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Abstract. In cytomics bookkeeping of the data generated during lab experi-
ments is crucial. The current approach in cytomics is to conduct High-Throughput
Screening (HTS) experiments so that cells can be tested under many different ex-
perimental conditions. Given the large amount of different conditions and the
readout of the conditions through images, it is clear that the HTS approach re-
quires a proper data management system to reduce the time needed for experi-
ments and the chance of man-made errors. As different types of data exist, the
experimental conditions need to be linked to the images produced by the HTS
experiments with their metadata and the results of further analysis. Moreover,
HTS experiments never stand by themselves, as more experiments are lined up,
the amount of data and computations needed to analyze these increases rapidly.
To that end cytomic experiments call for automated and systematic solutions that
provide convenient and robust features for scientists to manage and analyze their
data. In this paper, we propose a platform for managing and analyzing HTS im-
ages resulting from cytomics screens taking the automated HTS workflow as a
starting point. This platform seamlessly integrates the whole HTS workflow into
a single system. The platform relies on a modern relational database system to
store user data and process user requests, while providing a convenient web inter-
face to end-users. By implementing this platform, the overall workload of HTS
experiments, from experiment design to data analysis, is reduced significantly.
Additionally, the platform provides the potential for data integration to accom-
plish genotype-to-phenotype modeling studies.

1 Introduction

Recent developments in microscopy technology allows various cell and structure phe-
notypes to be visualized using genetic engineering. With a time-lapse image-acquisition
approach, dynamic activities such as cell migration can be captured and analyzed. When
performed in large-scale via robotics, such approach is often referred to as a High-
Throughput Screening (HTS). At the work floor this is often called “screen”. In cy-
tometry, HTS experiments, at both cellular and structural level, are widely employed



in functional analysis of chemical compounds, antibodies and genes. With automated
image analysis, a quantification of cell activity can be extracted from HTS experiments.
In this manner, biological hypothesis or diagnostic testing can be verified via machine
learning using the results from the image analysis. HTS experiments, supported by au-
tomated image analysis and data analysis, can depict an objective understanding of the
cell response to various treatments or exposures.

In this paper, we set our scope to the bioinformatics aspects of HTS. An HTS experi-
ment starts with the design of a culture plate layout containing N×M wells in which the
cells are kept, cultured and to which experimental conditions are applied. The response
of the cells is then recorded through time-lapse (microscopy) imaging and the resulting
time-lapse image sequence is the basis for the image analysis. The design of the plate
layout is a repository of the experiment as a whole. From a study of the workflow of
biologists, we have established an HTS workflow system.

Currently, spreadsheet applications are commonly used for bookkeeping the infor-
mation generated during the workflow of HTS experiments. This approach has many
drawbacks. It usually takes months to finish a complete experiment, i.e., from the plate
design to the data analysis. Furthermore, images produced by the HTS experiments are
not linked properly with their metadata and the analysis results. This scenario makes it
difficult to do a proper knowledge discovery. So, most of the process within the work-
flow of HTS experiments are developed manually, which is highly prone to man made
errors. Moreover, spreadsheets often differ in format and are not stored in a central
place. This makes it hard for scientists from even the same institute to search, let alone
to disclose their results in a uniform and efficient way.

To eventually tackle all these issues, we propose an HTS platform for managing
and analysing cytomic images produced by HTS experiments. The platform seamlessly
integrates the whole HTS workflow into a single system and provides end-users a conve-
nient GUI to interact with the system. The platform consists of a layered architecture.
First, an end-user layer that is responsible for the interaction with the scientists who
perform different HTS experiments in cytomics. Then, the middleware layer that is re-
sponsible of the management of secure and reliable communication among the different
components in the platform. Finally, a database-computational layer, in charge of the
repository and execution of the image and data analysis.

Preliminary tests show that by using this platform, the overall workload of HTS
experiments, from experiment design to data analysis, is reduced significantly. This is
because, among others, in the HTS platform, the design of plate layout is done auto-
matically. Using spreadsheets, it takes an experienced biologist one week to manually
finish the mapping of 400-600 gene targets, while it takes less than a day to use the
plate design modular in the HTS system. It also enables queries over datasets of multi-
ple experiments. Thus, automation in cytomics provides a robust environment for HTS
experiments.

