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1, INTRODUCTION

This paper is a continuation of three papers by Brent [1], Brent et al.
[2]* and van de Lune et al. [7]**, The computations reported there (up to
g300,000’000) have been extended up to g],SO0,000,000 in order to show that the
first 1,500,000,001 zeros of Riemann's zeta function in the critical strip are
gimple and lie on the vertical with real part 1/2. This establishes the truth of
the Riemann hypothesis in the rectangle {0 + it, 0 < o < 1, 0 < t <
< 545,439,823,215}, Moreover, parts of the computations reported on in [2] have been
repeated in a slightly different manner (see below), so that it is now possible to
present exact (rather than approximate) counts of the numbers of Gram blocks of vari-
ous types and of the numbers of Gram intervals with various numbers of zeros, for the
whole interval [go, gl,SO0,000,000)'

The FORTRAN/COMPASS program described in van de Lune et al. [6], was run on a
CDC CYBER 175/750 computer to separate the zeros of Z(t) in the intervals
[2300,000,000°8415,000,000° 24 8} 445,000,000 &1,500,000,0007 A Vectorized version
([91, [14]) of that program was run on a CYBER 205 vector computer to separate the
zeros of Z(t) in the interval [g415,000’000,g1,445’000’000). Finally, the program was
run a little further beyond gl,SO0,000,000 to yield 5 Gram blocks of lengths 1, 1, 2,
] and 1 in [gl,SO0,000,000’gl,500,000,006) which all satisfy Rosser's rule. Applying
Theorem 3.2 of [1] we completed the proof of our claim that the first 1,500,000,001
complex zeros of the Riemann zeta function have real part 1/2 (and that all these
zeros are simple). The total CPU time used amounted to approximately 900 hours on the
CYBER 175/750 and about 1000 hours on the CYBER 205.

* A check of the types of exceptions to Rosser's rule given in Table | of [2] revealed
that B164 689.301 is of type 3 rather than 1. Consequently, the following correc-
9 ’

tions should be made in [2]: In Table 1 replace 164,689,301(1) by 164,689,301(3);
in Table 2, last columm, replace the first and the third frequencies 53 and 1 by 52
and 2, respectively. In Table 4, last line, replace the frequencies 146,878,417,
26,048,007, 341,855 and 1 by 146,878,418, 26,048,006, 341,854 and 2, respectively.
The last sentence on p. 684 (starting with "Note that ...") and the one on p. 687
on lines 3 and 4 from above should be adapted in the sense that a second exception
of type 3 has been found, and hence the second Gram interval containing four zeros
(leaving unchanged the remark that no type 4 exception had yet been found).

** Correction in [7]: In Table 1, line 2 from below, replace 266527881(2) by
266527881(1). On p. 762, line 4 from below, replace "second” by "third".



During the computations in the interval [g156’800’000,g200’000,000) reported on
in [2], the counts of the numbers of Gram blocks and of the numbers of Gram intervals
with 0,1,... zeros were not exact, since small shifts were made in the argument of
ZA(t) in case the value of ZA(t) in a Gram point g, Was too small to yield the correct
sign of Z(gn) with certainty. Since all subsequent computations were carried out with-
out shifts, i.e., ZB(gn) was computed immediately in case ZA(gn) was too small, we
have rerun and verified our computations in the interval [3156,800,000’ g200,000,000)
on the CYBER 205. The total amount of CYBER 205 CPU time needed for this check was
about 21 hours.

Moreover, with the aid of our CYBER 205 program we checked some of the computat—
ions reported on in [1] and [7], viz., those concerning the intervals [gl,OOO’
35,000,000) and [8200,000,000’8210,000,000)' We found exact agreement with the corresp—
onding results in [1] and [7]. The CPU time needed on the CYBER 205 was about 2800

seconds and 5 hours, respectively.
2. COMPUTATION OF Z(t) AND ERROR ANALYSIS

In principle, our method of computing Z(t) is exactly as described in [6] and
Section 3 of [2]. In order to run our program on the CYBER 205, the most time consum-

ing paft of our FORTRAN/COMPASS CYBER 175/750 program, i.e., the summation of
1 -
f k % cos[t.log(k)- 6(t)] in ZA(t) (cf. [1], formula (2.6)), was vectorized by in-

5o;ing so-called Q8-calls. Details are given in [9] and [14]. As a result, our CYBER
205 program ran about 7 times as fast as the CYBER 175/750 version.

