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Abstract 

The concept of embedding has recently been introduced as a formal tool to study the relative expressive 
power of (concurrent) programming languages. We use the notion of "modular embedding" to compare 
various dialects of CSP and ACSP (Asynchronous CSP), which differ on the kind of communication prim­
itives allowed in the guards: all, only input, or none. Concerning the synchronous paradigm, we show 
that CSP is strictly more powerful than CSPx (the version of CSP with no output guards), and that 
CSPx is strictly more powerful than CSPe (the version of CSP with no communication primitives in the 
guards). The first separation result does not hold in the asynchronous variants of these languages: since 
asynchronous output guards cannot be influenced by the environment (they can always proceed), it is 
irrelevant to have or not to have them in the language. Therefore, ACSP and ACSPr are equivalent. 
Still, they arc strictly more expressive than ACSP •. Finally, we come to compare the synchronous and 
asynchronous paradigms. The asynchronous communication can be modeled synchronously by means of 
"buffer" processes. On the other hand, synchronous communication (when not fully used to control non­
determinism) can be modeled asynchronously by means of acknowledgement messages. As a consequence, 
CSPr, ACSP, and ACSPr are equivalent. An interesting corollary of these results is that ACSP is strictly 
·less powerful than CSP. 
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1 Introduction 

From a mathematical point of view, all "reasonable" programming languages are equivalent, since all of 

them can compute the same class of functions. Yet, it is common practice to speak about the "power" 

of a. langua.ge on the basis of the expressibility or non expressibility of programming constructs. In the 

field of sequential languages there has been already since a long time a. line of research aiming to formalize 

the notion of "expressive power" [5, 10, 14, 16, 17, 18, 22]. The various approaches a.gree in considering a 
language L more expressive than L' if the constructs of L' can be translated in L without requiring a "global 

reorganization of the entire program" [10], i.e., compositionally. Of course, the transla.tion must preserve 
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the meaning, at least in the weak sense of preserving termination [10]. In case ofnondeterministic sequential 
languages, termination is usually dealt with existentially (i.e. failing or infinite computations are ignored, 
if there is at least a successfully terminating one). In this sense the nondeterministic Turing machines are 
equivalent to the deterministic ones. 

When we move to the field of concurrent languages, the notion of termination must be reconsidered. 
This is because the nondeterminism plays an essentially different role: each possible computation represents 
a possible different evolution of a system of interacting processes, and must be considered independently 
from the other ones (backtracking is usually not possible, or to difficult to implement). AlBo, there is an 
additional termination case: deadlock, representing the situation in which each process is stuck waiting for 
some condition to be established by the others. Essentially due to this "richer" concept of termination, the 
modelB (and the notion of meaning itself) for concurrent languages are usually far more complicated. From 
the point of view of language comparison, this richer notion of meaning gives additional. "freedom" for the 
definition of the notion of expressivity [20, 7, 8, 6, 21, 9, 1, 2, 15, 23]. 

In [23] the expressive power of a concurrent languages is investigated under various criteria, increasingly 
more refined: 

• the capability to simulate Turing machines, 

• the capability to specify effective process graphs (up to some notion of equivalence), and 

• the capability to express effective operations on graphs (as contexts of the language). 

While all "reasonable" languages are universal up to the first criterion, this is not the case for the other two. 
In particular, [23] shows that there cannot be a concurrent language (with an effective operational semantics) 
able to express all effective process graphs, up to trace equivalence. This generalizes a result of [1 J, proving the 
same but for (strong) bisimulation equivalence. Positive results for the second criterion include [1], showing 
the universality of ACPT (up to weak bisimulation), and [9], showing the universality of MEIJE-SCCS with 
unguarded recursion (up to strong bisimulation). This last result does not contradict the results of [1, 23], 
since unguarded recursion induces an infinitely branching (hence not effective) operational. semantics. Even 
more surprisingly, [9] shows that MEDE-SCCS are universal with respect to all the operators definable via 
transition rule of a certain, very general, format. In [15] an interesting result is shown for the class of finite 
process graphs: all of them can be expressed (up to every equivalence between traces and bisimulation, 
under 7' abstraction) as parallel composition of a finite number of instances of three elementary processes 
(a three-ways synchronizer, an arbiter, and an alternator). As a consequence, it is shown that all finite­
state asynchronous operators (including for instance the CSP external nondeterministic choice, parallel, and 
hiding) can be expressed as contexts in that simple language. With respect to the second criterion, [2] 
provides a detailed classification of various ACP sublanguages, showing how each operator contributes to 
increase the expressive power. 

In this paper the notion of expressivity is considered only relatively, i.e. in the comparison of one 
language with respect to another. The method of comparison we adopt is, in part, based on the same idea 
of the third criterion illustrated above, in the sense that it requires (some) of the operators of a language 
to be expressible (as operators) in the other language. One difference is that we do not require a statement 
in a language and its correspondent in the other language to have the same semantics, even not up to 
isomorphism. We only require an injection (abstraction) from the second to the first. To our opinion, this 
second (more liberal) requirement better capture the intuition of expressing a language into another, since it 
allows to abstract from "details" that may be necessary for the implementation (like additional information 
about control). 

