
Vectorwise: a Vectorized Analytical DBMS
Marcin Zukowski, Actian Netherlands

Mark van de Wiel, Actian Corp
Peter Boncz, CWI

Abstract— Vectorwise is a new entrant in the analytical
database marketplace whose technology comes straight from
innovations in the database research community in the past
years. The product has since made waves due to its excellent
performance in analytical customer workloads as well as bench-
marks. We describe the history of Vectorwise, as well as its
basic architecture and the experiences in turning a technology
developed in an academic context into a commercial-grade
product. Finally, we turn our attention to recent performance
results, most notably on the TPC-H benchmark at various sizes.

I. INTRODUCTION

Even though someone once said that database research is
like “polishing a round ball” or some academic researchers
might believe that they are no longer able to impact a mature
industry like database systems dominated by multi-billion
dollar behemoth companies, the story of Vectorwise tells that
one should not stop dreaming and setting high goals. The
CWI database research group as whole has long worked on
analytical database systems, and achieved significant academic
acclaim with that, yet reaching the top of the TPC-H leader-
board in per-core performance through its Vectorwise spin-off,
in the first months of 2011 was a special kind of success, if
one realizes how such a small team of people managed to
beat products that are years on the market, backed by deep
R&D budgets and the collective brains of many smart research
colleagues. In this presentation, we will first discuss the history
of the Vectorwise project. Subsequently we will describe its
technical architecture, and in particular, how the X100 system
developed at CWI was integrated into the Ingres RDBMS.
Finally, we will turn our attention to some of the performance
characteristics of the Vectorwise system.

A. Abridged History of VectorWise

The CWI database research group develops MonetDB, a
main-memory columnar database system designed for ana-
lytical workloads, whose column-at-a-time processing model
materializes full intermediate results. This materialization may
lead to very significant, avoidable, resource consumption.
By 2005 the X100 follow-up project at CWI, was started
to remove that problem, yet keep the efficient architecture-
conscious execution model that characterizes MonetDB.

The X100 engine pioneered the concept of vectorized query
execution [1], which strikes a balance between the full ma-
terialization of MonetDB and tuple-at-a-time pipelining used
in most other database systems. While tuple-pipelining is a
logical and elegant model, straightforward implementations of
it, that transport just a single tuple-at-a-time through a query

pipeline are bound to spend most execution time in inter-
pretation overhead rather than query execution. Vectorwise
tends to be more than 10 times faster than pipelined query
engines in terms of raw processing power, and since it avoids
the penalties of full materialization, is also significantly faster
than MonetDB. The X100 query execution engine turned out
to be so fast that to keep it I/O balanced, the research focus
shifted to providing fast I/O, leading to novel compression
schemes (e.g. PFOR [2]), hybrid PAX/DSM storage [3],
and bandwidth sharing by concurrent queries (Cooperative
Scans [4]). Additionally, column-friendly differential update
schemes (PDTs [5] were devised.

After the project had reached a certain level of maturity,
CWI founded Vectorwise in August 2008 as a spin-off and
entered into a collaboration agreement with Ingres Corp. (now
Actian) to integrate X100 in its Ingres RDBMS in order to
develop a new analytical database product. The product was
initially developed by a small team of core engineers and
researchers in Amsterdam, with help of Ingres engineers to
integrate the two systems. The project was announced in sum-
mer 2009, went alpha at the end of 2009, and beta in March
2010. Version 1.0 was released in June 2010 and version 2.0,
which also runs on Windows, in October 2011. Vectorwise is
currently targeting mid-sized (multi-TB) data warehouses and
data marts where its performance is very high and it holds a
simplicity and cost advantage to MPP alternatives. The product
has been well received by the market, and especially by a
rapidly increasing community of customers.

B. Technical Architecture

Forced by the restrictions of 16-bits machines (!) the archi-
tecture of Ingres [6] was historically decomposed in multiple
server processes, a fact that remains in the 2011 64-bits
release of Ingres 10. This multi-process setup made it easy
to add the X100 engine into it. Vectorwise combines both
the Ingres execution and storage engine and X100 execution
and storage, and allow to store data in either kind of table,
where “classic” Ingres storage favors OLTP style access and
Vectorwise storage favors OLAP. To this end, the Ingres
CREATE TABLE DDL which already supports various table
types, was extended with a (default) VECTORWISE type.

Significant modification were made to the Ingres query
optimizer, mostly to improve its handling of complex ana-
lytical queries; such modifications, e.g. functional dependency
tracking and subquery re-use, also benefit Ingres 10. A fully
new component in the Ingres architecture, finally, is the cross
compiler [7] that translates optimized relational plans into



algebraic X100 plans. The Ingres query optimizer provides
quite accurate histogram-based query estimation, and the long
lead time in writing a new optimizer from scratch made us
choose to improve rather than re-implement it for Vectorwise.
Adding features in the optimizer was sometimes possible,
but due to the high complexity of this component and its
relative isolation from the query execution it was ofter easier to
implement new features in other layers. In particular, we also
implemented a column-oriented rewriter module inside the
X100 system. It is a rule-based rewriting system using the Tom
pattern matching tool [8]. The presence of a separate, column-
oriented rewriter has aided the project as certain functionality
can be engineered with much less impact to the main Ingres
optimizer. The rewriter has been used to implement a variety
of functionalities, which include among others null handling
and multi-core parallelization.

