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The concept of maximum potential improvement has played an important role in computing lower bounds for single-machine 
scheduling problems with composite objective functions that are linear in the job completion times. We introduce a new method for 
lower bound computation: objective splitting. We show that it dominates the maximum potential improvement method in terms of 
speed and quality. 
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1. Introduction 

A single-machine job shop can be described as 
follows. A set of n independent jobs has to be 
scheduled on a single machine that is continu
ously available from time zero onwards and that 
can process no more than one job at a time. Each 
job J;(i = I, ... , n) requires processing during a 
positive time Pi· In addition, it has a due data di, 
at which it should ideally be completed. A sched
ule defines for each job 11 its completion time C, 
such that no two jobs overlap in their execution. 
A performance measure or scheduling criterion 
associates a value f((r) with each feasible sched
ule O'. Some well-known measures are the sum of 
the job completion times I:C;, the maximum job 
lateness L max = max I ~ i "'II( c, - di), and the max
im um job earliness Emax = max 1 ~;"' ,,( d 1 - CJ 

In this paper, we adopt the terminology of 
Graham, Lawler, Lenstra and Rinnooy Kan (1979) 
to classify scheduling problems. Scheduling prob
lems are classified according to a three-field no
tation a I {31 y, where a specifies the machine 

environment, f3 the job characteristics, and y the 
objective function. For instance, I I nmit I Ernax de
notes the single-machine problem of minimizing 
maximum earliness, where nmit denotes that no 
machine idle time is allowed. 

Most research has been concerned with a sin
gle criterion. In real life scheduling, however, it is 
necessary to take several performance measures 
into account. There are basically two approaches 
to cope with multiple criteria. If the scheduling 
criteria are subject to a welldefined hierarchy, 
they can be considered sequentially in order to 
relevance. An example is the problem of minimiz
ing maximum lateness subject to the minimum 
number of tardy jobs, for which Shanthikumar 
(1983) presents a branch-and-bound algorithm. 

The second approach is simultaneous opti
mization of several criteria. The K performance 
measures specified by the functions fk(k = 
1, ... , K) are then transformed into one single 
composite objectiue function F: f2 ~ IR, where f2 
denotes the set of all feasible schedules. We 
restrict ourselves to the case that F is a linear 
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composition of the individual performance mea
sures. This leads to the problem class (P) that 
contains all problems that can be formulated as 

K 

mincrE!l L adk(a) 
k=l 

(P) 

where a=(a 1, ... ,aK) is a given vector of real 
nonnegative weights. The problem of minimizing 
a linear function of the number of tardy jobs and 
maximum lateness, denoted as 1 II L,U; + Lmax• is a 
member of this class. Nelson, Sarin and Daniels 
(1986) present a branch-and-bound algorithm for 
its solution. 

In addition to solving some problem in (P) for 
a given a ;i. 0, it may be of interest to determine 
the extreme set. The extreme set for given func
tions Ji, ... , f K is defined as the minimum cardi
nality set that contains an optimal schedule for 
any weight vector a ;;:., 0. The elements of this set 
are the extreme schedules. If this set has been 
identified, then we can solve any problem for 
these functions by computing the function value 
for each extreme schedule and choosing the best. 
Hence, if the cardinality of the extreme set is 
polynomially bounded in n, the number of jobs, 
and if each extreme schedule can be found in 
polynomial time, then any problem in (P) with 
respect to these functions f 1, ••• , f K can be solved 
in polynomial time. 

Suppose that some problem in (P) is NP-hard 
and that one wishes to design a branch-and-bound 
method for its solution. In that case, good lower 
bounds are required. Uni! now, virtuallly all lower 
bound computations for problems in (P) are based 
upon the so-called maximum potential improve
ment method. We prove in Section 2 that these 
bounds are dominated in terms of quality and 
computational effort by a much simpler method 
that we name objective splitting. In Section 3, we 
refine the basis objective splitting method. 

The problem 11 I L,C; + Lmax + Emax is our 
benchmark in comparing the two lower bound 
approaches. It is still an open question whether 
this problem is NP-hard. Sen, Raiszadeh and 
Dileepan (1988) develop a branch-and-bound al
gorithm and derive lower bounds by means of the 
maximum potential improvement method. There 
is an optimal schedule for this problem without 
machine idle time, although Emax is nonincreas
ing in the job completion times. It is not mean-
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ingful to insert idle time, as the gain for Emax will 
at least be compensated by the increase of '[,C;. 
We recall the following fundamental algorithms 
for the three embedded subproblems. 

Theorem 1 (Smith, 1956). The l I I l::C; problem is 
minimized by sequencing the jobs according to the 
shortest-processing-time (SPT) rule, that is, in or
der of nondecreasing P;· 

Theorem 2 (Jackson, 1955). The 111 Lmax problem 
is minimized by sequencing the jobs according to 
the earliest-due-date (EDD) rule, that is, in order 
of nondecreasing d;. 