We consider the notion of modular embedding, introduced in [7] as a method to compare the expressive 
power of concurrent logic languages. This notion has been refined in [8] and shown to be general enough to 
establish a hierarchy on a broader class oflanguages: the Concurrent Constraint family [19]. In this paper, 
we apply the method to compare various dialects of the CSP paradigm [4, 12]. We show that CSP is strictly 
more powerful than CSPx (the sublanguage with no output guards), and that CSPx is strictly more powerful 
than CSP 0 (the sublanguage with no communication primitives in the guards). This presents a strict analogy 
with the concurrent constraint case: the choices guarded by tell operations cannot be simulated by choices 
guarded by ask operations, and the latter cannot be simulated by the unguarded choice [8]. 
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Ifwe now consider the asynchronous variant of the CSP family, ACSP [12, 13], we may expect that these 
separation results are reflected there, but this is not the case. As we show in this paper, ACSPe is still 
less powerful, but ACSP and ACSPz are equivalent. This is due to the asymmetric behavior of input and 
output guards in ACSP: an output can always proceed, independently from the actions performed by the 
other processes in the environment. Therefore output guards cannot control nondeterminism. They don't 
really increase the expressive power of the language. This is already suggested in [13], in fact output guards 
are not even considered there. 

This asymmetry already suggests that shifting to asynchrony causes a loss of power, and, in fact, we 
show that ACSP is equivalent to CSPz, so proving that CSP is strictly more powerful than ACSP. 

1.1 The method 

We summarize here the method for language comparison, called modular embedding, as defined in [8]. 
A natmal way to compare the expressive power of two languages is to see whether all programs written in 

one language can be "easily" and "equivalently" translated into the other one, where equivalent is intended 
in the sense of the same observable behavior. This notion has recently become popular with the name of 
embedding [20, 7, 8, 21]. The basic definition of embedding, given by Shapiro [20], is the following. Consider 
two languages, Land L'. Assume given the semantic functions (observation criteria)$: L-+ Obs and 
S': L'-+ Obs1, where Obs, Obs' are some suitable domains. Then L can embed L1 if there exists a mapping 
C (compiler) from the statements of L' to the statements of L, and a mapping V (decoder) from Obs to Obs1 

such that for every statement A E L', the following equation holds 

'D(S[C(A)]) = S'[A] 

In. other words, the diagram of Figure 1 commutes. 

L' 

c 

L 

S' ------Obs' 

---8--- Obs 

Figure 1: basic embedding. 

This notion however is too weak (as Shapiro himself remarked) since the above equation is satisfied by 
any Turing-complete language. Actually, L does not even need to be Turing-complete, it is sufficient that 
it contains infinitely many observably different programs. We can then take a C such that S o C does not 
identify more programs than S', and define V as the function such that the diagram of Figure 1 commutes. 
Jn [21] it is shown how finite automata can "embed" (in this weak sense) Turing machines. 

In order to use the notion of embedding as a tool for comparison of concurrent languages we have 
therefore to add some restrictions on C and V. We do this by requiring C and V to satisfy certain properties 
that, to our opinion, are rather "reasonable" in a concurrent framework. 

A first remark is the following. Jn a concurrent language, where indeterminism plays an important role, 
the domain of the observables ( Obs) is in general a powerset (i.e. the elements S of Obs are sets). In fact, 
each element must represent the outcomes of all possible computations. Moreover, each outcome will be 
observed independently from the other possible ones. Therefore it is reasonable to require V to be defined 
elementwise on the sets that are contained in Obs. 

Formally: 
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Pl VS E Obs. 'D(S) = {'D.z(s): s ES} 

for some appropriate 'D.1. Yet, this restriction doesn't increase significantly the discriminating power of the 
notion of embedding. In fact, we can always define C so that, for each statement A, each element of S[C(A)] 
encodes A, and then define an appropriate decoder. See [8, §4] for a concrete example of such an embedding. 

Another observation is the following. When compiling a concurrent process, it might not be feasible to 
have all the information about the processes that will be present in the environment at run time. Therefore 
it is reasonable to require the "separate compilation" of the parallel processes, or, in other words, the 
ccmpositionality of the compiler with respect to the parallel operator. 

Additionally, it is useful to compile a process in a compositional way with respect to the possible 
nondeterministic choices, so to have the possibility to add alternatives (for instance, communication offers) 
without the need of recompilation. These properties can be formulated as follows: 

P2 C(A II' B) = C(A) 11 C(B) and C(A+'B) == C(A)+c(B) 

for every pair of processes A and Bin L'. (Here II, 11', +, and +'represent the parallel operators and the 
nondeterministic choice operators in L and L' respectively.) 

A final point is that the embedding must preserve the behavior of the original process with respect to 
deadlock (and/or failure) and success. Intuitively, a system which is not deadlock-free cannot be considered 
equivalent to a system which is. Therefore we require the termination mode of the target language not to 
be affected by the decoder (termination invariance). In other words, a deadlock [failure] in S[C(A)] must 
correspond to a deadlock [failure] in S'[A], and a success must correspond to a success. Formally 

P3 VS E Obs.Vs ES. tm1('D.z(s)) == tm(s) 

where tm and tm' extract the information concerning the termination mode from the observables of L and 
L' respectively. 

An embedding is called modular if it satisfies the three properties Pl, P2 and P3 discussed above. (In 
the following we will omit the term "modular" when it is clear from the context.) 

The existence of a modular embedding from L' into L will be denoted by L' $ L. It is immediate to see 
that $ is a preorder relation, in fact the reflexivity is given by the possibility of defining C and 'D as the 
identity functions, and the transitivity is shown by the commutative diagram in Figure 2. 

L --S-- Obs 

Figure 2: transitivity of$. 

Note that, if L' ~ L, then L' $ L. In fact, it is sufficient to define C and 'D as (the extension of) the 
identity functions. 

