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Abstract 

Ko. C.W. and F. Ruskey, Generating permutations of a bag by interchanges, Information Processing Letters 41 (1992) 
263-269. 

We present algorithms for generating all permutations of a given bag so that successive permutations differ by the 
interchange of two elements. One version of the algorithm runs in time linear in the number of permutations. 
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l. Introduction 

A bag is a collection of not necessarily distinct 
elements. Early algorithms for generating all per
mutations of a bag were developed by Sag [11], 
Bradey [2], Chase [3], and Hu and Tien [5]. None 
of these algorithms runs in constant amortized 
time, i.e., time linear in the number of permuta
tions generated. A permutation algorithm has the 
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interchange property if successive permutations 
differ by the interchange of two elements. Ruskey 
and Roelants van Baronaigien's algorithm [10] 
runs in constant amortized time but does not 
have the interchange property; Chase's algorithm 
[3] does not have the interchange property but 
runs in constant amortized time. We present an 
algorithm that has both properties. 

The problem of developing a constant amor
tized time algorithm for generating bag permuta
tions is given as an exercise by Reingold, Nie· 
vergelt, and Deo [9]. However, the solutions man
ual [4] presents Hu and Tien's algorithm [5] and 
references two other algorithms, all of which do 
not run in constant amortized time. 

We consider bags over the elements 0, 1, ... , t. 
We represent a bag by a sequence n = 
(n 0 , .. ., n), where each n; is the number of 
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occurrences of i in the bag. Also, #n denotes the 
size of the bag, or the sum of the n1• If n1 > 0, n I; 
denotes sequence n with n1 decremented by one: 

An n-permutation is a permutation of bag n. The 
number of n-permutations is the bag coefficient 
C(n). 

( # ) #n' C(n) = n = · 
no' n I> ••. , n, n In 1 ••• n ' . 

O• t • 1 • 

These coefficients satisfy the following recur
rence relation: 

I 

C(n)= I:C(nl;). ( 1) 
i=O 

2. The algorithms 

The bag permutations can be generated by the 
recursive algorithm that follows from the familiar 
proof of recurrence relation (1) for bag coeffi
cients; it classifies the permutations according to 
their first symbol. This leads to algorithm GenBag 
in Fig. 1. Operator e denotes concatenation. 
The call GenBag(n, e ), where e denotes the 
empty sequence, generates all n-permutations. 

Depending on the order in which the j's are 
selected by the for statement in line (G5), differ
ent recursion trees arise, each of which leads to a 
different sequence of permutations. Selecting the 
elements in increasing order prints a lexico
graphic list of the n-perrnutations. These recur
sion trees are in one-to-one correspondence with 
what we call bag trees. 

Definition 1. A labeled ordered tree is an (n, s)
tree if its root is Iabeled s and, for each n. > 0 its 

' ' root has a child that is the root of an (n I;, i)-tree. 

When we do not wish to specify the label at 
the root, we write simply n-tree. An n-tree is also 
called a bag tree. We regard bag trees as being 
embedded in the plane with the root on the left 
and leaves on the right. The ordering of subtrees 
is from top to bottom. To each n-tree T there is a 
corresponding list L(T) of all n-permutations; 
this list is precisely the list of permutations printed 
by GenBag. Each permutation can. be obtained 
by traversing T from its root to a leaf and record
ing the labels of the nodes encountered. 

Definition 2. A bag tree T is an interchange tree if 
successive permutations in list L(T) differ by an 
interchange of two elements. 

The following examples illustrate the preced
ing definitions. For n = (2, I), there are exactly 
four bag trees. The list 001, 100, 010 is not L(T) 
for any bag tree T. For n = (2, 2), there is a 
unique bag tree T such that L(T) = 0011, 0110, 
0101, 1010, 1001, 1100; however, T is not an 
interchange tree. 

We call a node of a bag tree a plus-node if its 
children are labeled in increasing order and a 
minus-node if they are labeled in decreasing or
der. A node with only one child is both a plus
node and a minus-node. 