To sum up, the contributions of this work include:

1. Establishing a workflow system of the HTS experiments (Section 2).
2. An integrated platform to automate data management and image analysis of cy-

tomic HTS experiments (Section 3).



	
  

Fig. 1. Workflow of the HTS Analysis System

3. The design of the database to store (almost) all data produced and used in the HTS
experiments (Section 4).

Finally, we discusses related work in Section 5 and conclude in Section 6.

2 Workflow of the HTS experiments

A workflow of a general HTS experiment is shown in Figure 1, where the typical stages
are depicted separately. In this section, we describe the four functional modules in this
HTS workflow: (1) plate design, (2) image analysis, (3) data management, and (4) pat-
tern recognition [13].
Plate Layout Design Module. The design of a plate is considered as the cornerstone
for an HTS experiment. Therefore, we have developed a Graphical User Interface (GUI)
in our HTS platform to construct the layout for a plate (see Figure 2). The GUI allows
end-users to rapidly deploy, modify and search through plate designs, to which auxiliary
data such as experimental protocols, images, analysis result and supplementary litera-
ture is attached. In addition, the plate design provides a fast cross-reference mechanism
in comparing data from various origins. This module is also used as the front end for the
visualisation of results such as using heat maps, cell detection or motion trajectories.
Image Analysis Module. In the acquisition phase, the time-lapse sequences are con-
nected to the plate design. Customized image processing and analysis tools or algo-
rithms are applied on the raw images to obtain features for each of the different treat-
ments. Our image analysis kernel is deployed to provide a customised and robust image
segmentation and object tracking algorithm [14], dedicated to various types of cytom-
etry. The current package covers solutions to cell migration, cellular matrix dynamics
and structure dynamics analysis (see Figures 3, 4, 5). The package has been practised
in HTS experiments for toxic compound screening of cancer metastasis [8, 11], wound-
and-recovery of kidney cells [11] and cell matrix adhesion complex signaling, etc [4].

The segmentation of objects is conducted using our watershed masked clustering
algorithm, an innovative algorithm dedicated to fluorescence microscopy imaging. Fre-
quently, the efficiency of fluorescence staining or protein fusion is subjective and highly
unpredictable, which results in disorganized intensity bias within and between cells



especially when large numbers of treatments are involved. As 
an example, a functional analysis of one 400-gene library 
requires the manual relocation for targets over ten plates (6x8) 
layouts. Spreadsheet applications such as Microsoft Excel are 
currently employed as the bookkeeping solution, which lacks 
of both duplication checking and linkage to external resources. 
This should be dealt with by a robust content management 
system (CMS). Once all plate layouts are confirmed, specialists 
or commercial robots will carry out the biological experiments. 

A standardized cell screen in cancer metastasis study would 
produce over 100GB of image data per experiment on average, 
which may amount up to 8TB within three months. The 
number will multiply with the number of channels, if multi-
channel images are taken for additional information. 
Obviously, automated solution is absolutely needed for the 
management and analysis of such a large amount of high-
content data. 
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Figure 2. The structure of HTS analysis platform, in which the structure of the 
modules and the computational workflow are depicted 

Our research focuses to the design and implementation of a 
seamless and fully automated framework (cf. Fig. 1) to 
complete the data processing and image analysis for HTS 
experiments and studies. The HTS analysis platform (cf. Fig. 2) 
is divided into four functional modules: (1) plate design, (2) 
image analysis, (3) data management, and (4) pattern 
recognition. These modules will be introduced in the next 
sections. 

II. PLATFORM DESIGN 

A. Plate Layout Design Module 
We consider the design of a plate the cornerstone for the 

data processing. Therefore, we have given the development of 
a user interface to construct a layout for a plate (cf. Fig. 3). The 
plate layout design provides a error-free graphical user 
interface allowing end-users to rapidly deploy, modify, and 
search through plate designs, to which auxiliary data such as 

experimental protocols, images, analysis result and 
supplementary literature is attached. In addition the plate 
design provides fast cross-reference mechanism in comparing 
data from various origins. This module is also used as the front 
end for the visualization of result such as using heatmaps, cell 
detection, or motion trajectories. 

