
Correctness Proofs for Systolic Algorithms:

Palindromes and Sorting

L. Kossen

W.P. Weijland
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

In designing VLSI-circuits it is very useful, if not necessary, to construct the

specific circuit by placing simple components in regular configurations. Sys

tolic systems are circuits built up from arrays of cells and therefore very suit

able for formal analysis and induction methods. In two examples correctness

proofs are given using bisimulation semantics with asynchronous cooperation.

These examples also have been worked out by Hennessy in a setting of failure

semantics with synchronous cooperation. Finally the notion of process creation

is introduced and used to construct machines with unbounded capacity.

1. INTRODUCTION

In this article we will present simple descriptions of so-called systolic systems.
Such systems can be looked at as a large integration of identical cells in such a

way that the behaviour of the total system strongly resembles the behaviour of

the individual cells. In fact the total system behaves like one of its individual
cells 'on a larger scale'.

For example one can think of a machine sorting arrays of numbers with a

certain maximum length. Suppose we need a machine handling arrays that are

much longer. A typical 'systolic approach' to this problem would be to try to
interconnect the smaller machines such that the total circuit sorts arrays of a

greater length. As a matter of fact this specific example will be worked out in

the following sections. In designing VLSI-circuits (short for very large scale
integrated circuits) it is very useful, if not necessary, to construct the specific

circuit by placing simple components in regular configurations ([9]). Otherwise

one looses all intuition about the behaviour of the circuit that is eventually

constructed. For this reason one may see systolic systems as a sort of regular

subclass of VLSI-circuits which is very suitable for formal analysis. As we will

see from two typical examples from Kung [8] these regular circuits can easily

be analyzed as to their correct behaviour.
In designing a systolic system, finding a correct definition of the individual

cells turns out to be the main problem. Apparently we already have in mind
what we want the total network to do and hence we may assume there is some

general specification of the desired behaviour. Indeed this specification may be

90 L. Kossen, W.P. Weijland

general in the sense that it only needs to describe the 'outside behaviour' of the
machine without specifying in detail the internal actions.

On the other hand looking for a correct definition of the individual cells we
are working with a much more detailed description, since all relevant actions
need to be described. This means we are looking for a certain implementation
that satisfies the general specification we had in mind.

In this article we will. add an extra element to ACP,. denoting chaos (see
Brookes, Hoare and Roscoe [4] and Bergstra, Klop and Olderog [3]). One can
look at this element, written as 0, as a process which runs totally out of order
without any restriction as to its behaviour. We assume that 0 does not (suc
cessfully) terminate.

There is a specific reason for introducing 0 in ACP,.. In fact, in a
specification 0 will stand for a process that is of no theoretical interest to us at
the moment. Think for example of the behaviour of a computer just after
memory-overflow occurs: in reasoning about the correct behaviour of the
machine we do not specify what the machine should do after having announced
its memory- overflow; the machine even may cause a deadlock instead of
announcing its memory-overflow at all, since the announcement itself is
already a diverging step from its specified behaviour.

So, not having specified part of its behaviour, we could say that the same
specification can be implemented by many different machines. This notion ' ... is
implemented by .. .' will be denoted by 1= in the sequel.

We will define a new relation 1= on processes in an algebraical setting as is
shown below in Table l. By definition we assume 1= to be reflexive, transitive
and closed under contexts. Moreover we assume all general laws holding for
atoms to hold for 0 as well.

In Koymans and Mulder [7] this notion has already been worked out in a
semantical setting of process graphs. So far it has not been verified whether
this leads to the same interpretation.

O·x=O CHI

O+x=O CH2

01= x IMl

a·O 1= 8 IM2

TABLE 1. The axioms of chaos and of implementation

Within the semantical setting of Process Algebra (see Bergstra and Klop
[2]), in two specific examples we will be able to prove correctness of certain
implementations of systolic systems with respect to these specifications. These
proofs already were presented by Hennessy [6] using synchronous ('clocked')
cooperation between cells. In the following, however, we will specify asynchro
nous versions of these examples. We therefore construct delay-insensitive

Correctness proofs for systolic algorithms: palindromes and sorting 91

circuits (see Ebergen [5]), which says that the system can 'wait' for communica
tion at its channels without starting to malfunction.