In [6] we have given a rigorous error analysis of our computation of Z(t) on the
CYBER 175/750, for t in the interval (3.5x10**7, 3.72x10**8), covering the range of
zero # 81,000,000 to zero # 1,000,000,000 of z(s) in the critical strip. In Section 3
of [2] the resulting bounds for the error in the computed value %(t) of Z(t) are given
for methods A and B.

For the computations reported on in the present report we have extended this error
analysis to the interval (3.5x10**7, 5,6x10**8), in order to cover the range of zero
# 81,000,000 to zero # 1,500,000,000, both for the CYBER 175/750 and the CYBER 205
(several spot checks of the CYBER 205 computations were carried out on the CYBER
175/750). For the CYBER 205 we took into account that the single- and double-precision
floating point arithmetic works with 47— and 94— bit binary fractions, respectively.

Since this machine works with truncated arithmetic, we took Eg = 2¥%*(=46) amd



ey = 2%¥¥(-93) in our error amalysis (cf. [6, p. 12]). This analysis is completely ana-
logous to the one given in [6] and rather tedious. Therefore, we omit the details. The
dominant terms in the upper bounds for the errors are, in the case of method A, the
error caused by the interpolation in the cosine table, and, in the case of method B,
the inherent error caused by using the Riemann-Siegel formula with the first two terms
of its asymptotic expansion. These two terms do not depend on the computer used. The
other, non-dominant, terms are quite small compared with the dominant terms. For both
our CYBER 205 and our CYBER 175/750 programs we found the following bounds for the

error in the computed value E(t) of Z(t):

3x10%*(-7)t'/%  for method A,

/4

1Z(t) - z()]| < { s
5.5x10%*(-3)1 for method B,

for any t (=2mt) in the interval (3.5x10%*7,5.6x10*¥*8). A safe upper bound for this
error is 3x10%*(-5) for method A and 2.1x10%¥*(-11) for method B. In our program we ac-

tually used the very conmservative fixed bounds 10**(-4) and 2.5x10**(-7), respectively.

Not a single Gram point was found for which method B could not determine the sign of Z(t).
3. STATISTICS

Here we present, for the whole interval [go, gl,SO0,000,000)’ some statistics con-

cerning Gram blocks, the numbers of zeros in Gram intervals and the exceptions to
' . . . s . .

Rosser's rule (summarizing the statistics up to 8300,000,000 &iven in [1], [2] and
[7]1). As stated already in Section 1, the counts given here are exact, since no shifts
were made when computing Z(t) in the Gram points.

Table 1 gives the numbers of Gram blocks of length < 9 in the interval

. *x . . .

[go, 81,500,000,000) for strings of 10*¥*8 successive Gram intervals. The last line
gives the totals for the whole interval. The average Gram block length is 1.2089. The
number of Gram blocks of length 1 is slowly decreasing, in favour of the number of
Gram blocks of length 2 2,

In Table 2 we list the numbers of Gram blocks of type (j,k), I <j <9, 1 <k < j,
in the interval [go ’81,500,000,000)’ as far as they can be classified according to
the definition given in [1, p. 1370]. The numbers in parentheses denote the percentages
of the totals given in Table 1. We also specify the numbers of Gram blocks of lengths

2 and 3 which cannot be classified, viz., those of length 2 with "0 0" and "2 2" zero-



pattern, and those of length 3 with "0 1 0", "2 3 0" and "0 3 2" zero—pattern. These,
very rare, Gram blocks occur in relation to exceptions to Rosser's rule (see below).

The tendency of the so—called "missing two zeros" (cf. [2, Section 2]) in Gram
blocks of lengths > 3 and < 6 to lie in one of the two outer Gram intervals of the
Gram block is partly illustrated by Table 3. This table gives the numbers of Gram
blocks of lengths 4, 5 and 6 in 3 strings of 10**8 Gram intervals, viz., [go s

£100,000,000’ [g7oo,ooo,ooo »300,000,000° 24 [31,400,000,000 »81,500,000,000°"
For Gram blocks of lengths > 3 and < 6 the distribution of the various types seems to

tend to a certain limit which is fairly well reached in the third string. For Gram
blocks of length > 7, however, our numbers are probably still too small to supply any
evidence for the existence of a limit distribution (although we are tempted to believe
that such distributions exist for Gram blocks of all lengths).