To avoid making all query execution operators and functions
NULL-aware, and therefore more complex and slower, Vec-
torwise internally represents NULLs as two columns: a binary
NULL indicator and a value column, with a ”safe” value
for NULLs; stored together in PAX. In the rewriter phase,
operations on NULLable inputs are rewritten into equivalent
operations on two “standard” relational inputs.

The original X100 prototype was single-threaded, but given
the multi-core trend it became obvious, that a new analytical
database system could only go to market with multi-core
capability. The Vectorwise rewriter was used to implement a
Volcano-style query parallellizer, which realized this feature
quite well in a short time span.

Transactions in Vectorwise are based on Positional Delta
Trees (PDT [5]). PDTs are an advanced form of differential
data structures, which help keeping updates fast in column-
oriented database systems. The idea is not to perform updates
in place, which for each modified record would lead to one
I/O for each column, plus additional recompression overhead.
Rather, updates are gathered in a differential structure, that
contains differences with respect to the stable table image.
Incoming queries hence need to merge in the differences from
these structures, while they scan data from disk. In case of
PDTs, this differential structure annotates changes (insertions,
deletions, updates) by tuple position rather than by tuple key
values. The advantage of positional deltas is that incoming
queries can merge in changes faster and queries do not need
to scan the key columns to do so. In order to provide full
ACID properties, Vectorwise uses a Write Ahead Log that logs
PDTs as they are committed and performs optimistic PDT-
based concurrency control. Further, it ensures its transactional
model is in sync with that of the existing Ingres RDBMS.

C. VectorWise Performance

There is hardly a single customer or prospect testing
Vectorwise who does not quickly note its extremely high
performance; which is the main reason for its popularity. To
demonstrate this, a number of audited TPC-H benchmarks
scores were released:

• a 100GB result on a 144GB HP DL380 (2-socket, 12-
core) producing a 251K QphH score on Linux. This score
is quite comparable to a SQLserver score on almost the
same hardware that yielded 74K on Windows.

• another 100GB result on a 192GB Dell R610 (also a 2-
socket, 12-core) producing a 303K QphH score on Linux.
The higher score is partially due to using a slightly newer
version of Vectorwise (1.6 vs 1.5).

• a 300GB result on a 512GB Dell R910 (a 4-socket, 32-
core) producing a 400K QphH score on Linux.

• a 1TB result on a 1024GB Dell R910 (also a 4-socket,
32-core) producing a 436K QphH score on Linux.

All results were still leading for non-clustered database sys-
tems at time of this writing.

One might note that in all cases the RAM size is larger than
the database size. While we already named many innovations
to boost the I/O performance of Vectorwise, and the TPC-H
benchmark could run on machines with much less memory, the
reason to choose this configuration was that avoiding I/O is
in absolute terms always better than coping with it efficiently,
and achieving highest overall performance is the goal of such
benchmark exercises.

Limited optimization effort was spent to achieve these TPC-
H performance results, mostly in producing better parallelliz-
ing plans for the power run, as well as better load balancing,
which benefits the throughput run. Some other effort was spent
in making updates faster, this was especially relevant in the
throughput runs.

ACKNOWLEDGMENT

We would like to thank the entire Vectorwise team, includ-
ing Sandor Heman, Michal Szafranski, Giel de Nijs, Gosia
Wrzesinska, Kamil Anikiej, Hui Li, Willem Konijnenberg,
Juliusz Sompolski, Michal Switakowski and Ala Luszczak, as
well as Doug Inkster, Zelaine Fong, Karl Schendel and Ian
Kirkham and Keith Bolam for their contributions.

REFERENCES

[1] P. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: Hyper-pipelining
query execution.” in CIDR, 2005.

[2] M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-Scalar RAM-CPU
Cache Compression,” in ICDE, 2006.

[3] M. Zukowski, “Balancing vectorized query execution with bandwidth-
optimized storage,” 2009.

[4] M. Zukowski, S. Héman, N. Nes, and P. Boncz, “Cooperative scans:
Dynamic bandwidth sharing in a dbms,” in Proceedings of VLDB. VLDB
Endowment, 2007, pp. 723–734.

[5] S. Héman, M. Zukowski, N. Nes, L. Sidirourgos, and P. Boncz, “Posi-
tional update handling in column stores,” in Proceedings of SIGMOD.
ACM, 2010, pp. 543–554.

[6] M. Stonebraker, The INGRES Papers: Anatomy of a Relational Database
System. Addison-Wesley Longman Publishing Co., Inc., 1986.

[7] D. Inkster, M. Zukowski, and P. Boncz, “Integration of VectorWise with
Ingres,” SIGMOD Record, vol. 40, no. 3, Sept. 2011.

[8] Tom, http://tom.loria.fr.


