
Information Processing Letters 41 (1992) 263-269
North-Holland

3 April 1992

Generating permutations of a bag
by interchanges
Chun Wa Ko*
Centrum roor Wiskunde en lnformatica, Postbus 4079, 1009 AB Amsterdam, Netherlands

Frank Ruskey * *
Department of Computer Science, UniFersit)• of Victoria, P.O. Box 1700, Victoria, B.C., Canada VBW 2Y2

Communicated by D. Gries
Received 18 May 1990
Revised 25 N()vember 1991

Abstract

Ko. C.W. and F. Ruskey, Generating permutations of a bag by interchanges, Information Processing Letters 41 (1992)
263-269.

We present algorithms for generating all permutations of a given bag so that successive permutations differ by the
interchange of two elements. One version of the algorithm runs in time linear in the number of permutations.

Keywords: Analysis of algorithms, bag, multiset, permutation, interchange

l. Introduction

A bag is a collection of not necessarily distinct
elements. Early algorithms for generating all per
mutations of a bag were developed by Sag [11],
Bradey [2], Chase [3], and Hu and Tien [5]. None
of these algorithms runs in constant amortized
time, i.e., time linear in the number of permuta
tions generated. A permutation algorithm has the

Correspondence to: F. Ruskey, Department of Computer
Science, University of Victoria, P.O. Box 1700, Victoria, B.C.,
Canada V8W 2Y2. Email: fruskey@csr.uvic.ca.

* Research supported by a Natural Sciences and Engi
neering Research Council Postgraduate Scholarship while at
the University of Victoria. Email: chun(g>cwi.nl.

* * Research supported by the Natural Sciences and Engi
neering Research Council of Canada under grant A3379.

interchange property if successive permutations
differ by the interchange of two elements. Ruskey
and Roelants van Baronaigien's algorithm [10]
runs in constant amortized time but does not
have the interchange property; Chase's algorithm
[3] does not have the interchange property but
runs in constant amortized time. We present an
algorithm that has both properties.

The problem of developing a constant amor
tized time algorithm for generating bag permuta
tions is given as an exercise by Reingold, Nie·
vergelt, and Deo [9]. However, the solutions man
ual [4] presents Hu and Tien's algorithm [5] and
references two other algorithms, all of which do
not run in constant amortized time.

We consider bags over the elements 0, 1, ... , t.
We represent a bag by a sequence n =
(n 0 , .. ., n), where each n; is the number of

0020-0190/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved 263

Volume 41. Number 5 INFORMATION PROCESSING LETTERS 3 April 1992

occurrences of i in the bag. Also, #n denotes the
size of the bag, or the sum of the n1• If n1 > 0, n I;
denotes sequence n with n1 decremented by one:

An n-permutation is a permutation of bag n. The
number of n-permutations is the bag coefficient
C(n).

(#) #n' C(n) = n = ·
no' n I> ••. , n, n In 1 ••• n ' .

O• t • 1 •

These coefficients satisfy the following recur
rence relation:

I

C(n)= I:C(nl;). (1)
i=O

2. The algorithms

The bag permutations can be generated by the
recursive algorithm that follows from the familiar
proof of recurrence relation (1) for bag coeffi
cients; it classifies the permutations according to
their first symbol. This leads to algorithm GenBag
in Fig. 1. Operator e denotes concatenation.
The call GenBag(n, e), where e denotes the
empty sequence, generates all n-permutations.

Depending on the order in which the j's are
selected by the for statement in line (G5), differ
ent recursion trees arise, each of which leads to a
different sequence of permutations. Selecting the
elements in increasing order prints a lexico
graphic list of the n-perrnutations. These recur
sion trees are in one-to-one correspondence with
what we call bag trees.

Definition 1. A labeled ordered tree is an (n, s)
tree if its root is Iabeled s and, for each n. > 0 its

' ' root has a child that is the root of an (n I;, i)-tree.