 
(a). Plate Design Interface 

 
(b). Cell Masks 

 
(c). Cell Trajectories 

 
(d). Feature Selection 

Figure 3. Plate layout design interface and external data types include cell 
mask, motion trajectories and machine learning conclusion 

B. Image Analysis Module 
In the acquisition, the time-lapse sequences are connected 

to the plate design. The customized image processing and 
analysis is applied to obtain features for each of the different 
treatments. Our image analysis kernel is deployed to provide 
customized and robust image segmentation [4] and object 
tracking algorithms [3] dedicated to various types of 
cytometry. The current package covers solutions to cell 
migration, cellular matrix dynamics and structure dynamics 
analysis (cf. Fig. 4-6). It has been practiced in HTS 
experiments for toxic compound screening of cancer metastasis 
[1][2], wound-and-recovery of kidney cells [2] and cell matrix 
adhesion complex signaling, etc. 

The segmentation of objects is conducted using an 
innovative algorithm, dedicated to fluorescence microscopy 
imaging, namely watershed masked clustering algorithm [4]. 
Frequently, the efficiency of fluorescence staining or protein 
fusion is subjective and highly unpredictable; which results in 
disorganized intensity bias within and between cells (cf. Fig. 
4a). The fundamental principle behind our algorithm is to 
divide such an extreme and multimodal optimization problem 
(cf. Fig. 4b) into several sub-optimal yet unimodal optimization 
problem (cf. Fig. 4c). The pseudo code of our watershed 
masked clustering algorithm is given as the following pseudo 
code (cf. Pseudo code 1). 

 

Fig. 2. Plate layout design GUI and visuali-
sation of results, including cell masks, mo-
tion trajectories and machine learning con-
clusions

Pseudo Code 1: Watershed Masked Clustering Algorithm 
Perform maxima-seeded watershed segmentation 
Reverse watershed line into coarse region 
    for each coarse region r do 
        Perform weighted fuzzy C-mean clustering in intensity     
space I of r 
        Obtain labeling 
        Create regional mask 
        end for 
Combine regional mask into final object label 
 

 
(a) Image is divided into several coarse regions 

 
(b) The intensity histogram of the 
whole image 

 
(c) The intensity histogram of one 
random coarse region 

Figure 4. Image and coarse regions 

The tracking of objects is accomplished by a customized 
algorithms deployed in the image analysis package. The 
fundamental principle behind this tracking algorithm is to 
estimate the minimum mean shift vector based on given model 
[1][3]. 

 
(a) Cell tracking results 

 
(b) Adhesion tacking results 

Figure 5. Using our image analysis solution, the phenotypic measurements of 
(a) live cells and (b) adhesion can be extracted. 

With the binary masks and trajectories information 
obtained from image analysis, several phenotypic 
measurements are extracted for each object. Using state-of-art 
pattern recognition and statistical analysis, the effect of 
chemical compound can be easily quantified and compared (cf. 
Fig. 6). Depending on experiment setting, our package may 
employ up to 31 phenotypic measurements during the analysis. 

 
Figure 6. Phenotypic characterization of the epidermal growth factor (EGF) 
treatment using a highly aggressive cancer cell line, the illustrated features are 
picked by branch-&-bound feature selection. The EGF-treated cell group 
shows a significant increased migration velocity while the extension 

This module is designed as web service API. As the image 
analysis computation requires large image volumes to be 
processed, GRID computing is used to obtain results in 
reasonable time. 

C. Image Data Management System 
In cytomics, the amount of image data can easily exceed 

the terabyte-scale. The organization and storage of large 
volume data is therefore nontrivial. The accessibility of large 
volume image data already poses an obstacle in the current 
stage. Unlike other high-content data type such as video 
streams, bio-image data require a complete error-free quality 
during transportation. Uncorrected errors are potentially 
catastrophic as consequences may be accumulated into 
subsequent stages. In a multiuser environment, the data flow 
also faces a high-concurrency environment. The database 
becomes a bottleneck that must handle high concurrency 
because of the large number of images that are used in the 
analysis phase.  