Definition 3. An alternating tree is a bag tree in 
which every internal node is either a plus-node or 
a minus-node and, at each level of the tree, 

{Print all sequences 11'0' where Q is an n-permutation} 
(Gl) procedure GenBag ( n : array [O .. t] of natural; 7!' : sequence); 
(G2) var j : O .. t; 
(G3) begin 
(G4) if no= n1 = · · · = n1 = 0 then Print( rr) 
(GS) else for j E {p I 0::; p 5 t A np > O} do 
(G6) Gen.Bag(nl;,71'ffij) 
(G7) end 

Fig. I. Algorithm GenBag. 
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reading top-to-bottom, plus- and minus-nodes al
ternate. 

We now prove a sufficient condition for a bag 
tree to be an interchange tree and use it to derive 
an interchange algorithm. 

Theorem 4. Any alternating tree T is also an 
interchange tree. 

Proof. Let 11" = aaf3c-y and 11" 1 = abf3do be two 
successive permutations in L(T), where a, b, c, 
d E {O, 1, ... , r}, a =f:. b, c =f:. d, and a, {3, y, o E 

{O, 1, ... , t} *. In words, the first symbols that dif
fer are a and b and the next symbols that differ 
are c and d. The nodes labeled a and b have a 
common parent; call the tree rooted at their 
parent an m-tree-thus, like n, m is a sequence 
that represents a bag. Nodes c and d have differ
ent parents; call the tree rooted at c's parent a 
p-tree and the tree rooted at d's parent a q-tree. 
There are two symmetric cases, depending upon 
whether a < b or a> b. We discuss only the case 
a <b. 

Suppose a <b. Since children are labeled 
monotonically, m1 = 0 for all a< i <b. This im
plies P; == 0 and q1 == 0 for all a < i <b. Since {3 is 
common to both 11" and 11" 1 , P; = q1 for ii= a and 
i =I= b; further, qa =Pa+ 1 and Pb= qb + 1. Be
cause T is alternating, the nodes labeled c and d 
both have either the largest or the smallest labels 
among their respective siblings. 

In the "smallest" case, we have c = min{i I P; 
> O} and d = rnin{i I qi> O}. We argue that d =a 
-the proof that c = b is similar. 

d 
( d is the smallest sibling) 

min{i I 0 ~ i /\ q1 > O} 
::;;: (Since P; = q1 for i <a, if some such 

qi> 0, then c = d; but c * d) 

min{ i I a ~ i /\qi> 0} 
(qa=Pa+ l >0) 

a 

The "larger" case is similar and is omitted. 
Hence, a = d and b = c in either case. Also, 
p I c = q I d and thus, because T is alternating, 
y=o. o 

An interchange tree need not be an alternat
ing tree, since permuting the symbols 0, I, ... , t 
changes an interchange tree into an interchange 
tree but may not maintain the alternating-tree 
property. 

We remove some of the nondetenninism in 
algorithm GenBag so that its recursion tree is an 
alternating tree (see Fig. 2). We introduce a global 
boolean array d[O .. #n - 1), where d; = "the cur
rent node at level i is a plus-node". By Id I and 
\ 11" I we denote the number of elements in array 

d and sequence 11". Note that Id I is the length of 
the permutations to be generated. The qualifier 
"by dk" in the for statement of line (TS) indicates 

{Array d is global. Print all sequences 11"0: where o: is an n-pertnutation} 
(Tl) procedure GenAlt ( n : array [O .. t] of natural; rr : sequence); 
(T2) var j : O .. t; k : O .. \d\; 
(T3) begin 
(T4) if n 0 ::::: n1 = · · · = n 1 == 0 then Print( 'I!" ) else begin 
(T4) k := \7rj; 
(T5) for j E {p I 0 S p ::=; t /\ np > O} by dk do 
(T6) GenAlt{ n\;, 1t" q, j ); 
(T7) Change( dk ) 
(T8) end 
(T9) end 

Fig. 2. Algorithm GenAlt. 
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_,....l+ - 2 = 0012 
o+-!_ -.......... 2- - 1 = 0021 

<2+-Q = 0120 
o+ 1-

\ <::=:: :::: 
2+ 

1- -- Q. = 0210 

2---0+-·0 = 1-< : __ := 
o+< 

2+ --Q:::: 

1200 

1002 

1020 < 1---·Q = 2010 

2+<Zo- o+ --1 = 2001 

1+ --Q- -- Q = 2100 

Fig. 3. Recursion tree (A) for n = (2, I, I). 