Table 4 (which partly summarizes previous such tables in [1] and [2]) gives the
first occurrences of the various types of Gram blocks which have been found. Note the
rather "late" first occurrence of type (8,4) and (8,5) Gram blocks and the absence of
type (8,1) and (8,8) blocks and of blocks of length 9 of various types.

Table 5 shows the numbers of Gram intervals which contain exactly 0,1,... zeros,
for strings of 10%*8 Gram intervals. In three cases, the index of the last Gram point
of a string (and of the first Gram point of the next string) is not a multiple of
10**8 since this index corresponds to a "bad" Gram point. In these cases, the string
was extended up to the first "good" Gram point after the bad Gram point. As a partial
check of the counts in this table the following relation is useful (this follows from
a simple counting argument of the zeros in conmsecutive Gram intervals): if i, is the
number of Gram intervals with j zeros, in a given string of Gram blocks [gnI ’gnZ)
which contains n2 - nl zeros of Z(t), such that missing pairs of zeros comnected with
exceptions to Rosser's rule have neither "crossed" the Gram point'gn[ nor g ,, then we
have io = j§2 j.ij . Note that the number of Gram intervals with precisely one zero is
slowly (and monotonically) decreasing in favour of the number of Gram intervals with O,
2, 3 and 4 zeros.

We have found 3055 exceptions to Rosser's rule (2973 of length 2 and 82 of length
3), including some formerly unknown types. Table 6 surveys the various types of except-
ions which have been found so far (note that a length 2, type 10 exception has been de-
fined, but not yet found). For all 3055 exceptions, the missing two zeros were located
either in the preceding or in the succeeding Gram block (which always had length < 3).

Our main separation program did not search for the missing two zeros in adjacent Gram



blocks: this was done afterwards with an interactive program. Future investigators
may find it useful to implement this search in their main separation program. The
simplest case where this would not be successful is given bij the zero-pattern

"001 3" (or "3100"), i.e., a Gram block of length 2 without any zeros followed
(or preceded) by two Gram blocks of length 1, the nearest containing | and the other
3 zeros. We do not have the slightest idea where this phenomenon might possibly occur
for the first time.

Table 7 gives the frequencies of the exceptions to Rosser's rule in strings of
10**8 successive Gram intervals. Note the gradual, although not monotonic, increase of
the numbers of exceptions of length 2 of types 1,2,5 and 6. For all 3055 exceptions,
we have computed the local extreme values of S(t) (cf. [1, p. 1370]) near these ex-
ceptions.

Table 8 lists those exceptions for which the corresponding local extreme values
exceed 2.2 for length 2, and 2.1 for length 3 exceptions. The most extreme values in
this table are marked by an asterisk. It should be noted that, by a different method,
Karkoschka and Werner [3] have found 10 of the 21 exceptions to Rosser's rule in the

) for which |S > 2.1 (including those

interval [g 1 , 000,000’000 ’ gl . ]00,000,000 extr |

three for which Isextrl > 2.2).

In Table 9 we give frequency counts of those exceptions for which the Isextrl -
values lie beyond 2, in intervals of length 0.05, for three groups of 1000 successive
exceptions. There is a tendency of the extreme values to increase, albeit very slowly.

In Figures 1 — 5 we present graphs of the function Z(t) near the first exceptions
to Rosser's rule of length 2, types 7, 8 and 9, and length 3, types 3 and 4, respect-
ively. The numbers of zeros in Gram intervals are indicated in pareﬁtheses. The scale
of the graphs prevents the reader to '"see'" all zeros, but sufficient magnification of
the graphs (as in [7]) would resolve these zeros without any difficulties. The local
extreme values of S(t) near these exceptions are -2.033411, 2.092910, -2.060040,
=2.012663 and 2.012380, respectively.

Figure 6 shows B542,964,969’ the first Gram block of length 9 (which is of type
(9,3)).

Figure 7 presents a graph of Z(t) in the Gram block B of length 2

1,048,449,112
and of type (2,1). This Gram block contains the closest pair of zeros observed by us.
Comparing their distance with the quantity Zﬂ/log(tn) which is a natural measure for

N +1 n+l _tn)log(tn)/
/2m = 0.00034. The corresponding value for the two close zeros found by Brent

the distance of two consecutive zeros tn and tn of 2(t), we have (t



([1, p.1371]) is about 0.0014.