Other authors working with formal specifications to describe the behaviour
of VLSI-circuits are for instance Milne [10] and Rem [11].

It turns out that ACP.,. provides us with a convenient proof system in which
correctness proofs can be presented in a fairly standard way.

At this place we especially want to thank Jos Baeten who took the trouble to
check this article several times and who gave so much of his support in
developing its content.

2. A PALINDROME-RECOGNISER

In the following we will describe a machine which is able to recognise palin
dromes from strings of input symbols i.e. a machine that answers 'true' if and
only if a given string of input symbols is equal to its reverse.

Suppose Sis a finite set of symbols from which the input strings are built up.
The actions of sending and receiving a symbol d along a certain channel are

written as s(d) and r(d) respectively. Moreover we have a predicate ispal with
strings of symbols as its domain which is true if and only if its argument is a
palindrome. Finally we write lwl for the length of the string w.

Now we can easily write down the specification of the palindrome-recogniser
PAL as is done in Table 2.

PAL(t:)=s(true)-PAL(t:)+ ~r(x)·s(true)·PAL(x)
xeS

PAL(w)= ~r(x)-s(ispal(x·w))·PAL(x·w) (iwl>O)
xeS

TABLE 2. A specification of the palindrome-recogniser PAL

The specification in Table 2 describes precisely our intuition about what a
palindrome-recogniser should do.

Note that the machine PAL only receives input symbols. Since it is clear
that a palindrome-recogniser should not throw away any of its received infor
mation the machine described in Table 2 needs to be able to contain arbi
trarily long strings of symbols. In practice, however, machines are of a finite
size. So from a more practical point of view we should first give a specification
of a machine that only works on input strings with a limited length.

In Table 3 a machine PALk is specified working exactly like the previous
palindrome-recogniser but now with a limit to the length of its input strings.
For reasons to be explained later this limit is put 2k instead of k.

We assume our machine PALk has an in/output channel numbered k + 1.
So sk + 1 (d) and rk+ 1 (d) will denote the actions of sending and receiving a
symbol d.

92 L. Kossen, W.P. Weijland

(O~lwD
xeS

PALk+ 1(t:)=sk+2 (true) ·PALk+1(t:)+ ~rk+2(x)·sk+2 (true) ·PALk+ 1(x)
xeS

PALk+ 1(w)= ~rk+2(x)·sk +2(ispal(x·w))·PALk+1(x·w) (O<lwl<2(k +I))
xeS

PALH 1(w)= ~rk+2(x)-O (2(k + I)~lwl)
xeS

TABLE 3. A specification of PALk for arbitrary natural number k

The fourth equation tells us that if PALk has reached its maximum capacity
it will turn into chaos, i.e. it will not be restricted any more as to its behaviour.
Indeed if the machine has thrown away any of its input it can never react like
a palindrome-recogniser with respect to this input.

We will now introduce an implementation of a palindrome-recogniser of
some given size k. This means we will construct a machine implementing the
specification given above.

As mentioned in the introduction this particular implementation has the
look of a large integration of identical cells. As a matter of fact each cell itself
is again a palindrome-recogniser of size 2. We will prove that a merge of k
such cells gives us exactly a palindrome-recogniser of size 2k.

Consider the cell pictured in Figure 1. The i-th cell C; has two communica
tion channels i and i + I. Internally C; has three storage locations, one for
boolean values and two for symbols.

boolean

1+1 symbol1 I

symbol2

FIGURE l. An individual cell, C;, of the palindrome-recogniser

The cell C; has three distinct states.
(0) In the initial state the cell carries no symbols, i.e.: carries the empty word,

and since the empty word is a palindrome it can always output the
boolean value true to the left. If a symbol is input from the left it is stored
in the location symboll, then the boolean value true is output to the left

correctness proofs for systolic algorithms: palindromes and sorting 93

since a ~o~d consisting of a single symbol always is a palindrome. The
cell now 1s m state one.

(1} J~ state __ <?.!1-~~--~YI.!1:~~~~~--~ll:t..from the left and a boolean from the right
(many order), and stored in the remaining locations symboll and boolean.
The cell is now in state two.