1.2 Related works 

Bouge [3] has presented similar separation results for three CSP-dialects which closely correspond to three 
of the languages we study: CSP, CSPz, and CSP0. (The main difference is that he considers the original 
definition of CSP, as given in [11].) 
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His method is based on showing that, given some communication graph, one dialect admits symmetric 
solutions to the election problem, while another dialect doesn't. These solutions are required to satisfy certain 
conditions about termination which closely correspond to our notion of termination invariance. These results 
can be interpreted as stating the non-existence of a translation, when the compiler is required to preserve 
parallelism and the topology of the network. 

The notion of embedding was first proposed by Shapiro as a method for language comparison in (20], and 
refined in various vays in (7, 8, 21, 6] by adding conditions so to make it non-trivial. As already explained, 
we follow here the approach of [7, 8), where the notion of modular embedding was first defined and applied 
to show separation results in the Concurrent Constraint family. Based upon the same notion we establish in 
this paper a hierarchy of the CSP languages similar to the one of the Concurrent Constraint family. This is 
quite surprising, because the Concurrent Constraint languages are based on asynchronous communication, 
so one would rather expect a similarity with the ACSP hierarchy. 

In (21) three different notions of embedding are investigated. The first one (sound embedding) is equiv­
alent to the original definition in [20] plus the requirement of compositionality with respect to the parallel 
operator. {Therefore it is equivalent to our notion, dropping the conditions on the decoder and the compo­
sitionality w.r.t. the choice operator. Notice that our notion of embedding thus leads to a subcategory of 
the category of sound embeddings.) The second one {faithful embedding) requires additionally the compiler 
to translate (observable) equivalent statements into equivalent ones. The third notion considered {fully 
abstract embedding) requires the compiler to preserve the (non-)equivalence of statements with respect to 
the fully abstract semantics. These two last notions are not comparable with our approach. 

In [6] the notion of modular embedding is used to compare the expressive power of a general asynchronous 
paradigm C with respect to a synchronous paradigm {CCS). It is shown that CCS can be embedded into C, 
by choosing an appropriate interpretation for the basic actions oft, {CCS and C are uniform languages, i.e. 
the basic actions are uninterpreted). This is not in contrast with the non-embeddability of CSP into ACSP, 
because ACSP is only a particular instance of C. In order to point out the differencies between synchronous 
and asynchronous forms of communication, it is investigated under which further conditions CCS cannot be 
embedded into C. 

1.3 Plan of the paper 

This paper is organized as follows. Next section introduces the family CSPg as a class of CSP-like languages 
parametrized on Q, the set of communication primitives that can occur in the guards. The behavior of 
CSP g processes is specified via a transition system, from which we derive the notion of observables and 
a compositional semantics. In SectiOn 3 we study the hierarchy on the members of this class: by using 
the compositional semantics we show that CSP cannot be embedded in CSPz, and that CSPz cannot be 
embedded in CSP0. In Section 4 we introduce the asynchronous variant of this family, ACSPg, and its 
compositional model. In Section 5 we show that ACSP can be embedded in ACSPI, but not in ACSP0. 
Finally, the synchronous and the asynchronous CSP families are compared, and we discuss the scope of the 
results. Due to space limitations, some of the proofs are omitted. 

2 The class CSP g 

In this section we present the CSP g family. The members of this class are simplified versions of CSP dialects 
(4, 12). We abstract from some of the traditional CSP constructs, like renaming. Also, we don't consider 
recursion (we deal only with finite processes), but the results we present can be generalized to the full version 
of the languages. 

2.1 The syntax 

Let (c,d, ... E) Chan be a set of channel names. Let (z,y, ... E) Var be a set of variables, (t,u, ... E) Tenn 
an abstract set of terms (expressions) on these variables, and ( v, w, ... E) Val an abstract set of values. The 
set of basic actions is given by I U 0 U A, where 

(iE)I={c?z:cE Chan,zE Var} 

are the input actions, 
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(o E) O = {c!t: c E Chan,t E Term} 

are the output actions, and (a E) A are internal actions. Note that we abstract from the structure of internal 
t . •ue only assume the existence of an internal move, Skip, which does not have any observable effect. ac ions. n• . h ii 11 · The set (g E) g specifies the communication primitives used in the guards. W~ restrict tot e o ow~g 

cases: g = 0, g = I, or g = 'I U CJ. The set of statements in CSPg, with typical elements A, B, .. . , 1s 

described by the following grammar 

A::= Stop I c!t;A I c?:z:;A I a;A I A II A I G 

G ::= g -+ A I a --+ A I G + G 

The symbols ; and II represent the sequential and the parallel composition respectively. A process g -+ A 
first executes g (if possible) and then it behaves like A. The guard g belongs tog and its execution depe~ds 
upon the actions performed by the external environment. The language presents two forms of nondetermm­
istic choice +: the guarded (external) nondeterminism, like for instance in (gi --+ Ai)+ (g2 -+ A2), where 
only a branch whose guard is enabled can be selected, and the unguarded (internal) nondeterminism, like 
for instance in (ai -+ Ai)+ (a2 --+ A2), where a branch will be selected independently from the external 
environment. 

Note that we don't impose explicitly one-to-one communication. All the results we present (apart from 
CSPz s ACSPz and CSPe s ACSPe) do not depend on this assumption. 