The platform uses an XML supported database (Oracle) to 
store all the information related to the metadata of the 
experiments, measurements and analysis results. This 
information is hierarchically organized in the XML format, 
which facilitates the integration with other legacy systems such 
as the Image Analysis API, Cyttron API [5], File Servers, etc. 
The platform provides access to the data stored through web 
services which use XQuery to retrieve particular information 
requested by the End-user GUI.  

 

Fig. 3. Image and coarse regions

(see Figure 3a). The principle behind our algorithm is to divide such an extreme and
multimodal optimization problem (Figure 3b) into several sub-optimal yet uni-modal
optimization problems (Figure 3c). Such divided-and-conquer strategy provides an ex-
tended flexibility in searching intensity thresholds in each image. Contrary to bottom-up
segmentation strategies such as the Otsu algorithm, our solution prevents undertraining
by introduce a flexible kernel definition based on the congenital (intensity) homogeneity
of an image. Unlike top-down segmentation strategies such as the level-set algorithm,
our current algorithm prevents overtraining by overlooking into the intensity distribu-
tion of the completely homogeneous region, therefore, less sensitive to local intensity
distortion; in addition, our algorithm does not require any prior knowledge or man-
ual interference during segmentation while it is mandatory for most existing top-down
methods.

The tracking of objects is accomplished by customised algorithms deployed in the
image analysis package. The principle behind this tracking algorithm is to estimate the
minimum mean shift vector based on a given model [8, 14].

With the binary masks and trajectories information obtained from image analy-
sis, several phenotypic measurements are extracted for each object. Using the state-of-
art pattern recognition and statistical analysis techniques, the effect of chemical com-
pounds can be easily quantified and compared (Figure 5). Depending on the experiment
setting, our package may employ up to 31 phenotypic measurements during the analy-
sis.

The image analysis module is designed as a web service API module in the HTS
platform. As the image analysis computation requires large image volumes to be pro-
cessed, a high performance scientific computer cloud is used to obtain results in reason-
able time.



Pseudo Code 1: Watershed Masked Clustering Algorithm 
Perform maxima-seeded watershed segmentation 
Reverse watershed line into coarse region 
    for each coarse region r do 
        Perform weighted fuzzy C-mean clustering in intensity     
space I of r 
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The tracking of objects is accomplished by a customized 
algorithms deployed in the image analysis package. The 
fundamental principle behind this tracking algorithm is to 
estimate the minimum mean shift vector based on given model 
[1][3]. 

 
(a) Cell tracking results 

 
(b) Adhesion tacking results 

Figure 5. Using our image analysis solution, the phenotypic measurements of 
(a) live cells and (b) adhesion can be extracted. 

With the binary masks and trajectories information 
obtained from image analysis, several phenotypic 
measurements are extracted for each object. Using state-of-art 
pattern recognition and statistical analysis, the effect of 
chemical compound can be easily quantified and compared (cf. 
Fig. 6). Depending on experiment setting, our package may 
employ up to 31 phenotypic measurements during the analysis. 
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This module is designed as web service API. As the image 
analysis computation requires large image volumes to be 
processed, GRID computing is used to obtain results in 
reasonable time. 

C. Image Data Management System 
In cytomics, the amount of image data can easily exceed 

the terabyte-scale. The organization and storage of large 
volume data is therefore nontrivial. The accessibility of large 
volume image data already poses an obstacle in the current 
stage. Unlike other high-content data type such as video 
streams, bio-image data require a complete error-free quality 
during transportation. Uncorrected errors are potentially 
catastrophic as consequences may be accumulated into 
subsequent stages. In a multiuser environment, the data flow 
also faces a high-concurrency environment. The database 
becomes a bottleneck that must handle high concurrency 
because of the large number of images that are used in the 
analysis phase.  