< 1+--2 = 0012 
o+ 

2- --1 = 0021 

1-<20--0 = 0120 l o+ o+ --2 = 0102 

.,....- 0- -1 :::: 0201 

2+ .............. 10--0:::: 0210 

+ ~ /0--00--0 = 1200 

1-~n <20-- 0 = 1020 
0-

o+ -- 2 = 1002 

o---a = 2001 

o+< 2+< 10--0 = 2010 

""10-- OD-- 0 = 2100 

Fig. 4. Recursion tree ( B) for n = (2, I, 1). 

whether the elements of the set are selected in 
increasing order (dk is true) or decreasing order 
(dk is false). For the initial call GenA!t(n, s}, the 
sequence produced will depend on the initial 
value of array d. 

Change can either leave d k unchanged or negate 
it arbitrarily; the algorithm is still an interchange 
algorithm. 

Different choices of Change give different ver
sions of GenAlt. Two particular choices, which 
we call Version A and Version B, are specified 
below. 

The call Change(d*) negates dk if there is 
more than one i such that n; > 0. Otherwise, 

{Given 0 $ k :5 ldJ, 
print all sequences ?r[O .. k - l]a where a is an n-permutation.} 

(Al) procedure GenAltA( k: O .. JdJ ); 
(A2) var j : O •• t; 
(A3) begin 
(A4) if n0 = n1 "" · · · == n1 = 0 then Print( 7r ) 

(A5) else begin 
(A6) for j E {p I np > o} by d1c do begin 
(A 7) 7r1c :::::: j; 
(AS) ni := n1 - 1; 
(A9) GenAltA( k + 1 ); 
(AlO) nj := n1 + l 
(A12) end; 
(A13) dk := not di. {Change(dr.)} 
(Al4) end 
(A15) end 

Fig. 5. Version A of Algorithm GenA/t. 
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In Version A, Change(dk) is 

dk :=not dk. 

In Version B, Change(dk) is 

ifmax{np ... ,nJ >Othen dk==not dk. 

Figure 3 shows the recursion tree for Version 
A with input n = (2, 1, 1 ). The + 's and - 's 
indicate whether the nodes are plus-nodes or 
minus-nodes. Figure 4 is the corresponding tree 
for Version B; the squares indicate nodes at 
which dk does not change. In both figures we 
assume that, for all k E O .. n - 1, the initial value 
of dk is true. 

In Fig. 5 we show an implementation of Ver
sion A where rr, d, and n are global; then the 
only parameter of the procedure is k, which is 
the level of the recursion. The initial call is 
GenAltA(O). 

3. Efficient implementation 

We now show how to implement GenA/t to 
achieve constant amortized time. Our algorithm, 
given in Fig. 6, follows the general approach of 
Ruskey and Roelants van Baronaigien [10]. It 
requires that the symbols have been arranged so 
that sequence n is in descending order: n 0 ~ n 1 

> · · · ~ n 1• Next, it requires eliminating certain 
nodes in the recursion tree. Define an i-path as a 
path in the recursion tree, all of whose nodes are 
labeled i and have degree at most one. (The 
nodes on 0-paths are underlined in Fig. 3.) We 
will remove all 0-paths from the recursion tree. 

For example, consider the case n = (m, 1, 1). 
The unpruned recursion tree has (m + 5Xm + 
3Xm + 1)/3 nodes with (m + 2Xm + l) leaves. 
Deleting 0-paths reduces the number of nodes to 
(2m + 5Xm + 1). 

There are two subtle, but crucial, differences 
from GenAltA. The first is that the test at line 
(84) does not include n 0; this causes 0-paths to 
be eliminated. The second difference is that 
'1T[ k .. \ d I - 1] contains all zeroes upon a call 
GenA/tB(k) (which requires that rr contain all 
zeroes at the call GenAltB(O}). This restriction 
allows us to conclude that if all ni are 0 except 
for n0 , then rr contains the permutation to be 
printed. Note that this requirement is satisfied at 
the recursive call within GenAltB. The assign
ment rr k := 0 is needed because '1T should be left 
unchanged by execution of a call to GenAltB. 

