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ABSTRACT
The increasing diversity of hardware within a single system
promises large performance gains but also poses a challenge
for data management systems. Strategies for the efficient
use of hardware with large performance differences are still
lacking. For example, existing research on GPU supported
data management largely handles the GPU in isolation from
the system’s CPU — The GPU is considered the central pro-
cessor and the CPU used only to mitigate the GPU’s weak-
nesses where necessary. To make efficient use of all avail-
able devices, we developed a processing strategy that lets
unequal devices like GPU and CPU combine their strengths
rather than work in isolation. To this end, we decompose
relational data into individual bits and place the resulting
partitions on the appropriate devices. Operations are pro-
cessed in phases, each phase executed on one device. This
way, we achieve significant performance gains and good load
distribution among the available devices in a limited real-life
use case. To grow this idea into a generic system, we iden-
tify challenges as well as potential hardware configurations
and applications that can benefit from this approach.

1. FACING HARDWARE DIVERSITY
Computer Systems don’t just become increasingly par-

allel, they become increasingly diverse as well. Traditional
hard disks can be assisted by solid-state disks [4], main mem-
ory by hierarchical caches [20] and conventional CPUs by
massively parallel extension cards [8]. All these technologies
have one thing in common: they perform much better but at
a much higher price than their traditional counterparts. A
generic strategy to exploit these performance asymmetries
for query processing is still lacking. Instead, researchers
focus on exploiting the unique properties of each of these
devices for a particular subset of operations.

Especially the high compute power of Graphics Processing
Units (GPUs) has aroused the interest of data management
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Figure 1: Architecture of a CPU/GPU Computer System

researchers. Even cheap commodity systems1 can easily host
four GPU extension cards. These extension cards follow a
fundamentally different design than traditional CPU-based
systems. Fast sequential execution based on behavior pre-
diction (pipelining, prefetching, branch prediction, ...) is
replaced by simple, yet massively parallel, execution. The
internal memory of these devices is usually orders of mag-
nitude faster but offers much smaller storage capacity than
traditional memory. Figure 1 gives a brief overview of the
architecture of our test system, hosting two different GPUs.

GPU Query Processing
The problem of efficient query processing on the new archi-
tecture has received significant attention [3, 9, 14, 7, 15, 12,
8, 13]. However, these efforts usually “re-implemented” a
full-fledged relational query processor to run on the mas-
sively parallelized architecture. When evaluating queries,
relational operators are scheduled onto the most appropri-
ate device. Parallelism (inter- or intra-query) inherent in
the workload can be used to balance the load distribution
among the devices. However, this approach comes with a
number of problems that we discuss in the following.

Problems of Existing Approaches
The main problem of the existing approach is that it regards
GPUs as processing devices in their own right. When an
application does not fit the GPUs capabilities (e.g., when
the GPU memory capacity is insufficient), the problems are
worked around rather than treated at their core. However,
since GPUs are always “hosted” by at least one CPU, they
should co-operate rather than work in isolation.

1viz. systems with a price of less than $1000
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Figure 2: Bitwise Distribution of Data Among Devices

PCI-E Pressure. To process queries on databases that ex-
ceed the size of the available device memory, existing sys-
tems continuously stream data to and from the respective
device. While data may be (partially) cached on the device,
generally data is stored in the main memory and transfered
to the “appropriate” device through the PCI-E bus. This
puts high load on the PCI-E bus, which is generally consid-
ered the main bottleneck for CPU/GPU co-processing [11].
The lack of virtual memory paging prevents a “graceful”
performance degradation as in CPU-based systems.

Device Underuse. The scheduling granularity of the ex-
isting approaches is a relational operator. To make efficient
use of multiple devices it is, thus, necessary to have enough
independent operators. If the workload does not expose suf-
ficient parallelism, some devices may be underused or even
idle. A single user running a group/aggregate query, e.g.,
will not benefit from having multiple devices available.

Device Overload. Similar in cause, devices may become
overloaded if too many operators are regarded as “appropri-
ate” for a single device. E.g., many users scanning a GPU-
resident relation will face high latencies due to the lack of
independent multithreading on the GPU.

The presented problems indicate that there is still need for
improvement in the field of cross device data processing. In
the rest of this paper, we present our approach to mitigate
the problems (Section 2), present some preliminary results
(Section 3) and indicate open problems (Section 4). In Sec-
tion 5 we, speculate on potential applications and ideas for
extensions. We conclude in Section 6.