2.2 The operational model of CSPg 

The operational model of CSP a is uniformly described by a labeled transition system 

T= (Conf, U ~) 
•EE 

where (e E) E denotes the set of events of the form c?v,c!v (e:z:temal or visible steps), with v E Val, and 
r (internal or invisible step),. The configurations Conf are pairs consisting of a statement A and a state 
u ( E State), namely a mapping from Var to Val. The notion of state is introduced here just to assign 
a meaning to internal actions, it cannot be used to communicate (there is no shared memory). In order 
to simplify the description of the transition system, we assume that the components of a set of parallel 
processes do not share variables with the same name. This syntactical restriction on the language allows us 
to represent the collection of all local states by just one "global" state. The meaning of internal actions we 
assume to be given by an interpretation function I. Namely, I(a)(u) is the state resulting by executing a 
in u. (Actually, the execution of a only depends upon and affects the component of tr local to the process 
executing a.) The interpretation of Skip is the identity, i.e. I(Skip)(u) = u. Given a state u and a term t, 
the value oft is denoted by u(t). The state resulting from u by assigning v to :z: is denoted by u{v/:z:}. 

The transition relations are described in Table 1. The first rule describes the meaning of an internal 
action as a state transformation. The statement Stop denotes termination. An input action c?y is described 
by means of a transition labeled by an event c?v, which records the fact that the value v has been received. 
Similarly, an output action c!t is described by means of a transition labeled by an event c!v, where vis the 
value of the term t. The other rules are the usual rules for compound statements (note that parallelism is 
described as interleaving). 

The result of a computation consists of the final state together with the termination mode, ss or dd, 
indicating successful termination or deadlock, respectively. This is formally represented by the notion of 
obsen1ables. 

Definition 2.1 The observables of the class CSP a are given by the function Sa : CSP 0 --+ Obs with Obs = 
State --+ (State x { ss, dd}). 

Sg[AJ(a) = {(o',ss): (A,u) ___:.. (Stop,u')} 
u 
{(u',dd}: (A,u) ___:.. (B,a') h A Bf= Stop} 
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Table 1: The Transition System T 

RO (a; A, u) _::_. (A,l(a)(u)) 

Rl 

R2 

R3 

R4 

R5 

(c?z;A,u) ~ (A,u{v/z}) 

(c!t;A,u) ~ (A,u) 

(g;Stop,u) ~ (Stop,u1) 

(g --+ A, u) ~ (A, u') 

(A,u) ~ (A',u') I (Stop,u') 
(A II B,u) ~(A' \I B,u') \ (B,u') 
(B II A,u) ~ (B II A',u') I (B,u') 
(A+B, u) ~ (A', u') I (Stop, u') 
(B+A,u) ~ (A',u') I (Stop,u') 

(A,u) ~ (A',u') (B,u) ~ (B',u) 
(A 11 B,u) _::_.(A' II B',u') 

where _::.. • denotes the refle:r;ive and transitive closure of _::_.. 

where v E Val 

where u(t) = v 

where g E QUA 

Note tha.t the observables a.re defined in a. uniform way for all the members of the class, a.nd on the same 
domain Obs. In the following, we will omit the subscript g when it is clear from the context which J.angu.a.ge 
we are referring to. 

On the basis of the transition system T we now define a compositional semantics Mg for CSP g. The 
semantical domain of Mg, denoted by (p, q E) P, is the same for all Q's and it is the set of synchronization 
trees with finite depth whose a.rcs a.re labeled on State X E x State. More formally, P is the smallest set 
that satisfies the following conditions: 

• 0 E P 

• If </>i, ... ,<f>n, ... E State X EX State, andp1, ... ,pn, ... E P then {</>1 ·Pi, ... ,</>n ·pn, .. . } E P 

Definition 2.2 The semantics Mg: CSPg-> P is defined as 

M A={ 0 • ifA=Stop 
9[] {(u,e,u')·Mg[B]: (A,u)-+(B,u')} otherwise 

Also for Mg we have a uniform definition, and we will omit the subscript Q. 
The correctness M is shown by defining the following abstraction operator 'R, that extracts the observ­

ables of a process from its denotation in M. This is done by collecting the final state plus termination mode 
of a.ll those maximal paths labeled by r steps and consecutive states. Such a path is maximal if either it 
ends in a lea.f, in which case it represents a successful terminating execution, or it cannot be extended by a 
r step, thus representing a deadlocking execution. 

Definition 2.3 
The operator 'R : P --+ Obs is given by 

{ 
{(u,ss)} 

'R(p)(u) = {(u, dd)} 
U{'R(q)(u'): (u,r,u~ ·q Ep} 

if p = 0 
if p # 0 and 'Vu', q.(u, r,u') · q f/. p 
otherwise 
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Theorem 2.4 (Correctness of M) The observables S can be obtained by '/?,-abstraction from M, namely 

S = 'RoM. 

The compositionality of M is shown by defining semantic opera.tors corresponding to the operators of 
the language. The choice operator is just defined a.s union and the sequential operator a.s tree concatenation. 
The parallel operator fl is defined a.s usual in terms of the left merge and the synchronization merge, where 
the synchroniza.tion merge transforms the arcs (u, c!v, u) a.nd (u, c?v, u'} into (u, r, u'). 

3 The CSP hierarchy 

In this section we study the relations between the members of the CSP fa.mily. We consider CSP0, CSPz 
a.nd CSPzuo- For tW! sake of convenience, the latter will be denoted by CSP. 

Since the langua.ges CSP0, CSPz and CSP are sublanguages of each other, we have the following propo­
sition. 

Proposition 3.1 CSP0 can be embedded in CSPr and CSPz can be embedded in CSP, namely: CSP0 :S 
CSPr :S CSP. 

The rest of the section will be devoted to show tha.t this ordering is strict, namely CSP i CSPz i CSP0. 
We will use the following properties on the compositional semantics and on the abstraction operator. 