(2) In state two the cell contains two symbols symboll and symbol2 forming a
word that is a palindrome iff symboll = symbol2. Now a boolean value b
is output to the left, which is calculated according to the formula

b = boolean/\(symboll = symbol2).

Hence before deciding about its output the cell C; consults messages
received from the outside world. Together with this boolean output the
symbol in location symboll is output to the right (in any order inter
leaved) making room for new input symbols. The cell is now in state one
once more.

In the language of ACP.,. the behaviour of the cell C; described above cari be
expressed by the equations shown in Table 4. The fourth equation defines a
machine called TC which stands for terminal cell. This terminal cell has a
fairly destructive behaviour with respect to its input data since they are simply
thrown away. Since TC never 'contains' any symbol (or always contains the
empty string) it can always output a boolean value true and thus behaves like
a palindrome-recogniser of size zero (note that the empty string is a palin
drome). In the sequel we write B for the set of booleans {true, false}.

C; =s;+ 1(true)·C; + ~r;+ 1 (x)'s;+1(true)-C';(x)
xeS

C';(x)=(~r;+ 1 (y)ll ~r;(v))·C";(x,y, v)
yeS veB

C";(x, y, v)=(s;+1 (Ix =yl /\v)lls;(y)) ·C';(x)

TC=s 1(true)·TC+ ~r 1 (x)·TC
xeS

TABLE 4. Formal definition of the behaviour of an individual cell

Note that the second ~1!!~2~o}a,te~_Qie ~<?Ope rules of-~ -~ince y and v
~~-b~~~~d--~arlabi~s-iii the first term. We will nevertheless use this notation

--a8a shortlian<lTor iheoorrect but much more complex term

~r;+ 1 (y)-(~r;(v)-C";(x,y,v))+ ~r;(v)-(~r;+1(y)·C";(x ,y, v)).
yeS veB veB yeS

We prefer not to introduce a formal notion here. .
From the cells described above we now construct a stronger machine by put

ting the cells in a chain and defining communications between connected cells.

94 L. Kossen, W.P. Weijland

Consider the configuration as pictured in Figure 2 below. Since now the cells
are connected by their channels it is easy to see how we should define an
appropriate communication function. 1brough channel i the cells C; -1 and C;
communicate by the communication action s;(x)lr;(x). Any separate action
s;(x) or r;(x) means something like 'waiting to communicate' and since we do
not want our machine to wait eternally for communication we have to encap
sulate them. The only exceptions are sk + 1 (x) and rk + 1 (x) since there is no cell
Ck+ 1 to communicate with them. Hence these two actions can communicate
with the outside world.

TC

FIGURE 2. A chain configuration of k cells

From now we assume k to be fixed.
We have in general the following communication function defined on atomic

actions:

s;(x)lr;(x) = c;(x) for all x ES U B and i <k + 1

alb =8 for all other pairs of actions a,bEA.

The encapsulation set Hk of actions resulting in a deadlock is defined as

Hk = {s;(x),r;(x): xESUB and i<k+l}.

The abstraction set I of invisible machine actions is defined as

I ={eh): xESUB and i<w}.

Note that by definition machine actions are invisible if and only if they do not
occur in the specification of the particular machine. One can also look at them
as internal actions that can not be influenced from the outside.

The machine pictured in Figure 2 can algebraically be described as a com
munication merge M(k) of k individual cells i.e:

M(k) = T1an.(Ckll · · · llCillTC).

In the following we will formally prove that M(k) indeed is an implementation
of the palindrome-recogniser given in Table 3.

Correctness proofs for systolic algorithms: palindromes and sorting 95

3. A FORMAL PROOF OF CORRECTNESS

Before turning to the formal proof itself let us first try an example to see how
the machine works. Indeed this gives us some intuition about the practical
behaviour of M(k) which will be helpful later in this section. The specific
example given below was found in [8].

In Figure 3 four connected cells are pictured and we can look at the
machine until the string baabaaba is input. As we see, immediately after
receiving a new input symbol the machine returns a boolean value at the left
most channel to state whether the string in the machine is a palindrome or not.

In Figure 4 we connect the terminal cell TC to our previous machine and
assume aababba has already been input. When in addition abb is input we get
as output, true, although abbaababba is not a palindrome. So we see that the
behaviour of the machine depends on the length of the input.