Our program kept track of large values of Z(t) in Gram points. The largest posit-—
ive and negative values found are: Z(gl,2|1’024’724) = 116.88 and Z(gl,38],[50,789) =
-116.147. Figures 8 and 9 show the graphs of Z(t) near these extrema. Figure 8 shows
a Gram block of length 4 with "2 I I 0" zero—pattern followed by a Gram block of
length 3 with "0 1 2" zero-pattern. The large value of Z lies in the common point of
the two Gram blocks. Note that this graph shows two zeros which have a distance of
approximately 3.85 nearby Gram intervals. Figure 9 shows a Gram block of length 2 with
"0 0" zero-pattern (this is an exception to Rosser's rule of length 2, type 2; the
missing two zeros are located in the Gram interval preceding this block) followed by
a Gram block of length 4 with "0 [ 1 2" zero-pattern. Here, the two zeros before and

after the extreme value of Z have a distance of approximately 3.65 nearby Gram inter-—

vals.
4. DISCUSSION

Our statistical material suggests that the zeros of Z(t) are distributed among
the Gram intervals according to some hitherto unknown probabilistic law. E.g., the
counts of the Gram blocks of lengths 3, 4, 5 and 6 of various types seem to tend to a
certain (discrete) convex distribution (cf. the percentages in Tables 2 and 3) which
depends on the length of the Gram block. It would be interesting to have a probabilist-
ic model which could explain or at least support this phenomenon.

Several results in the literature (cf. [4], [5]1, [8], [10], [11], [12], [13])
have been derived from the existence of a number A, say, for which all complex zeros
o + it of z(s) with |t| < A have real part 1/2. Since our computations have increased
this bound considerably, it might be worthwile to trace the consequences of this new
bound. We have not pursued this.

History has shown that proving the truth of the Riemann hypothesis is an extreme-
ly delicate task. Nevertheless, we hope that our computational results may stimulate
interest and efforts which might lead to a better understanding of the Riemann hypo-

thesis and of the distribution of the complex zeros of the Riemann zeta function.
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n/1p**g

TABLE |

Number of Gram blocks of given length k:

J! (k’n) = J(k,n + ]0**8) - J(k’n)

k =1 2 3 4 5 6 7 8 9
2 71004697 10493487 2169618 340368 25813 1436 54 e 9
1 69951462 10553967 2328243 431251 42822 2688 159 6 2
2 69601860 106569849 2375444 463716 51246 3223 234 59
3 69374447 10583331 2404468 484378 56775 3708 260 4 0
4 69216943 108583988 2426955 499662 61697 4156 300 6 0
5 69092437 10593934 2439977 511447 64968 4481 312 12 1
6 68982347 10593521 2455933 521450 69010 4895 352 16 @
7 68901963 10597874 2465035 529346 71551 5128 387 21 @
8 68827274 10598124 2474834 537963 73568 5532 357 23 1
9 68753961 10604699 2483174 5424042 76147 5623 416 15 1
10 68700299 10601103 2491646 548895 77819 5859 426 13 @
11 68643888 10605279 2495792 554834 79666 6194 451 26 ¢
12 68592095 10607592 2502851 558808 81373 6446 445 35 g
13 68551250 10607492 2509106 562524 82815 6476 461 22 2
14 68509616 10609975 2513530 565833 84424 6788 497 22 1
Totals 1036704539 158803406 36536598 7651879 999686 72545 5111 226 6
$ 83.55 12,80 2.94 .62 0.08 0.01 0.00
TABLE 2
Number of Gram blocks of type (j,k), j=1,2,...,9, k=1,2,...,3,
in the interval [gO’gl,SO0,000,000)
3j k=1 2 3 4 5 6 7 8
1 1036704539
2 79405034 79395174 + 2973 " 0 @ " - blocks
(%) (50) (50) + 225 " 2 2 " -~ blocks
3 17339591 1867470 17338459 + 82 " @910 " - blocks
(%) (47) (5) (48) + 2 2 30 " - blocks
+ 3 @ 3 2 "™ - blocks
4 3520937 306187 385141 3519614
(%) (46) (4) (4) (46)
5 412874 69153 35262 69257 413149
(%) (41) (7) (4) (7) (41)
6 16505 14789 5897 5082 14556 16516
(%) (23) (20) (7) (7) (28) (23)
7 98 1559 743 305 718 1585 103
(%) (2) (31) (15) (6) (14) (31) (2)
8 ) 29 78 18 10 75 25 ¢
9 ] ] 2 1 '] 1 2 8




Number of Gram blocks of type (j,k), j=4,5,6, k=1,2,...