2. APPROACH
Since the PCI-E bottleneck is the main limiting factor

for efficient cross-device processing of large-scale data [11],
reducing its load is our primary goal. To avoid the per-
petual transfer of data from host to device, we have to re-
duce the memory footprint of the data on the GPU. To this
end, we propose to re-evaluate the techniques that helped
reducing the footprint of memory resident databases: the
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Decomposed Storage Model (DSM) [6] reduced the footprint
to the columns that are used for query evaluation. Subse-
quent lightweight compression of the values within a column
proved effective [21]. However, to achieve the necessary foot-
print reduction, decomposing tuples into columns of scalar
values may not be enough. To reduce the data volume to
the capacity of the GPU memory we propose to take data
decomposition to the next level: Bitwise Decomposition. Re-
lational tuples/values are (partially) decomposed [18] at the
granularity of individual bits. The resulting bit-partitions
can be distributed among devices and treated (e.g., com-
pressed) individually. The data footprint on each device can
be controlled by varying the number of bits that are stored in
the device’s memory and tightly packing them across words.
Combined with lightweight compression this promises effi-
cient data (pre)processing on devices with limited memory
without the need for expensive cross device data transfers.

2.1 Bitwise Distribution
For natural values2, the bits that comprise them have dif-

ferent significance which we exploit to decompose the values
and assign the bits to appropriate devices.

Decomposition
The decomposition and distribution of the individual bits is
quite natural (see Figure 2a). Since almost all processing
operations have to access the most significant bits, these are
stored in the “fastest” memory. The number of bits that are
stored on this device should be as high as possible while still
leaving space for query evaluation. The data on the GPU
is, essentially, a low-resolution representation of the data.

The least significant bits (i.e., residuals) are only neces-
sary to reconstruct the precise values and eliminate false
positive results that may result from the processing of the
low-resolution data. Since this generally needs less band-
width than the scanning of the low-resolution data, the least
significant bits are stored in the “slower” memory.

2Values that directly represent a “measured” value like price
or height as opposed to, e.g., categorical values or hashes
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Compression
Other than reducing the memory footprint, the bitwise de-
composition has a second advantage: the low-resolution ver-
sion is stripped of small-scale variations of data. This makes
it highly compressible even with simple, lightweight tech-
niques. To yield even better compression, we physically
radix-cluster the low-resolution data and eliminate common
prefixes. To achieve low tuple reconstruction costs, we prop-
agate the clustering to the residual values.

Figure 2b provides an illustration of the decomposed, com-
pressed data distributed over a GPU and a CPU. Queries
will be processed directly on this representation of the data
and exploit the distribution wherever possible.

2.2 Query Processing
The decomposed distribution of the stored tuples largely

determines the query processing strategy. Every device is
responsible for one phase of the query evaluation. In each
phase, one device does the best with the data it has avail-
able: narrowing down to the final result as much as possible
and (partially) reconstructing the tuple values. While we
believe bitwise distribution to be benefitial on any combi-
nation of devices with asymmetric capabilities (HDD/GPU,
CPU/SSD, ...), we believe that some setups, e.g., HDD/SDD
or CPU/GPU, are more “natural” than others. We will fo-
cus our work on these “natural” setups.

In a traditional CPU/GPU co-processing setup, queries
are evaluated in two phases: GPU Preselection and CPU
Refinement. Figure 3a illustrates the multi-stage reconstruc-
tion of a tuple that ends up in the result set. Since the result
of each phase is a (potentially inaccurate) representation of
tuples in the database, the two phases can be thought of
and treated like operators in a relational DBMS. Due to
the high overhead when transfering data across devices, the
Volcano-model [10] is not well suited to connect these oper-
ators. We, thus, connected them using the bulk processing
model: in each phase the intermediates are materialized into
the device’s memory and copied once the phase is finished.
When handling continuous query streams, the two evalua-
tion phases of different queries can be interleaved to keep all
devices busy.