If the input gets too long TC will destruct input symbols loosing all relevant
--illformation aboui them. · · ·· ·· · · · ·· -·· - -

We will. now get to the main fact in this paragraph which will be proved by
means of the equations of ACP.,. together with RSP, the Recursive Speci
fication Principle which says that if two processes satisfy the same guarded
recursive specification then they are equal.

To do this we first need to give a more detailed specification of the machine
we have constructed so far. As a matter of fact we will prove our machine to
be equal to the process DPk specified below in Table 5.

Pk +I (t:)=sk +2(true)·DPk +1 (t:)+ :Lrk +2(x)·sk +2(true)·DPk +1(x)
xeS

(O~JwJ

Pk+1(w)= ~rk+2(x)-sk +2(ispal(x·w))·DPk+1(x·w) (O<JwJ<2(k + 1)
xeS

Pk+i(w)= ~rk+2(x)·sk+ 2(ispal(x'f (k + l,w))) ·DPk+1(x·w) (2(k + l)~Jwl
xeS

xeS

here a function/ (k,w) is defined as

{
w ilJwJ<2k

f (k, w) = first(k -1, w) · last(k, w) otherwise

· th the obvious extra functions

first(k,x 1 · · · Xn) = (x1 · · · xk)

last(k,X1 · · · Xn) = (Xn-k+I · · · Xn)·

TABLE 5. A specification of DPk for arbitrary natural number k

96 L. Kossen, W.P. Weijland

input: a

~ ~ ~ ~
output: true

~ ~ ~ ~
input: b w ~ ~ ~

output: false w ~ ~ ~
input: a w ~ ~ ~

output: true w g ~ ~
input: a w 6J ~ ~

FIGURE 3. An example to give an idea of how the machine works
(to be continued)

Correctness proofs for systolic algorithms: palindromes and sorting 97

output: false w w [j r=J
input: b w w [TI ~

output: false w w w 6d
input: a w w w 6d

output: true w w w w
input: a w w w w

output: false w w w [TI
input: b ff] w [TI w

FIGURE 3. (continued)

98 L. Kossen, W.P. Weij/and

TC

input: b w w w w D
TC

output: false w w w ~ D
TC

input: b w w w w D
TC

output: false w w w w D
TC

input: a

~ w w w D
output: true

FIGURE 4. The machine now in connection with the terminal cell

Comparing the specifications of DPk and PALk (see Table 5 and Table 3)
one can see immediately that DPk is a more detailed version of PALk. From
the axioms in Table 1 it follows easily that PALk(E) t= DPk(E).

PROOF. By induction on k.

k =O: 'TJaH,(M(O)) = 'TJaH,(TC)=TC=DPo(E).

k + I: we first prove

T1aH .. , (Ck+illDPk(t:)) = DPk+ 1(t:).

Then the result can easily be proved by use of the conditional axioms. It is
easily checked that the following two equations hold:

Correctness proofs for systolic algorithms: palindromes and sorting

'TJOH>+, (Ck+ i llDPk(£)) = sk +1(true)·71on>+, (Ck+ 1 llDPk(£)) +

+ ~ rk +i(x)·sk +1(true)"T)On>+, (C'k +I (x)llDPk(()).
xeS

'T1on .. , (C' k + 1 (x)llDPk(()) =

= 7· ~rk+2(y)·'T1on,., (C"k+1 (x,y, true)llDPk(e)).
yes

To continue we need a definition.

{
v if Jvj~2k

DEFINITION. g(k, v) = first(k, v)·last(k, v) otherwise

Now we can formulate what is in fact the crucial induction hypothesis:

LEMMA. For all symbols x,y ES and strings v ES* we have

(i) 'TJOH,+I (C' k + 1(x)ll(sk+1 (ispal(g(k, v))) ·DPk(v))) = -r·DPk+ 1 (v·x)

(ii) 'T1on,., (C" k + 1 (x, y, ispal(g(k, v)))llDPk(v))

= -r·sk+ 1 (ispal(y-f (k + 1, v·x)))·DPk+ 1(y·v·x).

PROOF. Let

Q(x, v) = 'TJOH,., (C'k+ 1(x)ll(sk+1 (ispal(g(k, v))) ·DPk(v))).