The platform uses an XML supported database (Oracle) to 
store all the information related to the metadata of the 
experiments, measurements and analysis results. This 
information is hierarchically organized in the XML format, 
which facilitates the integration with other legacy systems such 
as the Image Analysis API, Cyttron API [5], File Servers, etc. 
The platform provides access to the data stored through web 
services which use XQuery to retrieve particular information 
requested by the End-user GUI.  

 

Fig. 4. Using our image analysis solution,
the phenotypic measurements of (a) live
cells and (b) adhesion can be extracted

	
  
Fig. 5. Phenotypic characterization of the
Epidermal Growth Factor (EGF) treat-
ment using a highly aggressive cancer cell
line, the illustrated features are picked by
branch-and-bound feature selection. The
EGF-treated cell group shows a significant
increased migration velocity.

Data Management Module. In cytomics bookkeeping of the information generated
during lab experiments is crucial. The amount of image data can easily exceed the
terabyte-scale. However, currently spreadsheets applications are commonly used for
this purpose. The accessibility of large volume of image data already poses an obstacle
in the current stage.

After scientists having performed HTS experiments, it is necessary to store meta in-
formation, incluing the experiment type, the protocol followed, experimental conditions
used and the plate design, and associate each well in the plate to the raw images gener-
ated during the experiments and the results obtained from the image and data analysis
when these processes are completed.

Currently, the large volume of images are stored in a file server and they are accessed
following a standard naming convention. The locations of the files are stored in the
spreadsheet application used for the experiment, but this is not suitable for knowledge
discovery later on or querying the results obtained in the analysis process.

The platform uses MonetDB, a modern column-based database management sys-
tem (DBMS) as a repository of the different types of data that are used in the HTS
Workflow System. Each component of the architecture communicate with the database
through web services (Figure 7). This makes the future integration with other APIs
more flexible.

Data and Pattern Analysis Module. Typical to the kind of analysis required for cy-
tomics data is that the temporal as well as the spatial dimension is included in the
analysis. The spatial dimension tells us where a cell or cell structure is, whereas the
time-point informs us when it is at that particular location. Features are derived from the
images that are time lapse series (2D+T or 3D+T). Over these features pattern recogni-
tion procedures are multi-parametric analysis. It is a basic form of machine learning so-
lution, which frequently employed in the decision-making procedure of biological and
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Fig. 7. Flow of control of the HTS platform

medical research. A certain pattern recognition procedure may be engaged in supporting
various conclusions. For example, a clustering operation based on cell morphological
measurements may provide an innate subpopulation within a cell culture [8] while a
classification operation using temporal phenotypic profile can be used to identify of
each cell phase during division [10]. The service that deals with the pattern recogni-
tion is based on the PR-Tools software package developed at the Delft University of
Technology (www.prtools.org).

The PR-Tools library can be integrated in MatLab [9] and we have used it in that
fashion. In order to deal with the temporal dimension, the package was extended with
specific elements to allow temporal analysis over spatial data. The prototype data analy-
sis module is implemented as a web service API based on output generated by MatLab
deployment tools. The availability of MatLab with PR-Tools within this architecture
allows for rapid prototyping with a range of complex mathematical algorithms. In ad-
dition, PR-Tools in MatLab has its own GUI and in this manner data mining strategies
can be explored by the end-user without in-depth knowledge of machine learning. The
flexibility that is accomplished in this manner is efficient for the end-users as well as
the software engineers who need to maintain and implement the services for machine
learning.

3 System Architecture of the HTS Analysis Platform

To automate the workflow of HTS experiments and provide the users with a convenient
interface to interact with the system, we have designed an HTS analysis platform [13]
(for short: HTS platform), which has a layered architecture. Figure 6 depicts the com-
ponents in each layer of the architecture.

The GUI Layer. The HTS platform enables end-users to carry out complete HTS
experiments using a single graphical user interface, i.e., the HTS Analysis GUI. This
way, even for end-users without extensive knowledge in cytomics, it is easy to learn
how to do HTS experiments in cytometry. In addition, data sets produced under different



conditions or from different HTS experiments are available through one interface. This
also counts for the resulting data from each step in an HTS experiment. As a result,
end-users can easily view, compare and analyse the different data sets.