Theorem 3. The 11 nmit I Emax problem is solved 
by sequencing the jobs according to the minimum
slack-time (MST) rule, that is, in order of nonde
creasing d; - P;· 

The proof of each of these algorithms proceeds 
by a straightforward interchange argument. Note 
that each of these problems is solved by arranging 
the jobs in a certain priority order that can be 
specified in terms of the parameters of the prob
lem type. 

The optimal solution values for these single
machine scheduling problems will be denoted by 
'[,C;*, L~ax and E~w respectively. Furthermore, 
'[,C;(a), Lmax(a), and Emax(a) are the objective 
values for the schedule u. In analogy, C;(u ), 
L ;(a), and E;( u) denote the respective measures 
for job J;Ci = 1, ... , n ). Whenever ( u) is omitted, 
we are considering the performance measure in a 
generic sense, or there is no confusion possible as 
to the schedule we are referring to. The sched
ules that minimize L::C;, Lmax• and Emax are re
ferred to as SPT, EDD, and MST respectively. In 
addition, v( ·)denotes the optimal objective value 
for problem ·. 

2. Maximum potential improvement versus ob
jective splitting 

Townsend 0978) proposed the maximum po
tential improvement method to compute lower 
bounds for minimizing a quadratic function of 
the job completion times. Since then, the method 
has been extended to problems in (P), including 
11 I:C; + Lmax (Sen and Gupta, 1983 ), 11 nmit I 
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Lmax + Emax (Gupta and Sen, 1984), and 1111.::C; 
+ Lmax + Emax (Sen, Raiszadeh, and Dileepan, 
1988). To our knowledge, there is only one publi
cation on objective splitting aL1ant la Lettre: Tegze 
and Vlach (1988) obtained an extremely simple, 
but provably stronger lower bound for 
1 lnmit I Lmax + Emax· 

Meanwhile, Hoogeveen (1990) and Hoogeveen 
and Van de Velde (1990) have found polynomi
al-time algorithms for 11 nmit I cr. 1 Lmax + a 2 Emax 

and 1 I I a I L.::C, j + a 2 L max. The former problem 
has O(n) extreme schedules, each of which is 
found in O(n log n) time. The latter problem has 
0(n 2 ) extreme schedules, each of which is deter
mined in O(n) time after appropriate preprocess
ing. However, it is an interesting issue how to 
derive lower bounds for NP-hard problems in (P). 
The maximum potential improvement method is 
a cumberstone procedure. However, by viewing it 
from a different angle, we derive a closed expres
sion for the resulting lower bound. It is then 
immediately clear that the maximum potential 
improvement method is completely dominated by 
the much simpler objective splitting method. 

Objectil•e splitting is based upon the observa
tion that 

K 

> L, ak[min,,.,ctifk(u)], 
k=I 

if ak > 0 for k = 1, ... , K. The application of this 
idea to I I I I:C; + Lmax + Emax yields the problems 
1 I II:C;, I I I Lmax' and l lnmit I Emax· Each prob
lem is polynomially solvable, and we obtain the 
LB 05 = I:C;* + L';;,ax + E0';,". This bound is com
puted in O(n) time in each node of the search 
tree, provided that the SPT, EDD, and MST 
sequences have been stored and that we employ a 
convenient branching strategy. 

It is relatively easy to apply the maximum 
potential improvement method to problems in (P) 
for which each embedded single-machine prob
lem has a priority order. The 11 I I:C; + Lmax + 
Emax problem has three: the SPT order for I:C;, 
the EDD order for Lmax' and the MST order for 
Emax· Clearly, we have solved an instance of this 
problem in case these orders concur; in general 
though, the priority orders are conflicting. 

Suppose we start with the MST schedule, which 
we refer to as the primary priority order. The 
scheduling cost induced by the MST schedule is 
I:C;(MST) + E::,ax + Lrnax(MST); this is obviously 
an upper bound on the optimal solution value. In 
addition, we know that any optimal schedule er* 
must have Erna/er*)~ E:iax' and I:Ci(cr*) + 
L 01a/u*) < I:C;(MST) + Lmax(MST). The maxi
mum potential improvement method assesses the 
current schedule with respect to the maximum 
improvement that can be obtained for each of the 
performance measure separately. Accordingly, we 
get a lower bound by subtracting the total maxi
mum potential improvement from the upper 
bound. 