in the intervals [gn.lo**S’g(n+1).10**8)’

TABLE 3

’j’
for n=0, 7 and 14

n total k =1 2 3 4 5 6
] 340360 152448 17793 17972 152147
(%) (45) (5) (5) (45)
7 529346 243856 20724 20649 244117
(%) (46) (4) (4) (46)
14 565833 261995 21151 20879 261808
(%) (46) (4) (4) (46)
] 25813 8549 3570 1579 3539 8576
(%) (33) (14) (6) (14) (33)
7 71551 29813 4779 2452 4698 29809
(%) (42) (7) (3) (7) (42)
14 84424 35934 4892 2651 4930 36017
(%) (43) (6) (3) (6) (43)
g 1436 93 473 157 129 518 66
(%) (6) (33) (11) (9) (36) (5)
7 5128 1166 1042 339 348 1006 1227
(%) (23) (209) (7) (7) (20) (24)
14 6788 1875 1121 415 400 1114 1863
(%) (28) (17) (6) (6) (16) (27)
TABLE 4
First occurrences of Gram blocks of various types
j k n j k n
2 1 133 7 1 258,779,892
2 2 125 7 2 13,869,654
7 3 17,121,221
3 1 3,356 7 4 37,091,042
3 2 2,144 7 5 20,641,464
3 3 4,921 7 6 52,266,282
7 7 195,610,937
4 1 83,701
4 2 39,889 8 2 112,154,948
4 3 18,243 8 3 175,330,804
4 4 67,433 8 4. 717,574,239
8 5 454,025,825
5 1 1,833,652 8 6 145,659,819
5 2 243,021 8 7 165,152,519
5 3 601,944
5 4 68,084 9 3 542,964,969
5 5 455,256 9 4 1,331,284,715
9 6 978,739,921
6 -1 20,046,223 9 7 818,033,831
6 2 2,656,216
6 3 4,718,714
6 4 1,181,229
6 5 2,842,089
6 6 19,986,469




TABLE 5
Number of Gram intervals in [gn]’gnZ) containing exactly m zeros

nl n2 m=20 m=1 m= 2 m=3 m-=
@ 100000000 13197331 737719149 12864188 166570 1
100000000 200000000 13534327 73106626 13183768 175278 1
200000000 300000000 13641172 72895112 13286261 177454 1
300000000 400000000 13711578 72755501 13354267 178651 3
400000000 500000001 13756913 72666325 13396614 180148 1
500000001 600000000 137950833 72589842 13435215 179909 g
600000000 700000000 13826622 72528206 13463727 181449 5
700000000 800000000 13849738 72481722 13487344 181194 2
800000000 900000000 13871424 72439079 13587575 181917 5
900000000 1000000003 13894145 72393385 13530885 181664 4
1000000003 1100000001 13998465 72365865 13542874 182791 3
1100000001 1200000000 13924978 72332789 13559487 182744 1
1200000000 1300000000 13940406 72302046 13574692 182854 2
1300000000 1400000000 13952735 72278368 13585060 183836 1
1400000000 1500000000 13964556 72254377 13597581 183483 3
@ 1500000000 206769423 1089161153 201369458 2699933 33
% 13.78 72.61 13.42 g.18
TABLE 6 : see next page.
TABLE 7
Number of exceptions to Rosser's rule in the intervals
[gn’gn+100,000,000) for n=0(100,000,000)1,400,000,000
(rmmem e LENGHT = 2 ~—memccecece—ao > {-=-LENGHT = 3->
TYPE TYPE
n/l19**g 1 2 3 4 5 6 7 8 9 190 1 2 3 4
@ 15 9 1 g g g @ g g ] ] ] g ]
1 37 38 1 g 1 2 ] g g ] g ] g g
2 52 68 g 1 3 2 ] g g ] 2 1 a g
3 53 77 2 @ 3 2 ] ] ] ] 3 2 @ 1
4 79 78 ] g 5 3 g g g g 1 g @ 1
5 94 71 g g 7 5 ] 1 @ ] 2 5 ] ]
6 82 109 4 1 8 12 g g g g 1 3 g 2
7 104 98 1 g 6 7 ] 1 g g 2 2 1 g
8 98 198 1 4 7 7 g ] ] ] 3 4 @ @
9 197 115 1 1 11 13 g g 1 g 2 4 @ 1
19 121 100 1 1 11 8 1 g g g 5 2 g 1
11 112 132 '] 1 15 7 ] g g g 2 8 ] ]
12 130 135 1 g 12 13 '} 1 1 g 3 1 g @
13 128 123 '} 1 17 14 1 ] g g 2 8 @ ]
14 128 123 2 1 8 16 ] g g g 3 6 g g
Totals 1344 1375 15 11 114 111 2 3 2 g 31 46 1 4