Phase 1: GPU Preselection
In the first phase, the GPU prefilters the dataset. Since the
GPU memory only contains an approximate representation
of the data (it misses the residuals), it cannot give an exact
answer to the query. Instead it does a best-effort filtering
of the tuples and returns partial (low-resolution) results as
well as a tuple id to allow reconstruction of the exact value
(see Figure 3b). This is equivalent to the early materializa-
tion [2] of tuples in a column-oriented database. The partial
result set is a superset of the exact answer to the query, but
contains all the information for the CPU to narrow it down
to the exact result set.

Phase 2: CPU Refinement
In the second phase, the CPU copies the partial results from
the GPU’s device memory and joins them with the main
memory resident residual list. Since this is an invisible/-
positional join [1] on the tupleID, it is cheap. The partial
results are combined with the residuals to produce the fi-
nal tuple values (see Figure 3a). The query conditions are
evaluated again against the precise values and the results,
in case of a hit, copied to the output buffer.

3. PRELIMINARY RESULTS
To evaluate the potential of our approach, we started with

an application that is inherently hard to support with sec-
ondary indices: Spatial Data Management.

3.1 Spatial Range Queries
The efficient processing of spatial data, is still an open

problem. Techniques such as R-Trees, k -d trees or lineariza-
tion rely on properties of the dataset and queries to perform
well. To process arbitrary queries on spatial data, applica-
tions often resort to scans of the dataset. Our approach
is well suited to improve the performance of such scans.
We evaluated Bitwise Distributed Query Processing on a
real-life dataset consisting of around 240 Million 2D spa-
tial datapoints that form approximately 450K trajectories
(routes taken by users). The data was collected by an indus-
try partner by tracking navigation devices in North-Western
Europe. On the database we evaluate a set of rectangular



range queries, generated by randomly selecting a point from
the dataset and constructing a rectangle around it. The size
of the rectangle is random but within a maximum. The gen-
eration of the queries is according to a workload description
that we received from mentioned industry partner.

We found that the real-life database is hard to compress
because the trajectories lack detectable patterns that could
be exploited by (lightweight) compression. By decompos-
ing the data, we moved the value variance to the residuals,
making the low-resolution representation very compressible.

To support the high degree of processing parallelism in
GPUs, we parallelize the query evaluation in two dimen-
sions: the data clusters and the queries. Since, the number
of clusters is usually high (tens of thousands), the degree
of parallelism supports efficient GPU data processing. The
query evaluation follows the paradigm of the bulk execution
model that helped to mitigate the per-query overhead for
transaction processing on GPUs [16].

Results
The experiments where run on a machine with two Intel R©
Xeon R© CPUs X5650@2.67GHz with 48GB of RAM. The
used GPU is a GeForce GTX 480 with 1.5GB of memory.

Figure 4a shows the results of our experiment. CPU is
the processing of the queries on the plain main memory res-
ident data. This is the baseline for our evaluation. The
state of the art for GPU processing relies on streaming the
plain data to the GPU and evaluating the queries in paral-
lel. Whilst the performance compared to CPU-based pro-
cessing is worse for a single query, the GPU benefits from
larger query sets that can be evaluated in parallel. The cross
device outperforms all other approaches significantly. For
2048 concurrent queries, GPU/CPU co-processing is more
than two orders of magnitude faster than GPU processing
on plain data (streaming) and more than three orders of
magnitude faster than the CPU only processing.

In addition to the query evaluation performance, bitwise
decomposition promises good load balancing over the avail-
able devices. To illustrate this, Figure 4b shows the time
that is spent processing data on each device. It shows that
while single queries induce most of their load on the GPU,
the load is almost perfectly distributed for larger query sets.

While these results are encouraging, we believe that there
are many more suitable applications as well as unsolved
problems.

4. OPEN PROBLEMS
To support more applications, we plan to integrate Bit-

wise Decomposition into the MonetDB3 relational Database
Management System (DBMS). However, the implementa-
tion of a full relational operator set on bitwise decomposed
data is not trivial.

4.1 Full Relational Processing
While the performance gain of bitwise distribution for

highly selective scans has been studied, the gain for other
relational operations is still unclear. To prevent excluding
values from the final result, the approximate result has to
approach the exact result from the top. The false positives
lead to an increase in bandwidth usage which may coun-
teract the achieved performance gains. To mitigate this

3http://www.monetdb.org

problem, cross-device equi-joins may benefit from classical
distributed join techniques such as gainful semi-joins [5].