When we do not wish to specify the label at
the root, we write simply n-tree. An n-tree is also
called a bag tree. We regard bag trees as being
embedded in the plane with the root on the left
and leaves on the right. The ordering of subtrees
is from top to bottom. To each n-tree T there is a
corresponding list L(T) of all n-permutations;
this list is precisely the list of permutations printed
by GenBag. Each permutation can. be obtained
by traversing T from its root to a leaf and record
ing the labels of the nodes encountered.

Definition 2. A bag tree T is an interchange tree if
successive permutations in list L(T) differ by an
interchange of two elements.

The following examples illustrate the preced
ing definitions. For n = (2, I), there are exactly
four bag trees. The list 001, 100, 010 is not L(T)
for any bag tree T. For n = (2, 2), there is a
unique bag tree T such that L(T) = 0011, 0110,
0101, 1010, 1001, 1100; however, T is not an
interchange tree.

We call a node of a bag tree a plus-node if its
children are labeled in increasing order and a
minus-node if they are labeled in decreasing or
der. A node with only one child is both a plus
node and a minus-node.

Definition 3. An alternating tree is a bag tree in
which every internal node is either a plus-node or
a minus-node and, at each level of the tree,

{Print all sequences 11'0' where Q is an n-permutation}
(Gl) procedure GenBag (n : array [O .. t] of natural; 7!' : sequence);
(G2) var j : O .. t;
(G3) begin
(G4) if no= n1 = · · · = n1 = 0 then Print(rr)
(GS) else for j E {p I 0::; p 5 t A np > O} do
(G6) Gen.Bag(nl;,71'ffij)
(G7) end

Fig. I. Algorithm GenBag.

264

Volume 41, Number 5 INFORMATION PROCESSING LETTERS 3 April 1992

reading top-to-bottom, plus- and minus-nodes al
ternate.

We now prove a sufficient condition for a bag
tree to be an interchange tree and use it to derive
an interchange algorithm.

Theorem 4. Any alternating tree T is also an
interchange tree.

Proof. Let 11" = aaf3c-y and 11" 1 = abf3do be two
successive permutations in L(T), where a, b, c,
d E {O, 1, ... , r}, a =f:. b, c =f:. d, and a, {3, y, o E

{O, 1, ... , t} *. In words, the first symbols that dif
fer are a and b and the next symbols that differ
are c and d. The nodes labeled a and b have a
common parent; call the tree rooted at their
parent an m-tree-thus, like n, m is a sequence
that represents a bag. Nodes c and d have differ
ent parents; call the tree rooted at c's parent a
p-tree and the tree rooted at d's parent a q-tree.
There are two symmetric cases, depending upon
whether a < b or a> b. We discuss only the case
a <b.

Suppose a <b. Since children are labeled
monotonically, m1 = 0 for all a< i <b. This im
plies P; == 0 and q1 == 0 for all a < i <b. Since {3 is
common to both 11" and 11" 1 , P; = q1 for ii= a and
i =I= b; further, qa =Pa+ 1 and Pb= qb + 1. Be
cause T is alternating, the nodes labeled c and d
both have either the largest or the smallest labels
among their respective siblings.

In the "smallest" case, we have c = min{i I P;
> O} and d = rnin{i I qi> O}. We argue that d =a
-the proof that c = b is similar.

d
(d is the smallest sibling)

min{i I 0 ~ i /\ q1 > O}
::;;: (Since P; = q1 for i <a, if some such

qi> 0, then c = d; but c * d)

min{ i I a ~ i /\qi> 0}
(qa=Pa+ l >0)

a

The "larger" case is similar and is omitted.
Hence, a = d and b = c in either case. Also,
p I c = q I d and thus, because T is alternating,
y=o. o

An interchange tree need not be an alternat
ing tree, since permuting the symbols 0, I, ... , t
changes an interchange tree into an interchange
tree but may not maintain the alternating-tree
property.