TABLE 6

Various types of exceptioms to Rosser's rule
and their frequencies in [go’gl,SO0,000,000)

Gram block
of length 2
LENGTH = 2 with " g g "
zero-pattern
g g g g g g g g type freq.
n-3 n-2 n-1 n n+l n+2 n+3 n+4 n+5 (note)
g g 3 1 1349
3 g g 2 1375
g [} 4 g 3 15
2 4 0 g 4 11
g 2 2 2 5 114
2 2 g g 6 111
g g 2 3 g 7 (1) 2
] 3 2 2 /] 8 (2) 3
g 2 4 1 )] 9 (3) 2
'} 1 4 g 2 10 /)
Gram block
of length 3 with
LENGTH = 3 "@ 1 g" zero-pattern
g g g g g g g g type freq.
n-2 n-1 n n+l n+2 n+3 n+4 n+5 (note)
a 1 ] 3 1 31
3 2 1 ] 2 46
g 1 g 4 g 3 (4) 1
0 4 g 1 0 4 (5) 4
Notes B for n =
n
(1) 1,078,232,754 1,368,002,233
(2) 526,196,236 758,375,860 1,209,834,868
(3) 983,377,342 1,257,289,100
(4) 744,719,566
(5) 368,714,780 437,953,501 958,241,934 1,003,780,082
TABLE 7 :

see previous page.




TABLE 8
Exceptions to Rosser's rule for which the absolute local
extreme value of S(t) exceeds 2.2 (length 2) resp. 2.1 (length 3)

Notation: n (type) extreme value of S(t) close to B ,
n
where n is the index of the Gram block B containing no zeros
n
LENGTH = 2 342,331,983 (2) 2.252286

566,415,147 (1) -2.207335
1,032,818,128 (1) -2.219399
1,063,458,444 (1) -2.206212
1,081,300,140 (1) -2,290363 *
1,126,600,767 (2) 2.21814¢9
1,140,009,253 (1) -2.206885
1,257,893,676 (1) -2.265578
1,268,572,909 (2) 2.287575
1,316,842,760 (2) 2.216533
1,331,951,563 (1) -2.208338
1,333,195,692 (2) 2.313651 *
1,353,464,414 (1) -2.208858
1,372,763,317 (1) -2.244361
1,389,937,190 (2) 2.203209
1,423,302,021 (5) -2.204753
1,430,028,952 (2) 2.200009
1,440,874,660 (1) -2.2025087
1,496,982,189 (1) -2.207873

LENGTH = 3 1,089,751,985 (1) -2.122474
1,339,212,674 (2) 2.106224

TABLE 9
Distribution of absolute local extreme values of S(t), beyond 2,
in intervals [S1,82) of length 0.05

exception S1
numbers S2

2.00 2.85 2.10 2.15 2.280 2.25 2.38
2.85 2.18 2.15 2,20 2.25 2.3 2.35

l - 1000 728 193 67 19 1 1 2
1001 - 2000 681 228 66 21 3 1 g
2081 -~ 3000 673 215 83 17 19 1 1




Z(Tgxl
26 -

FIGURE 1. B the first exception to Rosser's rule
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of length 2, type 7
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FIGURE 2, 3526,196,236’ the first exception to Rosser's rule

of length 2, type 8
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the first exception to Rosser's rule
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FIGURE 4, B744,7l9,566’ the first exception to Rosser's rule

of length 3, type 3
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FIGURE 5. the first exception to Rosser's rule
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of length 3, type 4
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FIGURE 6, 3542,964,969’ the first Gram block of length 9 (type (9,3))
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Z |

1 containing the closest observed pair of zeros

5—.

] FIGURE 7, Bl,048,449,112’ the Gram block (of length 2, type (2,1))

Distance of zeros < '0,00011

Minimum of Z(t) inbetween zeros:
291,048,449, 112.88896415 = ~0-0000002218...
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FIGURE 8., Z(t) near its largest found positive value
EZ [ ] (i.e., in the Gram point 91 .211.024.724)
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FIGURE 9. Z(t) near its largest found negative value
(i.e., in the Gram point 91 381.150 789))
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