The Web Service Layers. The two lower layers together, through web services, sup-
port every step in the HTS workflow that is done on the computers, i.e., the middle most
five boxes in Figure 1 (the other steps involves human actions). The APIs are grouped
in three modules in the Web Service API layer, with each module corresponding to a
module described in Section 2. This module structure allows quick development, error
isolation and easy extending with more functional modules in the future.

We chose SOAP (Simple Object Access Protocol) messages for invoking the web
services and receiving results, because of its approved interoperability in web applica-
tions and heterogeneous environments. In case of the HTS platform, we must support
different programming languages. Using SOAP makes it possible for various languages
to invoke operations from each other. Transportation of the data generated by an ex-
periment is integrated into web service calls. Large files are transmitted as attachments
of the SOAP messages. To do this, the MTOM (Message Transmission Optimization
Mechanism) feature [6] of the Glassfish Server is used. Ensuring error free data trans-
mission and controlling user access permissions are done at the application level.

The Data Storage/Processing Layer. There are two components in this layer. For
the data management component, we made a conscious choice for MonetDB (www.
monetdb.org), a modern column-based database system, after having considered dif-
ferent alternatives. For instance, in the initial design of the database schema, we have
considered to use an XML supporting DBMS such as Oracle or Microsoft SQL Server
in order to facilitate a flexible integration with other systems in the future. However, it is
generally known that, compared with relational data, XML data requires considerable
storage overhead and processing time, which makes it unsuitable as a storage format
for the large volume of cytomic data. Moreover, traditional database systems are opti-
mised for transactional queries, while in cytomics, we mainly have analytical queries.
Traditional database systems generally carry too much overhead when processing ana-
lytical queries [2]. What we need is a database optimised for data mining applications.
MonetDB is a leading open source database system that has been designed specially for
such applications [2]. It has been well-known for its performance in processing analyt-
ical queries on large scale data [3]. Thus, in our final decision, we use SOAP messages
(i.e., XML format) to exchange small sized (meta-)data, but use MonetDB to store a
major portion of the data produced and used during the HTS experiments, including all
metadata and binary data generated during analysis. Additionally, a powerful scientific
computer cluster is used to store the raw image data resulting from microscopy and to
execute computing intensive image analysis tools. However, the future plan is to move
also the raw data and as much as possible operations on them into the database system.

Flow of Control. The diagram shown in Figure 7 illustrates the flows of the control
in the HTS platform. How the main features of the platform are executed is shown by
five sequences of annotated arrows starting from the end-user GUI. Arrows handling
the same operation are grouped together by a major number, while the minor numbers
corresponds to the order of a particular step that is called in its containing sequence.
Below we describe each sequence.



Fig. 8. The database schema used by the HTS platform

Sequence 1 handles a new plate design, which is straightforward: the request is sent
to MonetDB and a new entry is created. Sequence 2 handles uploading an HTS image
request. Because currently the raw image data is stored separately, this request results in
the metadata being stored in MonetDB while the binary data is stored on the scientific
super computer. Sequence 3 handles an image analysis request, which is passed to the
scientific super computer, since both the data to be analysed and the tools are there.
Then the results are sent to MonetDB and stored there (step 3.3). Sequence 4 handles a
data analysis request, which is first sent to MonetDB. Then, MonetDB passes both the
request and the necessary data (obtained from the image analysis) to the scientific super
computer for execution. The results are again stored in MonetDB. Since the most used
data is stored at one place, in sequence 5, a view results request can be handled by just
requesting data of both image analysis and data analysis from MonetDB. In the GUI,
the results are displayed with the corresponding plate layout, as indicated in Figure 2.

Summary. In this section, we described the software architecture of the HTS platform,
how its main features are processed, and how web services are used for the communi-
cation with the DBMS and the dedicated scientific computer cloud. In the next section,
we present how all data is stored in the DBMS.

4 Database Design

The complete relational database schema designed to store the metadata, images and
binary data generated during the execution of the HTS workflow is shown in Figure 8.



The schema can be roughly divided into five regions (separated by the dotted lines): i)
users and the experiment sets they work on, ii) the design of the culture plates, iii) raw
images acquired during a single HTS experiment, iv) results of image analysis, and v)
results of data analysis. Below we explain how the data is stored in each of these regions
and the relationships among the tables.