We remove some of the nondetenninism in
algorithm GenBag so that its recursion tree is an
alternating tree (see Fig. 2). We introduce a global
boolean array d[O .. #n - 1), where d; = "the cur
rent node at level i is a plus-node". By Id I and
\ 11" I we denote the number of elements in array

d and sequence 11". Note that Id I is the length of
the permutations to be generated. The qualifier
"by dk" in the for statement of line (TS) indicates

{Array d is global. Print all sequences 11"0: where o: is an n-pertnutation}
(Tl) procedure GenAlt (n : array [O .. t] of natural; rr : sequence);
(T2) var j : O .. t; k : O .. \d\;
(T3) begin
(T4) if n 0 ::::: n1 = · · · = n 1 == 0 then Print('I!") else begin
(T4) k := \7rj;
(T5) for j E {p I 0 S p ::=; t /\ np > O} by dk do
(T6) GenAlt{ n\;, 1t" q, j);
(T7) Change(dk)
(T8) end
(T9) end

Fig. 2. Algorithm GenAlt.

265

Volume 41, Number 5 INFORMATION PROCESSING LETTERS 3 April 1992

_,....l+ - 2 = 0012
o+-!_ -.......... 2- - 1 = 0021

<2+-Q = 0120
o+ 1-

\ <::=:: ::::
2+

1- -- Q. = 0210

2---0+-·0 = 1-< : __ :=
o+<

2+ --Q::::

1200

1002

1020 < 1---·Q = 2010

2+<Zo- o+ --1 = 2001

1+ --Q- -- Q = 2100

Fig. 3. Recursion tree (A) for n = (2, I, I).

< 1+--2 = 0012
o+

2- --1 = 0021

1-<20--0 = 0120 l o+ o+ --2 = 0102

.,....- 0- -1 :::: 0201

2+ 10--0:::: 0210

+ ~ /0--00--0 = 1200

1-~n <20-- 0 = 1020
0-

o+ -- 2 = 1002

o---a = 2001

o+< 2+< 10--0 = 2010

""10-- OD-- 0 = 2100

Fig. 4. Recursion tree (B) for n = (2, I, 1).

whether the elements of the set are selected in
increasing order (dk is true) or decreasing order
(dk is false). For the initial call GenA!t(n, s}, the
sequence produced will depend on the initial
value of array d.

Change can either leave d k unchanged or negate
it arbitrarily; the algorithm is still an interchange
algorithm.

Different choices of Change give different ver
sions of GenAlt. Two particular choices, which
we call Version A and Version B, are specified
below.

The call Change(d*) negates dk if there is
more than one i such that n; > 0. Otherwise,

{Given 0 $ k :5 ldJ,
print all sequences ?r[O .. k - l]a where a is an n-permutation.}

(Al) procedure GenAltA(k: O .. JdJ);
(A2) var j : O •• t;
(A3) begin
(A4) if n0 = n1 "" · · · == n1 = 0 then Print(7r)

(A5) else begin
(A6) for j E {p I np > o} by d1c do begin
(A 7) 7r1c :::::: j;
(AS) ni := n1 - 1;
(A9) GenAltA(k + 1);
(AlO) nj := n1 + l
(A12) end;
(A13) dk := not di. {Change(dr.)}
(Al4) end
(A15) end

Fig. 5. Version A of Algorithm GenA/t.

266

Volume 41, Number 5 INFORMATION PROCESSING LETIERS 3 April 1992

In Version A, Change(dk) is

dk :=not dk.

In Version B, Change(dk) is

ifmax{np ... ,nJ >Othen dk==not dk.

Figure 3 shows the recursion tree for Version
A with input n = (2, 1, 1). The + 's and - 's
indicate whether the nodes are plus-nodes or
minus-nodes. Figure 4 is the corresponding tree
for Version B; the squares indicate nodes at
which dk does not change. In both figures we
assume that, for all k E O .. n - 1, the initial value
of dk is true.

In Fig. 5 we show an implementation of Ver
sion A where rr, d, and n are global; then the
only parameter of the procedure is k, which is
the level of the recursion. The initial call is
GenAltA(O).