They can easily be shown by definition of 'R, a.nd fl. 
Proposition 3.2 

1. Vp. 'R(p)(u) # 0 

2. Vu,u',p,q. if (u,r,u~ ·p E q 'then 'R.((u,r,u'} ·p)(u) ~ 'R(q)(u) 

9. Vp,q,q'. pfl(qUq') =pflqupflq' 

The first property says that the a.bstraction operator 'R al.ways delivers a non-empty set of results for any 
synchronization tree. The second property states that a subtree starting with a r branch will deliver a 
subset of the results delivered by the complete tree. Note that this is not the case for subtrees starting with 
a communication action: they give a deadlock:, whereas the full tree may offer other alternatives, so avoiding 
deadlock:. Finally, the last property states the distributivity of fl with respect to the union. 

We first show that CSP c8Illlot be embedded into CSPz. 

Theorem 3.3 CSP i CSPz. 

Proof Assume, by contradiction, that CSP::; CSPz via C and 'D. Let 

a.nd 

with c1 :/= c2. Let A = A1 + A2, and B = B1 + B2 , and consider A II B. 
We have that 

where E denotes the empty (initial) state. Because of P2 a.nd the compositionality of M, we have 

M[C(A II B)] = (M[C(A1)] u M[C(A2)]) fl (M[C(B1)] u M[C(B2)]) 

(1) 

(2) 

Because of P3 and the fact that in CSPr the semantics of a choice C8Illlot contain an initial node labeled 
by an output event (a choice c8Illlot be guarded by an output event) we then have 

3u,p. (E, r, u} · p E M[C(A1)] U M[C(A2)] U M[C(B1)] U M[C(B2)] 
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0 B 

2 

Figure 3: A II B 

We consider the following case (the other ones being analogous): 

(E, T, u} · p E M(C(A1)]. 

We show that there exists an element (1', dd) E S[C(A II B)](E), that, together with (1), contradicts P3. 
By Proposition 3.2(1 ), 

3(17,a) E 7?.({E,T,O') · p tt M(C(B2)])(E) 

where {E, T,u} · p is the element considered in (3). By Proposition 3.2(2), 

7?.((E, T, u). p n M[C(B2)J)(E) ~ 7?.(M[C(A1)] n M(C(B2)])( E) 

Since A1 II B2 always deadlock, we have by Pl, P2 and P3 that a= dd. Therefore 

(1',dd) e 7?.({E,T,O'> ·p n M[B2])(E) 

~ 1?.(M[C(A II B)]}(E) 

S[C(A II B)](E) 

(by Proposition 3.2 (2 and 3) and by (2)) 

.(by Theorem 2.4 (correctness)) 

In a similar way we can prove that CSPz cannot be embedded in CSPe: 

Theorem 3.4 CSPz '1, CSP0. 

4 The class ACSP g 

(3) 

Cl 

Jn this section we present the ACSP9 family. The members of this class a.re simplified versions of ACSP 
dialects [13] with the difference that we consider, for the sa.ke of uniformity with the synchronous case, also 
output guards (not present in [13]). 

The syntax of the languages of the ACSP9 family is defined in the same way as for CSP9 but for the 
communication actions: outputting a value 11 along a channel c is now indicated by c!!11, and receiving a 
value by c??z. 

A ::= Stop I c!!t; A I c??z; A I a; A I A II A I G 

G ::= g -+ A I a -+ A I G + G 

Semantically, we do not require synchronization on complementary events: outputting a value 11 along 
a channel c does not need to ta.lee place at the same time as a corresponding input action c!?z. The only 
restriction is that an input action on a channel c can ta.lee place only if at least one output action on c has 
been performed (by another process), and the corresponding value ha.snot yet been "consumed" by another 
input action on c. Jn other words, a channel is seen a.s a buffer. Outputting a value corresponds to adding 
it to the buffer, and inputting a value corresponds to reading and retrieving a value present in the buffer. 
There a.re various design options concerning the buffers. First of all, a buffer can be ordered or unordered. 
Jn the first case there are various strategies, FIFO, LIFO etc. The most "natural" is the FIFO: an input 
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reads and consumes the first value sent and not yet consumed. This is the solution adopted in standard 
A.CSP [12, 13]. For the sake of simplicity, we consider here unordered buffers (bags). However, the results 
we present can be adapted to the ordered buffers (the only non-obvious case is ACSP:r :5 CSP:r, for which 
we have to require explicitly that communication is one-to-one). 

The state of a channel modeled as a bag is a multiset of values. An output action adds the corresponding 
value, whereas an input action reads and retrieves a value nondeterministically selected . An input action 
suspends in case the channel is empty. 

The operational model of ACSPo is based upon a transition system T' that is defined in the same way 
as T (the transition system for CSP o) but for the last rule (synchronous communication) which is omitted. 
Formally: 

T' = (Oonf, LJ ...!...) 
eEB 

where Conf is defined as in T and the transition relations ...!... are defined by the rules RO-R4 of Table 1. 
(Replacing, of course, c? by c?? and c! by c!!.) 

The semantics M defined for CSPo can be adopted also for ACSPo because T' is just a sub-transition 
system of T. (Of course, c? and d have to be replaced by c!? and d!. The new model will be denoted by 
M'.) The compositionality of M' is shown in a similar way, the only difference being the definition of the 
parallel operator, which is defined only in terms of the leftmerge, i.e., we do not have the synchronization 
merge. To extract the observables from the denotation of a program we have to modify the definition of the 
abstraction operator "R.. For this purpose we add a parameter which assigns to each channel a multiset of 
values. The execution of an output action then will consists in adding the value sent to the channel, and 
the execution of an input action in retrieving a value from the channel. The set of assignments of multisets 
to channels is denoted by (b E)B = Chan-> 1'm( Val), where 'Pm( Val) denotes the set ofmultisets of values. 
Given a multiset m an,d a value 11 the multisets m \ 11 and m U 11 denote the result of deleting a copy of 11 

from m, and adding a copy of 11, respectively. 