Theta-joins on low-resolution data, however, may yield a
high number of false positives. Transmitting these to the
CPU for accurate processing may consume the time savings
that were achieved by using multiple devices. Relational
grouping may suffer from the same problem. The impact of
this problem is data and application specific and has to be
studied. This problem may be approached by increasing the
resolution of the low-resolution representation. This does,
however, increase the footprint on the GPU which, consid-
ering multiple tables, results in an optimization problem.

With an implementation of a full relational query proces-
sor at hand, we can evaluate classical analytical workloads
as represented by, e.g., the TPC-H and TPC-DS bench-
marks. We also plan to evaluate bitwise decomposition in
the domain of scientific databases like the SDSS skyserver
database [19]. Especially the execution of theta-joins on bit-
wise distributed data may be benefitial to such applications.

Query Optimization
When evaluating complex queries, the bitwise distribution
offers an additional degree of freedom in the query plan. At
any operator in the plan, the intermediate result may be
either refined or directly used for further processing. While
the earlier involves costs for the refinement, the later might
multiply the number of false positives. This problem can be
tackled using classic query optimization techniques like rule-
or cost-based optimization. For that it will be necessary to
develop some means to estimate the number of false positives
in the approximate result set.

Transaction Processing
To make the approach viable, an efficient strategy for han-
dling updates of the database is required as well. If the
updates are only minor corrections of values that only affect
the least significant bits, they could be handled by mod-
ifying only the residuals. Particularly when writes to the
fast memory are expensive, this seems beneficial. Writes
to Solid State Disks (SSDs), e.g., slowly degrade the per-
formance and may even hurt the disks reliability. In such
cases bitwise decomposition could improve update perfor-
mance. For coarse grained updates, efficient cross-device
update propagation strategies are needed.

4.2 Storage Optimization
Since the size of databases generally exceeds the capacity

of the fast device’s memory, we are challenged with another
problem: which bits should be included in the low-resolution
representation and which should be left as residual. If only
a single column is stored in the database, the solution is
trivial. More attributes form a conflict since the resolution
of one attribute can be increased at the expense of another.
Picking the optimal resolution for the representation of each
attribute is an optimization problem with no obvious solu-
tion. We presented an approach to automatically find a
cache optimal (partial) decomposition into scalar values for
a given database and workload [18]. The used model could
be extended to support (partial) bitwise decomposition.

5. APPLICATIONS
We believe that a wide range of applications could benefit

from bitwise distribution beyond pure performance.



Intermediate Visualization
We plan to study how end-user applications may benefit
from such multi-stage data processing. An end-user may,
e.g., be presented with the approximate result to gain an
impression of what he can expect as final result. Based
on this, he may even decide that the approximate result is
good enough and a refinement unnecessary. The effects are
similar to online aggregation [17] but without the inherent
reliance on the volcano processing model. This is especially
beneficial if the fast processing device is well-connected to
an output device. This holds for GPU supported processing
as well as, e.g., client-server applications.

Client-Server Applications
In addition to distribution on a single node, we see applica-
tions in a client-server environment. A low-resolution repre-
sentation of the data could be resident on the client or even
shipped as part of the application. In a mapping-context,
e.g., points of interest could be stored with approximate po-
sitions and only located accurately when a user zooms in or
moves to a specific area. This would yield a more responsive
application with lower bandwidth requirements.

Non-Relational Processing
We believe that the idea of low-resolution preparatory pro-
cessing and subsequent refinement may be applicable to other
domains than relational query processing. Suitable data
management challenges can, e.g., be found in multidimen-
sional analytics or sensor data management such as image or
video processing. Also the, relatively new, domain of scien-
tific data management may profit from efficient cross device
processing. We plan to study such applications.

6. CONCLUSION
Efficient cross-device processing is still an open research

challenge. We presented a viable solution, tackling it by de-
composing data into individual bits. Our approach outper-
forms current CPU/GPU co-processing strategies by more
than two orders of magnitude for a spatial selection bench-
mark on real life data. This makes it an attractive subject
to study for data processing on multiple devices.

Despite such encouraging results, there is more work to be
done. A full relational query processor based on the concept
has to be implemented and evaluated. Challenges include
transaction processing, query and storage optimization.

In addition, we believe that end-user applications can gain
more than mere performance from the approach. Present-
ing approximate results to an end-user at low latency can
significantly improve the user experience.
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