3. Efficient implementation

We now show how to implement GenA/t to
achieve constant amortized time. Our algorithm,
given in Fig. 6, follows the general approach of
Ruskey and Roelants van Baronaigien [10]. It
requires that the symbols have been arranged so
that sequence n is in descending order: n 0 ~ n 1

> · · · ~ n 1• Next, it requires eliminating certain
nodes in the recursion tree. Define an i-path as a
path in the recursion tree, all of whose nodes are
labeled i and have degree at most one. (The
nodes on 0-paths are underlined in Fig. 3.) We
will remove all 0-paths from the recursion tree.

For example, consider the case n = (m, 1, 1).
The unpruned recursion tree has (m + 5Xm +
3Xm + 1)/3 nodes with (m + 2Xm + l) leaves.
Deleting 0-paths reduces the number of nodes to
(2m + 5Xm + 1).

There are two subtle, but crucial, differences
from GenAltA. The first is that the test at line
(84) does not include n 0; this causes 0-paths to
be eliminated. The second difference is that
'1T[k .. \ d I - 1] contains all zeroes upon a call
GenA/tB(k) (which requires that rr contain all
zeroes at the call GenAltB(O}). This restriction
allows us to conclude that if all ni are 0 except
for n0 , then rr contains the permutation to be
printed. Note that this requirement is satisfied at
the recursive call within GenAltB. The assign
ment rr k := 0 is needed because '1T should be left
unchanged by execution of a call to GenAltB.

In order to achieve constant amortized time
behavior, maintain the nonzero n/s (only) as a
doubly linked list. Then the test n 1 = n 2 = · · · =
n, = 0 can be done in constant time (it is equiva
lent to the length of the list being 1), and the loop

{Given 0 :'.S k :=; \d\ and ?r(k .. JdJ- l] are all zeroes,
print all sequences 7r[O .. k - l]a where a is an n·permutation.}

(Bl) procedure GenAltB (k: O .. \dJ);
(B2) var j : O .. t;
(B3) begin
(B4) if n 1 ""n2 ;; · · • = n1 = 0 then Print(ir)

(B5) else begin
(B6) for j E {p I nP > O} by dk do begin
(B7) 1fk :== J;
(B8) n1 := n, - l;
(B9) GenAltB(k + 1);
(BlO) ni := n1 + l;
(Bll) 7fk := 0
(B12) end;
(Bl3) dk := not dk {Change(dk)}
(Bl4) end
(B15) end

Fig. 6. Version B of Algorithm GenA/t.

267

Volume 41, Number 5 INFORMATION PROCESSING LETTERS 3 April 1992

can be executed in time proportional to the num
ber of iterations, except for recursive calls. Thus
the computation time is proportional to the num
ber of recursive calls. We now show that the
number of recursive calls is at most four times the
number of bag permutations printed. This will
complete the argument that the algorithm runs in
constant amortized time.

The following two bag coefficient identities
will prove useful. The first identity is classic and
is simply a restatement of (I); the second may be
verified by induction on n0 •

E (#n ~ 1)
. n 11 , •• .,ni_ 1, n; I, n;+J>···,n, r=O

= (11rp n ~~ .. , n 1)'

no (#n - i)
.E n 0 - i, n 1, ••. , n 1
r=O

#n + 1 (#n)
= n - no+ 1 ncp n,, ... , n, .

(2)

(3)

The number of nodes of degree one in the
recursion tree T of GenAltB is equal to the
number of nodes on i-paths in T, where i > 0.
The number of nodes at level #n j + 1 (with
the root at level 0) on i-paths in T is the same as
the number of bag permutations specified by

For the example of Fig. 4, in Version B the
number of nodes on 2-paths at level 4 is 3 (corre
sponding to 001, 010, and 100), and there arc no
2-paths at level 3. Thus, the total number of
nodes of degree one is given by the following
expression:

(#n - 1)
X n 0 , .. .,n;-p n;-1, n;+ 1, •• .,n1

~ #n ~:, + l (no, n~~ .. ,nJ
~ 2(n0 ,n~~ . .,n1)· (4)

268

All other internal nodes of the tree have de
gree greater than one, so there cannot be more of
them than there are leaf nodes. Thus, the total
number of nodes in the tree is at most 4C(n).