First, consider the maximum lateness criterion, 
which is the secondary priority order. If we inter
change every pair of adjacent jobs Ji and f; for 
which d; > d; and C1 < C;, then we need to con
duct O(n 2 ) Interchanges before we have trans
formed the MST schedule into an EDD schedule. 
The actual effect on the objective value by one 
particular interchange depends on the inter
changes that have been conducted thusfar. It 
might have no effect whatsoever on the perfor
mance of the schedule; this is true if both the 
maximum lateness and the maximum earliness 
remain unchanged. The maximum possible de
crease of the scheduling cost, however, is d; - d 1 ; 

if er and 7T denote the schedule before and after 
the interchange, respectively, then the maximum 
decrease is realized if Lma/u) = L/cr), Lnw/rr) 
=L/rr) and Emax(7T)=£111 a/cr). The effect that 
the interchange might have on the sum of the job 
completion times is not considered here and dealt 
with separately. Any interchange conducted to 
transform the MST schedule into the EDD 
schedule may improve the maximum lateness by 
the corresponding maximum possible decrease. 
The sum of these is the maximum potential im
prol'ement with respect to the initial lateness 
L 01a/MST). It is given by 

Note that the maximum potential improvement 
does not depend on the order in which the inter
changes are conducted. 

Second, the sum of the job completion times, 
which is the tertiary priority order, is reduced by 
interchanging two adjacent jobs 1; and 1; with 
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Pi> p1 and Ci < C1• The maximum potential im
provement is then P; - p1, which is also the true 
improvement. The maximum potential improve
ment with respect to ~:C/MST) is then 

MPI3 = L ( P; - P1). 
i,j: p,>p1 .C, <C1 

The lower bound LBMPI suggested by Sen, 
Raiszadeh and Dileepan (1988) for 11 I I:C; + 
Lmax + Emax is then 

LBMPI = £:.ax + Lmax(MST) - MPI2 

+ L,Ci(MST) - MPI 3 . 

Since L.C;CMST) - MPI 3 = I:C;(SPT) = I:C;* and 
Lma/MST) - MPI 3 ~ L~ax' as we have systemati
cally overestimated the reduction in maximum 
lateness, we conclude that 

LBMPI = E:.ax + f.C;* + Lmax(MST) - MPI2 

~ LBos. 

The maximum potential improvement method 
can be generalized to problems in (P) as follows. 
Let a/ denote an optimal schedule for the k-th 
individual objective. Furthermore, let the optimal 
sequence that goes with the k-th objective be the 
k-th preference order. The first step is then to 
sequence the jobs according to the primary pref
erence order, which gives the upper bound 
aif1(ui*) + "Lf ~ 2 adk(ui*). We then have to 
transform the primary preference order into the 
k-th preference order for k = 2, ... , K, and deter
mine the corresponding maximum potential im
provement MPlk. The lower bound is then given 
by 

K 

LBMPI = a 1f 1(ui*) + L ak(fk(ui*) - MPld. 
k-2 

Note that this procedure requires O(n2 ) time for 
fixed K in addition to the time required to deter
mine uk*, fork= 1, ... , K. Since fk(ui*)- MPik 
~fk(ut) for each k = 1,. . ., K, we have the fol
lowing theorem. 

Theorem 4. For any problem in (P), the lower 
bound obtained by the maximum potential im
prouement method is dominated in terms of both 
quality and speed by the lower bound obtained by 
the objectiue splitting method. 

Consider the following example shown in Table 1 
that is taken from Sen, Raiszadeh and Dileepan 

42 

Table I 

l; 

l, 12 12 14 

P; 14 7 6 7 

d; 20 14 15 17 
d;-P; 6 7 9 10 

(1988) for the problem 111 q'fX; +Cl - q)(Lmax 
+ Ema.> with 0 ~ q ~ 1. By means of the maxi
mum potential improvement method, we obtain 
the lower bound LBMPI = 64q + 9. It is easy to 
verify that f,C/ = 73, L~,.. = 14, and E:,,., = 6. 
This gives the bound LB05 = 53q + 20. Note that 
53q + 20 ~ 64q + 9 for all q with 0 ~ q ~ 1. 

3. Improving the objective splitting procedure 

The objective splitting procedure above was 
given in its simplest form: we separated the com
posite objective function into K single-criterion 
scheduling problems. We now propose a refine
ment that gives us a lower bound that is at least 
as good, but requires more time. Our more gen
eral approach allows combinations of objective 
functions. Let (T1, ••• , T11 ) be a partition of the 
set {l, ... , K}, i.e., the sets T1z are mutually dis
joint and u i,1= 1T1z = {l,. .. , K}. For any problem 
A in the class (P) we clearly have 

v(A) ~ t [min.,E!l L adk(ad] 
h= I kE"fj, 

K 

~ L adfk( uk*)] = LB 0 s. 
k=l 

This idea can be refined even further, since it is 
not obligatory to match each performance crite
rion fk with only one set T1i. Hence, let us relax 
the assumption that (T1,. • ., Tfl) is a partition of 
{l, ... , K}, and let akh denote the fraction of fk 
that is assigned to T1 • We must have that " a 

