming without Logic, CWI Report CS-R8840, to appe3.r
in Information and Computation.

de Bakker, J. W. (1989). Designing concurrency semantics, in: G. X. Ryt­
ter (Ed.), Proc. llth World Computer Congress, North-Holland,
pp. 591-598.

de Bakker, J. W., and Kok, J. N. (1988). Uniform abstraction, atomicity
and contractions in the comparative semantics of Concurrent Prolog,
in: Proc. Int. Conference on Fifth Generation Computer Systems,
Institute for New Generation Computer Technology, pp. 347-355.

de Bakker, J. W. and Kok, J. N. (1990). Comparative semantics for Con­
current Prolog, Theoretical Computer Science, to appear.

de Bakker, J. W., and Meyer, J.-J. Ch. (1988). Metric semantics for con­
currency, BIT 28, pp. 504-529.

de Bakker, J. W., and Zucker, J. I. (1982). Processes and the denotational
semantics of concurrency, Information and Control, Vol. 54, pp. 70-
120.

de Bakker, J. W., Bergstra, J. A., Klop, J. W., and Meyer, J.-J. Ch. (1984).
Linear time and branching time semantics for recursion with merge,
Theoretical Computer Science, Vol. 34, pp. 135-156.

de Bakker, J. W., Meyer, J.-J. Ch., and Olderog, E.-R. (1987). Infinite
streams and finite observations in the semantics of uniform concur­
rency, Theoretical Computer Science, Vol. 49, pp. 87-112.

de Bakker, J. W., Meyer, J.-J. Ch., Olderog, E.-R., and Zucker, J. l. (1988).
Transition systems, metric spaces and ready sets in the semantics
of uniform concurrency, Journal of Computer and System Sciences,
Vol. 36, pp. 158-224.

de Bakker, J. W., Kok, J. N., Meyer, J.-J. Ch., Olderog, E.-R., and
Zucker, J. I. (1986). Contrasting themes in the semantics of impera­
tive concurrency, in: J. W. de Bakker et al. (Eds.), Current Trends in
Concurrency: Overviews and Tutorials, Lecture Notes in Computer
Science, Vol. 224, Springer-Verlag, pp. 51-121.

Bergstra, J. A., and Klop, J. W. (1989). Bisimulation semantics, in:
J. W. de Bakker et al. (Eds.), Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency, Lecture Notes
in Computer Science, Vol. 354, Springer-Verlag, pp. 50-122.

Bergstra, J. A., Klop, J. W., and Olderog, E.-R. (1988). Readies and failures
in the algebra of communicating processes, SIAM J. of Computing,
Vol. 17, No. 6, pp. l134-1177.

150 Metric concurrency semantics

Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W. (1984). A theory of
communicating sequential processes, J. ACM, Vol 31, pp. 499-560.

Dugundji, J. (1966). Topology, Allen and Bacon, Rockleigh, N. J.
Enkelking, R. (1977). General Topology, Polish Scientific Publishers.
van Glabbeek, R. J., and Rutten, J. J. M. M. (1989). The processes of

de Bakker and Zucker represent bisimulation equivalence classes, in:
J. W. de Bakker, 25 jaar semantiek, Centre for Mathematics and
Computer Science, Amsterdam.

Hennessy, M., and Plotkin, G. D. (1979). Full abstraction for a simple
parallel programming language, in: J. Becvar (Ed.), Proceedings 8th
MFCS, Lecture Notes in Computer Science, Vol. 74, Springer-Verlag,
pp. 108-120.

Horita, E., de Bakker, J. W., and Rutten, J. J.M. M. (1990). Fully abstract
denotational models for non-uniform concurrent languages, Report
CS-R90?, Centre for Mathematics and Computer Science, Amster­
dam.

Kok, J. N., and Rutten, J. J. M. M. (1988). Contractions in comparing
concurrency semantics, in: T. Lepisto and A. Salomaa (Eds.), Proc.
15th ICALP, Lecture Notes in Computer Science, Vol. 317, Springer­
Verlag, pp. 317-332. (To appear in Theoretical Computer Science.)

Mac Lane, S. (1971). Categories for the Working Mathematician, Springer­
Verlag.

Majster-Cederbaum, M. E. (1988). The contraction property is sufficient to
guarantee the uniqueness of fixed points of endofunctors in a category
of complete metric spaces, Information Processing Letters, Vol. 29,
pp. 277-281.

Majster-Cederbaum, M. E. (1989). On the uniqueness of fixed points of
endofunctors in a category of complete metric spaces, Information
Processing Letters, Vol. 33, pp. 15-20.

Majster-Cederbaum, M. E., and Zetzsche, F. (199?). Towards a foundation
for semantics in complete metric spaces, Information and Computa­
tion, to appear.

Michael, E. (1951). Topologies on spaces of subsets, Trans. AMS, Vol. 71,
pp. 152-182.

Nivat, M. (1979). Infinite words, infinite trees, infinite computations, in:
J. W. de Bakker and J. van Leeuwen (Eds.), Foundations of Computer
Science III.2, Mathematical Centre Tracts 109, pp. 3-52.

Park, D. M. R. (1981). Concurrency and automata on infinite sequences,
in: Proc. 5th GI Conference, Lecture Notes in Computer Science,
Vol. 104, Springer-Verlag, pp. 15-32.

Plotkin, G. D. (1981). A structural approach to operational semantics,
Report DAIMI FN-19, Computer Science Department, A<:l:::bus Uni­
versity.

Plotkin, G. D. (1983). An operational semantics for CSP, in: D. Bjorner

References 151

(Ed.), Formal Description of Programming Concepts II, North­
Holland, pp. 199-223.

Rutten, J. J. M. M. (1989). Correctness and full abstraction of metric
semantics for concurrency, in: J. W. de Bakker et al. (Eds.), Linear
Time, Branching Time and Partial Order in Logics and Iviodels for
Concurrency, Lecture Notes in Computer Science, Vol. 354, Springer­
Verlag, pp. 628--659.

Rutten, J. J. M. M. (1989). Deriving Denotational Models for Bisimula­
tion from Transition System Specifications, CWI Report CS-R8955,
Amsterdam. (To appear in the proceedings of IFIP TC2 Working
Conference, Israel, 1990.)

Rutten, J. J. M. M. (1990a). Semantic correctness for a parallel object­
oriented language, SIAM J. of Computing, Vol. 19, No. 2, pp. 341-

383.
Rutten, J. J. M. M. (1990b). Nonwellfounded sets and programming lan­

guage semantics, CWI Report CS-R90?, Amsterdam.