Finally, we remark that it is also possible to
implement Version A in constant amortized time
by keeping track of how many 0-paths have been
deleted so far at any given level. This does, how
ever, greatly complicate the algorithm. Details
may be found in [6].

4. Concluding remarks

When all n; equal 1, Versions A and B pro
duce the same list of #n! permutations, and this
list appears to be different than any of those
produced by the permutation generation algo
rithms surveyed in [12] or [7].

The proof technique used in (1,9) to show the
interchange property is different than that used
here. Their proof is inductive and is based on the
starting permutation being on°1n 1 and the ending
permutation being 1on11 1'' 1 - 1• For t > I the end
ing permutations are not so easy to specify. For
example,

303131122233 and 3033220212

are both ending permutations of (starting from
0132335 and 0212433, respectively) Version B.

Finally, a ranking algorithm for Version A,
similar to the ranking algorithm presented by
Lucas, Roelants van Baronaigien, and Ruskey (8],
as well as an unranking algorithm can be devel
oped; details may be obtained from the authors.

Acknowledgment

We wish to thank David Gries for his many
contributions to the presentation of this paper,
for pointing out an error in our original submis
sion, and for reference [7].

References

[I] J.R. Bitner, G. Ehrlich and E.M. Reingold, Efficient
generation of the binary reflected gray code and its
applications, Comm. ACM 19 (1976) 517-521.

IN! ORMATlON PRO(TSSING LETrERS

!:!j P Br~it.Hev, A~gorJthm P.:ermttan-l:~n:t, v~,,nh rcpehh~~n~"
(.H. M Ul I 1%il 450.

[3J P Chai><.'. r\.l11onthm ,:\ii.~: l'ermt:tJli011s ol '1l set "all
BI

EM .. Rem!Jold, .\1..inulil Cum·
bm,aorwl .4./.~1m1flmJ. fh!'m•· and l'r"' 11a (Pre11Hi.X tfall,
E11j1.lewood Cl!!!~. N.l. !Qi'7l
re !fo RN T:eit. Gener,J!mg !lNml.llalKHl' lll<l!h
l1<.•11di!.!m-cl 1!cm> ... 4m1·r .licfotli 8..~; !9711! M2'i-

le;·, ibe~is. Dep! (ll Cc:m1pu1e1 Sc:~oc~. t:ni,;e;li.lly uf
Vcton;;,, l YX5

~j \\ Lip!>lu. ~fore on pcnnu1<111011 gcnt:1:1t1m1 mt!li,ld;.,
C¥npu1ing 23 I !~7111 357-:\h'i

D. Roela1u~ van &mn:;igicn uid E Rui..key.
On Wtiii!Kl!I~ 1111d. the generatlcm 11f l:•ma!'ll trees, Tech.
RepL DCS Bi IR. C111ven.11v of Vl!.·11m~. !'19\J,. submit·
kd
E !'.I Reing,•lJ, N1e•,i:rgdt and 'l D(o, Cornl~mi!imui
,"l/~omhm.1. lht«NV 11nd Prurn<i' lPreriti(e Halt Engle·
'i\>111.ld Giih. NJ. 1':17"11
F Ru>keJ; and D Rtwlants VJ!! B;mm:i1g1e11. fasl h!'Cll!·

sM: ~!1ronH1m~ Im genera!mg .:ombm~tomil ''bJeds.
C1mgr .\'umer. 41 i.19114153 -1'>2.

!! ll r W Sag. Algonthm 242 Permutations d :i m w1!11
rqlt>li11om. Comm. ACM 7 !l%4l 585.

l i~l R ~edge-..1,:k, Permuta1"-ni ~enerniion methods, C<;m~11
Sunt'I."~ (!9771 37 lM.

269