I '-'I! kh 
"'.' ak for each k = l, ... , K, and also that akh ~ 0, 
smce the composite objective function associated 
with the set sit has to be nondecreasing in each 
of its arguments, for h = 1, ... ,. We can compute 
the lower bound for given values of akh as 

H 

(OS) v( OS) = h~\ [ min" E !l k ~i. ak11fk( u)]. 
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An interesting question is how to determine the 
values of 0:1: 11 that maximize the lower bound 
v(OS). This problem, referred to as problem (D), 
is to 

(D) maximize v(OS) 

subject to 

H 

L a/.:/!= °'k for k = I, ... , K, 
Ii=! 

ak 11 >0 fork=l, ... ,K, h=!, ... ,H. 

A sufficient condition for solving problem (D) in 
polynomial time (for fixed K) is that the extreme 
set for each problem induced by T11 (h = 1, ... , H) 
can be determined in polynomial time. In that 
case, there is only a polynomial number of ex
treme schedules involved, and problem (D) can 
then be formulated as a linear programming 
problem with a polynomial number of constraints 
and variables. Let N(h) be the number of ex
treme schedules for the problem associated with 
Th (h = l, ... , H ), and let uj(ll) denote the .i-th 
extreme schedule for the problem associated with 
T". There are at most 2 i.; - 2 sets T1i (IT" I< K 
and Th * 0 ). The linear program is then to 

maximize w 

subject to 

I I 

w ~ L: L: ak1Jk< uj(j)) 
h -' I k E "/j, 

for .i ( h) = 1, ... , N ( h), h = 1, ... , H, 

H 

L a k 11 = a k for k = 1,. .. , K, 
h=I 

a 1: h > 0 for k = 1,. .. , K, h = I , ... , H. 

In general, it would be unreasonable to pre
sume that each of the possible 2 i.; - 2 sets T1r 
would result into a polynomially solvable prob
lem; it may be a formidable challenge to identify 
those that will. If we touch upon a problem that 
appears to be hard to solve, then we may relax 
the assumptions by allowing preemption (I.e., the 
processing of the jobs may be interrupted and 
resumed to the computational complexity, but 
also with respect to the lower bound quality. The 
latter follows particularly from the following the
orem. 

Theorem 6. The optimal objectil'e ualue of 
1 I pmtn I I::~= 1 a k fk is greater than or equal to 
L,akfk(uk*), where a/ is the optimal l 1alue for 
11 I f1:<k = 1, .. ., K ). 

Proof. The proof follows from the observation 
that O'{ also solves 1 I pmtn I fk, if fk is either 
monotonically nondecreasing or monotonically 
nonincreasing in the job completion times. D 

If we apply the refined objective splitting pro
cedure to I I I f,C1 + Lmax + Emax' then, except for 
the obvious single-criterion problems, we have to 
consider three problems: 11 I a 1I::C1 + a 2 Lmax' 
llnmitla 1L,C1 +a 2 Emax' and llnrnitla 1Lmax+ 

a 2 Em;ix· Hoogeveen (1990) presents and 
O(n 2 log n) time algorithm for 1 I nrnit I a 1 Lmax + 
a 2 Emax to find the 0( n) extreme schedules, and 
Hoogeveen and Van de Velde (1990) present and 
O(n 3) time algorithm for 11 I a 1I:C; + a 2 Lmax' 
which has O(n 2 ) extreme schedules. For the 
problem (Hoogevcen and Van de Velde, 1990). 
The complexity of the case a 1 < a 2 is unknown. 
However, I I nmit, pmtn I a 1 I::C, +a 2 Emax is solv
able in 0( n4 ) time and has O(n 2 ) extreme sched
ules. 

If we reconsider the example, we find that 
there is one extreme schedule for f,C, and Lmax 

with L:C, = 73 and Lmax = 14; there are two ex
treme schedules for Lmax and Emax with values 
Lmax = 14 and Emax = 7, and Lmax = 17 and Emax 

= 6; there are three extreme schedules for £ 111 ,., 

and I::C1 if we allow preemption with values Emax 

= 6 and I:C, = 96, Emax = 7 and I:C; = 74, and 
Emax = 9 and f,C; = 73, respectively. 

The lower bound that is obtained by the im
proved objective splitting method depends on the 
parameter q. Suppose q = -L Then we obtain 
LBMPI = 41 and LB 0 s = 46~.- It is easy to verify 
that the improved objective splitting method gives 
4 7 ~ as a lower bound. This bound is tight, since 
the optimal sequence U 2 , J_,, 14 , 11 ) has the same 
value. 
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