In order to achieve constant amortized time 
behavior, maintain the nonzero n/s (only) as a 
doubly linked list. Then the test n 1 = n 2 = · · · = 
n, = 0 can be done in constant time (it is equiva
lent to the length of the list being 1), and the loop 

{Given 0 :'.S k :=; \d\ and ?r(k .. JdJ- l] are all zeroes, 
print all sequences 7r[O .. k - l]a where a is an n·permutation.} 

(Bl) procedure GenAltB ( k: O .. \dJ ); 
(B2) var j : O .. t; 
(B3) begin 
(B4) if n 1 ""n2 ;; · · • = n1 = 0 then Print( ir ) 

(B5) else begin 
(B6) for j E {p I nP > O} by dk do begin 
(B7) 1fk :== J; 
(B8) n1 := n, - l; 
(B9) GenAltB( k + 1 ); 
(BlO) ni := n1 + l; 
(Bll) 7fk := 0 
(B12) end; 
(Bl3) dk := not dk {Change(dk)} 
(Bl4) end 
(B15) end 

Fig. 6. Version B of Algorithm GenA/t. 

267 



Volume 41, Number 5 INFORMATION PROCESSING LETTERS 3 April 1992 

can be executed in time proportional to the num
ber of iterations, except for recursive calls. Thus 
the computation time is proportional to the num
ber of recursive calls. We now show that the 
number of recursive calls is at most four times the 
number of bag permutations printed. This will 
complete the argument that the algorithm runs in 
constant amortized time. 

The following two bag coefficient identities 
will prove useful. The first identity is classic and 
is simply a restatement of (I); the second may be 
verified by induction on n0 • 

E ( #n ~ 1 ) 
. n 11 , •• .,ni_ 1, n; I, n;+J>···,n, r=O 

= ( 11rp n ~~ .. , n 1 )' 

no ( #n - i ) 
.E n 0 - i, n 1, ••. , n 1 
r=O 

#n + 1 ( #n ) 
= n - no+ 1 ncp n,, ... , n, . 

(2) 

(3) 

The number of nodes of degree one in the 
recursion tree T of GenAltB is equal to the 
number of nodes on i-paths in T, where i > 0. 
The number of nodes at level #n j + 1 (with 
the root at level 0) on i-paths in T is the same as 
the number of bag permutations specified by 

For the example of Fig. 4, in Version B the 
number of nodes on 2-paths at level 4 is 3 (corre
sponding to 001, 010, and 100), and there arc no 
2-paths at level 3. Thus, the total number of 
nodes of degree one is given by the following 
expression: 

( #n - 1 ) 
X n 0 , .. .,n;-p n;-1, n;+ 1, •• .,n1 

~ #n ~:, + l (no, n~~ .. ,nJ 
~ 2(n0 ,n~~ . .,n1 )· ( 4) 
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All other internal nodes of the tree have de
gree greater than one, so there cannot be more of 
them than there are leaf nodes. Thus, the total 
number of nodes in the tree is at most 4C(n). 

Finally, we remark that it is also possible to 
implement Version A in constant amortized time 
by keeping track of how many 0-paths have been 
deleted so far at any given level. This does, how
ever, greatly complicate the algorithm. Details 
may be found in [6]. 

4. Concluding remarks 

When all n; equal 1, Versions A and B pro
duce the same list of #n! permutations, and this 
list appears to be different than any of those 
produced by the permutation generation algo
rithms surveyed in [12] or [7]. 

The proof technique used in (1,9) to show the 
interchange property is different than that used 
here. Their proof is inductive and is based on the 
starting permutation being on°1n 1 and the ending 
permutation being 1on11 1'' 1 - 1• For t > I the end
ing permutations are not so easy to specify. For 
example, 

303131122233 and 3033220212 

are both ending permutations of (starting from 
0132335 and 0212433, respectively) Version B. 

Finally, a ranking algorithm for Version A, 
similar to the ranking algorithm presented by 
Lucas, Roelants van Baronaigien, and Ruskey (8], 
as well as an unranking algorithm can be devel
oped; details may be obtained from the authors. 
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