Definition 4.1 
The opemtor "R.' : P -+ B -> State -> (State X { ss, dd}) is giwen by 

"R.1(p)(b)(u) = {'R.1(q)(b)(u'): {<r,7"7 0"') • q E p} 
u 
{'R.'(q)(b{b(c) Uw/c})(u'): (u,c!!w,u') ·q) E p} 
u 
{'R.'(q)(b{b( c)\ v)/c} )(u') : (u, c??v, u') · q E p /\ v E b( c)} 
u 
{(u, dd): {(u,e,u'): (u,e,u') · q E p and if e = c??11 'lhen v E b(c)} = 0} 

Here p is assumed to be not empty, for p = 0 we define "R.'(0)(b)(u) = {(u, ss)}. 

Definition 4.2 The observables of 'lhe class ACSPt; are given by 'lhe function S' :ACSPt; -> State -> 
(State X { ss, dd}) defined as follcws: 

S' = 'R' o M'(0) 

where 0 represents "the function "that assigns to every channel a empty mv.ltiset (at 'lhe beginning of "the 
computation, all buffers are assumed to be empty). 

5 The ACSP hierarchy 

In this section we study the relation between ACSPe, ACSP:r and ACSPzuo {denoted by ACSP). 
As in the synchronous class, we have the obvious embeddings due to the subset relations: 

Proposition 5.1 ACSPe :5 ACSP:r :5 ACSP. 

The relation between ACSPe and ACSP:r is strict, namely: 
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Theorem 5.2 ACSPz f:. ACSP0 

Proof Consider the processes A1 == c1??::i:1 -+Stop, A2 == c2??::i:2 -+ Stop, and B = c1!!v;Stop. with 
c1 =J c2, and let A= A= Ai+ A2. We have that 

S[A II B](E) = {({vi/::1:1},ss)}. (4) 

The rest of the proof proceeds as in Theorem 3.4, by showing that there exists an element (-0, dd) E S[C( A JI 
B)](e), which, together with (4), contradicts P3. o 

One might now expect a separation between ACSP and ACSP:r, like the one for CSP and CSPz, but 
this is not the case. In fact, there is an asymmetry between ACSP and CSP: the output actions, in ACSP, 
do not synchronize with the corresponding input actions, they can always proceed independently from the 
other processes. As a consequence, a choice guarded by output actions is an internal choice. This suggests 
how to compile ACSP into ACSPz: it is sufficient to transform the output guarded statements in sequential. 
statements guarded by a Skip action. All the others operators are left unchanged. 

Deftnition 5.3 (A compiler C from ACSP into ACSP:r) . The only non-trivial case is given by the 
translation of the statement c!!-+ A: 

C(c!!t-+ A)= Skip-+ c!!t;C(A) 

The compiler C, and the decoder 'D defined as the identity function, obviously satisfy the conditions 
Pl-P3. Furthermore, they constitute an embedding of ACSP into ACSP;r. 

Theorem 5.4 ACSP $ ACSP:r. 

The proof is based on the following lemma, which shows the correctness of the compiler defined above. 

Lemma 5.5 For every statement A in ACSP, b E Chan-+ 'Pm( Val), state u, we have 

n'(M'[A])(b)(u) = n'(M'[C(A)])(b)(u) 

Proof Induction on the structural complexity of A. 0 

6 Comparing CSP and ACSP 

The main result of this section is the separation between CSP and ACSP. This result follows from the 
relations established so far and the the fact that ACSP:r can be embedded into CSP:r, that we show now. 

The only non-trivial case, in the definition of a compiler, is the translation of communication actions. 
The asynchronism between an output action and the corresponding input action can be simulated, in the 
synchronous framework, in the following way. For every process which performs an output action on c we 
create a parallel process which behaves like a sort of one-position buffer: it inputs the value and outputs 
it later on. In order to prevent the sender to communicate directly with the receiver (that would cause 
the buffer to become blocked) the original output and the input of the buffer will take place on a clliferent 
channel be. 

Note that this solution would work also in case of (recursively defined) infinite processes, but we must then 
assume that communication is many-to-many (since many parallel one-position buffer processes inputting 
on be or outputting on c can be created), and it works only for bag-like channels (since the parallel one­
position buffers may interleave the output actions in arbitrary ways). However, if we assume one-to-one 
communication, there is an alternative way to simulate asynchronous communication in CSPz by means of 
ordered buffers (see (4, 12]). Jn case of infinite processes the buffers will have to be unbounded (i.e. the 
corresponding processes can be infinite). 

Definition 8.1 (A compiler C from ACSPz into CSPz) 

• C(Stop) =Stop 

• C(c!!t; A)= (be!t;C(A)) II (60 7::1:-. c!::i:) where be is a new channel not occurring in C(A). 
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• C(c71z;A) = c?z;C(A) 

• C(a;A) = a;C(A) 

• C(A1 II AJ) = C(A1) II C(A2) 

• C(A1 + A2) = C(A1) + C(A2) 

• C(c'!?z-+ A) = c?z-+ C(A) 

• C(a-+ A)= a-+ C(A) 

The compiler C, and the decoder 'D defined as the identity function, obviously satisfy the conditions 
Pl-P3. Furthermore, they constitute an embedding of ACSP:r into CSP;r. 