Users and Experiment Sets. The basic information of a user is stored in the table
User. Every user can start with a new ExperimentSet, who is then also the author of
this set of experiments. All analyses in an experiment set are of the same Type (see
also “Raw Images” below) and are carried out under the same Protocol, which in turn
can have zero-or-more Activity attached to it. A protocol is composed of zero-or-
more activities which correspond to simple tasks that have to be followed in order to
complete an experiment. Multiple users may work on the same experiment set, but only
the author of an experiment set can grand another user the access to this set. The table
User experimentset access is used for this access control purpose. Possible values
of User access type include: a (author), r (read), and w (read-write).

Plates and Wells. An HTS experiment starts with the design of the layout of a culture
Plate of N×M Wells in which the cells are kept and cultured. An experiment set can
contain multiple culture plates, which typically have sizes of (but not restricted to) 4×6,
6×8 or 8×12 wells. A user can create Conditions to be applied to the wells. Similar
to the Experimentset table, restricted access to the records in the Condition table are
denoted explicitly in the table User condition access. This table keeps track of what
type of access users have and which conditions are used by them in each experiment.
Thus, one condition can be used in multiple experiment sets and accessed by multiple
users. However, by referring to the compound primary key (User id, Expe id) of
User experimentset access, a user is restricted to only have access to a condition,
if he/she has access to an experiment set using the condition. Additionally, because
conditions are applied on individual wells, the table Well condition is created to store
this information.

Raw Images. A third step in the HTS workflow (the “HTS” step in Figure 1) is to
process the cultured plates using automated microscopy imaging system. The response
of the cells is recorded through time-lapse microscopy imaging and the resulting image
sequences are the basis for the image analysis. The structure of an image file depends
on the type of experiment (denoted by Type id in Experimentset) and the microscopy
used in the experiment. Currently, four types of structures are supported:

1. 2D (XY): this structure corresponds to one frame containing one image which is
composed of multiple channels ([1]Frame→ [1]Image→ [1..n]Channels).

2. 2D+T (XY+T): this structure corresponds to one video with multiple frames. Each
frame contains one image composed of multiple channels ([1]Video→ [1..n]Frame
→ [1]Image→ [1..n]Channels).

3. 3D (XYZ): this structure corresponds to one frame with multiple sections. Each
section contains one image composed of multiple channels ([1]Frame→ [1..n]Sections
→ [1]Image→ [1..n]Channels).

4. 3D+T (XYZ+T): this structure corresponds to one video with multiple frames. Each
frame can have multiple sections and each section contains one image composed



of multiple channels ([1]Video → [1..n]Frame → [1..n]Sections → [1]Image →
[1..n]Channels).

These four structures can be represented by the most general one, i.e., 3D+T. The
2D structure can be seen as a video of one frame containing one section. Each frame
in the 2D+T structure can regarded to contain one section. Finally, the 3D structure can
be seen as a video of one frame. In the database schema, the generalised structures are
captured by five relations, i.e., Video, Frame, Section, Image and Channel, connected
to each other using foreign keys. Information stored in these relations is similar, namely
a name and a description. Only the main table Video contains some extra information,
e.g., a foreign key referring to the table Well to denote from which well the image has
been acquired. Because currently only the metadata of the raw images are stored in
these tables, the location of the image binary data is stored in Vide url. The exact type
of the video structure can be looked up using Type id in the Experimentset.
Results of Image Analysis. The results of image analysis are auxiliary images which,
currently, are binary masks or trajectories. These images are result of the execution
of quality enhancing filters and segmentation algorithms employed to extract region
of interests (ROIs). The metadata of these images is stored in the table Measurement,
including the location where the binary data is stored. Moreover, this table also store the
phenotypic measurements gathered from ROIs and trajectories, currently, as BLOBs.
The foreign key Vide id links a measurement record to the raw video image file, on
which the image analysis has been applied.
Results of Data Analysis. Measurements extracted from the image analysis are fur-
ther analysed using pattern recognition tools. Basic operations such as feature selec-
tion, clustering and classification are employed to verify the initial hypothesis or detect
potential targets. The parameters used by the operation and the extracted features are
respectively stored in Parameter and Feature, and are connected to the corresponding
Measurement record via foreign keys.