Note that it is not necessary to use a input guard in the definition of the buffer process, we could just 
use a sequential statement, namely C(c!!t; A) = (bc!t;C(A)) I\ (bc?z; c!z). This leads immediately to the 
definition of a compiler of ACSPe in CSP •. 

Theorem 6.2 ACSPz $ CSPx, and ACSP0 $ CSPe. 

The proof is based on the following lemma, which shows the correctness of the compiler( s) defined above. 

Lemma 6.3 For et1ery statement A of ACSPz (ACSP0J, b E Chan-+ 'P,,.( Val), state u, we hatJe 

'R.'(M'(A])(b)(u) = 'R(M(C(A) II Ab])(tr) 

where ~ =llcll11elr(c} c!tJ. 

Proof Induction on the structural complexity of A. 

Now we can prove the following theorem which separates CSP from ACSP: 

Theorem 6.4 CSP '/, ACSP. 

[j 

Proof Suppose that CSP $ ACSP. Since ACSP $ ACSP:r $ CSPz, we would have that CSP $ CSP:r, 
which contradicts Theorem 3.3. CJ 

Note that on the other hand we have ACSP $ CSP. 
There are still two questions: at which level ACSP:r and ACSPe are situated, with respect to CSP.rand 

CSPe? The answer to these questions depends on the assumption that communication is one-to-one. If this is 
the case, then ACSP.r can embed CSP:r, and ACSPe can embed CSP9. In fact, synchronous communication 
can be simulated asynchronously via acknowledgement messages [21]: every process which performs an 
input action will send au acknowledgement, and each process which performs an output action will wait for 
the corresponding acknowledgement. Of course, this technique does not work when the communication is 
many-to-many: one sender could "steal" the acknowledgement directed to an other process. 

Definition 6.6 (A compiler C from CSPx into ACSP.x) . 

• C(Stop) =Stop 

• C(c!t; A)= c!!t; ackc??z; C(A) 

• C(c?z; A)= c??z; ackc!!oA:;C(A) 

• C(a;A) = a;C(A) 

• C(A1 II A2) = C(A1) II C(A2) 

• C(A1 + A2) = C(A1) + C(A2) 

• C(c?z-+ A)= c??z-+ ack0 !!ok; C(A) 
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• C(a-+ A)= a_. C(A) 

The compiler C from CSP0 into ACSP0 can be obtained just by dropping the last but one line in the 
previous definition. 

The compiler C, and the decoder 1) defined as the identity function, obviously satisfy the conditions 
Pl-P3. Farthermore, they constitute an embedding of ACSPz into CSPz (CSPe in ACSPe)· 

Theorem 6.6 If the communication is one-to-one, then CSPz :S ACSPz, and CSPe :S ACSPe. 

The proof is based on the following lemma, which shows the correctness of the compiler{ s). 

Lem.ma 6. T For eT1ery statement A of CSPz (CSPe) and state u vie have 

'R.(M[A])(u) = 'R.'(M'[C(A)])(0){0') 

Proof Induction on the structural complexity of A. D 

7 Conclusions and future work 

We have applied our notion of embedding to establish a hierarchy between various sublanguages of CSP and 
ACSP, see Figure 4. 

CSP 

CSPz ACSPz ACSP 
~~_.. ~~~ 

CSPe ACSP11 

Figure 4: The CSP-ACSP hierarchy. 

It is worthwhile to remark that the diagram actually should hold for every "reasonable" notion of 
embedding. Jn particular, CSPe :S CSPz :S CSP and ACSPe :S ACSP.r :S ACSP hold for every notion 
of embedding subsuming the sublanguage relation, and CSP 'f,. CSPz 'f,. CSP0 is justified by the existence 
of algorithms expressible in one language and not in the other [3). Furthermore, ACSP :S ACSPz holds 
because the local nature of asynchronous output guards makes them superfluous [13). Finally, ACSP.z can 
be implemented in CSPz by means of buffering techniques [12]. Thus, the difference in the expressivity of 
CSP and ACSP seems to be a general result. 

If we compare the results of this paper with the ones in [8), it is quite surprising to see that the 
Concurrent Constraint hierarchy strictly corresponds to the CSP hierarchy. Since Concurrent Constraint 
is an asynchronous paradigm, we would rather expect a correspondence with the ACSP family! To our 
opinion, this is due to the fact that Concurrent Constraint has the possibility to express choices guarded 
by tell primitives, which enforce a test for consistency, so depending upon the previous tell actions done by 
the environment. This mutual dependency of the same kind of action cannot be expressed in any way in 
ACSP (input only depends on output, and output does not depend on any other action). Jn CSP we have an 
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indirect mutual dependency (input on output and output on input). Why exactly this mutual dependency 
determinates a growth in the expressive power, has still to be understood. 

The characteristic features of our notion of embedding are compositionality of the compiler and termi­
nation invariance of the decoder. Actually, the requirement P2 on the compiler is actually more restrictive 
than simple compositionality w.r.t. + and II (i.e., the translation of these operators in a combination of 
operators), and it can be justified as follows. Since the languages we study extensions of each other, and 
the differences between them consist of the kind of the guard g in the guarded statement g --+ A, we can 
phrase the problem of the expressive power of these languages as the question: 

can a guard operator g _,. in L' be expressed in terms of the operators of L? 

In other words,the question is whether a guard operator g _,. in L' can be translated into a context c9 [ J in 
L such that for every process A in L' we have 

V(O[A']) == O(A] 

where A' is obtained by replacing every occurrence of a guard operator g _,. by c9 [ J. (A similar formalization 
oflanguage comparison is also studied in [10)). This amounts to require the existence of a translation that 
only transforms the guard operators and is invariant with respect to + and II· Such a translation can be 
seen as a particular case of a compiler that satisfies P2. 