5 Related Work

Data management in microscopy and cytometry has been acknowledged as an impor-
tant issue. Systems have been developed to manage these resources, to this respect the
Open Microscopy Environment (www.openmicroscopy.org) and the OMERO platform
is a good example. Another approach is connecting all kinds of imaging data and cre-
ating a kind of virtual microscope; such has been elaborated in the Cyttron project [7]
(www.cyttron.org). The connection is realized by the use of ontologies. Both projects
strive at adding value to the data and allow to process the data with plug-in like pack-
ages. These approaches are very suitable for the usage of web services. Both projects
are also very generic in their architecture and not particularly fit for HTS and the vol-
ume of data that is produced. Important for data management in cytometry is that both
metadata and bulk data are accommodated well. The accumulation of metadata is cru-
cial; successful accommodation of both metadata and bulk data has been applied in the
field of microarrays [12]. Here, the interplay of the vendor of scanning equipment with
the world of researchers in the life-sciences has delivered a standard that is proving its



use in research. One cannot, one to one, copy the data model that has been applied in the
field of microarrays. Like in cytometry, for microarrays the starting point is images in
multiple channels. However, for cytometry, location and time components are features
that are derived from the images whereas in microarrays the images are static from a
template that is provided by the manufacturer. In cytometry there is a large volume of
data that needs to be processed but this volume is determined by the experiment and
it can be different each time; i.e. it depends very much from the experimental setup.
This requires a very flexible approach to the model of the data. An important require-
ment for the metadata is that they can be used to link to other datasets. The use of
curated concepts for annotation is part of the MAGE concept and is also embedded
in the CytomicsDB project. We have successfully applied such approach for the ze-
brafish in which the precise annotations in the metadata were used to link out to other
databases [1] and similarly, as mentioned, in the Cyttron projects the annotations are
used to make direct connections within the data [7]. For cytometry data linking to other
data is important in terms of interoperability so that other datasets, i.e. images, can be
directly involved in an analysis. For cytometry, there are processing environments that
are very much geared towards the volume of data that is commonly processed in HTS.
The Konstanz Information Miner (KNIME) is a good example of such environment. It
offers good functionality to process the data but it does not directly map to the workflow
that is common in HTS and it does not support elaborate image analysis. Therefore, in
order to be flexible, the workflow is directed towards standard packages for data pro-
cessing and the processes are separated in different services rather than one service
dealing with all processing. So, one service specifically for the image processing and
analysis (e.g. ImageJ or DIPLIB) and another service for the pattern recognition and
machine learning (e.g. WEKA or PRTools). In this manner flexibility is accomplished
on the services that one can use.

6 Conclusion

In this paper we presented the design of a platform for high content data analysis in
the High-Throughput Screen cytomic experiments that seamlessly connects with the
workflow of the biologists and for which all processed are automated. Based on the
beta testing, this system increases the efficiency of post-experiment analysis by 400%.
That is, by using this the framework, it now takes less than a week to accomplish the
data analysis that previously easily took more than a month with commercial software,
or a year by manual observation. Comparing with solutions such as CellProfiler [5]
or ImagePro, our solution provides an unique and dedicated approach for HTS image
analysis. It allows end-users to perform high-profile cytomics with a minimum level of a
prior experience on image analysis and machine learning. The system is modular and all
modules are implemented in the form of web services, therefore, updating the system
is virtually instantaneous. Moreover, the framework is very flexible as it allows con-
necting other web services. Consequently, a fast response to new progress in image and
data analysis algorithms can be realized. Further integration with online bio-ontology
databases and open gene-banks is considered so as to allow integration of the data with
other resources. Therefore, the platform can eventually evolve into a sophisticated in-



terdisciplinary platform for cytomics. Having the screen information comprehensively
organized in a sophisticated and scalable database is a fertile ground for knowledge
discovery.
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