It would be interesting to study the consequences of adopting a weaker notion of compositionality. More 
generally a systematic study on the kind of restrictions imposed by the different requirements seems to be 
of interest. To this end several case studies can be considered. For example, is there (and should there be) a 
difference in expressive power between many-to-many channels and one-to-one channels, and how does the 
expressive power of CSP relate to other asynchronous languages (like the concurrent logic languages)? 

Acknowledgements We thank Jan-Willem Klop, Joost Kok, Jan Rutten and Ehud Shapiro for 
stimulating discussions and encouragements. We thank the members of the C.W.I. concurrency group, J.W. 
de Bakker, F. Breugel, A. de Bruin, J.M. Jacquet, P. Knijnenburg, J. Kok, J. Rutten, E. de Vink and J. 
Warmerdam for their comments on preliminary versions of this paper. We acknowledge the department of 
Software Technology of CWI, and the Department of Computer Science at Utrecht University, for providing 
a stimulating working environment. Finally, we thank Krzysztof Apt for having suggested us relevant 
literature on the subject. 

References 

[1) J.C.M. Baeten, J.A. Bergstra, and J.-W. Klop. On the consistency of Koomen's fair abstraction rule. 
Theoretical Computer Science, 51(1,2):129-176, 1987. 

[2] J .A. Bergstra and J .-W. Klop. Process algebra: specification and verification in bisimula.tion semantics. 
In Mathematics and Computer Science II, CWI Monographs, pages 61 - 94. North-Holland, 1986. 

[3) L. Bouge. On the existence of symmetric algorithms to find leaders in networks of communicating 
sequential. processes. Acta Informatica, 25:179-201, 1988. 

[4] S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicating sequential. processes. Joumal 
of ACM, 31:499-560, 1984. 

[5) A.K. Chandra and Z. Manna. The power of programming features. J. Computer Languages, 1:219-232, 
1975. 

[6] F.S. de Boer, J.N. Kok, C. Pal.amidessi, and J.J.M.M. Rutten. The failure of failures: Towards a 
paradigm for asynchronous communication. Technical. Report RUU-CS-90-40, Department of Computer 
Science, University of Utrecht, 1990. A short version of this paper will appear in Proc. of CONCUR 
91. 



141 

[7] F.S. de Boer and C. Pala.midessi. Concurrent logic languages: Asynchronism and language comparison. 
In Proc. of the North American Conference on Logic Programming, Series in Logic Programming, pages 
175-194. The MIT Press, 1990. Full version available as technical report TR 6/90, Dipartimento di 
Informatica, Universita di Pisa. 

[8] F.S. de Boer and C. Pala.midessi. Embedding as a tool for language comparison. Technical Report 
CS-R9102, Centre for Mathematics and Computer Science (CWI), Amsterdam, 1991. 

[9] R. de Simone. Higher-level synchronising devices in MEIJE-SCCS. Theoretical Computer Science, 
37(3):245-267' 1985. 

[10] M. Felleisen. On the expressive power of programming languages. In N. Jones, editor, Proc. of the 
European Symposium on Programming, volume 432 of Lecture Notes in Computer Science, pages 134-
151. Springer-Verlag, 1990. Full version to appear in Science of Computer Programming. 

[11] C.A.R. Hoa.re. Communicating sequential processes. Communications of the ACM, 21(8):666-677, 
1978. 

[12] He Jifeng, M.B. Josephs, and C.A.R. Hoare. A theory of synchrony and a.synchrony. In Proc. of IFIP 
Working Conference on Programming Concepts and Methods, pages 459-478, 1990. 

[13] M.B. Josephs, C.A.R. Hoa.re, and He Jifeng. A theory of asynchronous processes. Technical report, 
Oxford University Computing Laboratories, 1990. 

[14] P.J. Landin. The next 700 programming languages. Communications of the ACM, 3(9):157-166, 1966. 

[15] J. Parrow. The expressive power of parallelism. In Proc. of PARLE 89, volume 366 of Lecture Notes 
in Computer Science, pages 389-405. Springer-Verlag, 1989. Revised and extended version in SICS 
Research Report R90016. 

[16] M.S. Paterson and C.E. Hewitt. Comparative schematology. In Conf. Ree. ACM Conference on Con­
current Systems and Parallel Computation, pages 119-127, 1970. 

[17] J.C. Reynolds. GEDANKEN - a symple typeless language based on the principle of completeness and 
the reference concept. Communications of the ACM, 5(13):308-319, 1970. 

[18] J.C. Reynolds. The essence of Algal. In J. de Bakker and van Vliet, editors, Algorithmic Languages, 
pages 345-372. North-Holland, Amsterdam, 1981. 

[19] V.A. Sara.swat and M. Rinard. Concurrent constraint programming. In Proc. of the seventeenth ACM 
Symposium on Principles of Programming Languages, pages 232-245. ACM, New York, 1990. 

[20] E.Y. Shapiro. - The family of concurrent logic programming languages. ACM Computing Surveys, 
21(3):412-510, 1989. 

[21] E.Y. Shapiro. Separating concurrent languages with categories of language embeddings. In Proc. of 
STOOS, 1991. To appear. 

(22] G.L.Jr. Steele and G.J. Sussman. Lambda: The ultimate imperative. Technical Report Memo 353, 
MIT AI Lab., 1976. 

[23] F. Vaandrager. Expressiveness results for process algebra. Technical report, MIT Lab. for Comp. Sci., 
Cambridge, USA, 1991. 