Now we prove that we have

Q(x, v) = 7· Lrk+2(y}sk +2(ispal(y-f (k + 1, v·x))) ·Q(x,y-v)
yeS

99

(1)

(2)

which gives us precisely 7·DPk+ 1(v·x) given in Table 5, and hence Lemma (i)

by RSP. We have

Q(x,v) =

= -r1on,.,(((~rk+2(y)ll ~rk+1(b))·C"k+1(x,y, b))ll
yeS beB

ll(sk + 1 (ispal(g(k, v))) ·DPk(v)))

L rk +i(y)·'T10n,., ((L rk + 1 (b)·C" k + 1 (x, y, b))ll(sk + 1 (ispal(g(k, v))) ·DPk(v))) +
yeS beB

+7·-r13n,., ((L rk +2(y)·C"k + 1 (x, y, ispal(g(k, v))))llDPk(v))
yes

= -r· Lrk+2 (.Y)·'T13H,.,(C"k+l(x,y, ispal(g(k,v)))llDPk(v)) (using axiom TI).

yeS

100 L. Kossen, W.P. Weijland

Furthermore we have

""I a H .. , (C" k+ 1 (x, y, ispal(g(k, v)))llDPk(v)) =

= sk+2(1x =yl/\ispal(g(k,v))) ·""Ian .. , ((sk+1(y)·C'k+ 1(x))ll

II(~rk+ 1(z)"sk+ 1 (ispal(zf (k, v))) ·DPk(z·v)))+
zeS

+T·T1oH •• , ((sk +I (Ix= yl/\ispal(g(k, v))) ·C'k + 1 (x))ll

ll(sk+ 1 (ispal(yf (k, v })) ·DPk(y·v)))

= rsk+2(lx =y!Aispal(g(k,v)))·

·T1an .. , (C'k + 1(x)ll(sk+1 (ispal(yj (k, v))) ·DPk(y·v)))

and since

Ix =yl/\ispal(g(k,v)) = ispal(yj(k, v·x))

y-f (k,v) = g(k,y-v)

we have

=rsk +2(ispal(yf (k +I, v·x))) ·

·Tian •• , (C'k +1(x)ll(sk+1 (ispal(g(k, y-v))) ·DPk(y·v)))

=rsk+2(ispal(yf (k +I, v·x)))·Q(x,y-v).

After substitution we find

Q(x, v) = T· ~rk+2(y) ·sk+2(ispal(yj(k +I, v·x))) ·Q(x,y-v)
yes

which is precisely what we wanted.
By RSP we have Lemma (i). Note that we implicitly proved (ii). D (Lemma)

The rest of the proof is straightforward:
With Lemma (ii) and (2) we have

'T1an .. , (C'k + 1 (x)llDPk(t:)) =
= 'T' ~rk+2(y)·sk+2(ispal(yj(k +I, x))) ·DPk + 1 (y·x)

yeS

= T·DPk+1(x~

Finally with (I) we have

Correctness proofs for systolic algorithms: palindromes and sorting 101

'T'JaHk+, (Ck+ 1 llDPk(t:)) =

= sk +2(true}'T'1aH .. , (Ck+ 1 llDPk(t:))+ 2: rk +2(x)·sk+ 2(true)·T·DPk + 1 (x)

= DPk+1(t:)

using RSP again.
Note that we have proved

XES

'1'JaH .. ,(Ck+1lhaH,(Ckll · .. '1'JaH,(C1llTC) ...)) = DPk+1(£).

It is easy to prove by induction, however, that

a(Ck +1)j(a(Ckl!M(k -l))nHk)c;;,Hk

fvr all k (in fact a(Ck + 1)i(a(Ck llM(k -1)) nHk)= 0, and

a(Ck+1)i(a(CkllM(k-l))nI) = 0).

So because Hk+I -;]Hk we find with the use of the conditional axioms CAl,

CA2 and CA5: ·

'1'JaH .. ,(Ck+1lhaH,(Ckll ... '1'JaH,(C1llTC) ...))=

= '1'1aH .. ,('1'1aH.(... '1'JaHJCk+1llCkll ... llC1llTC) ...)).

Since

Hn! = 0

we have

'1'/aH .. ,('T'JaH,(... '1'/aH,(Ck+1llCkll ... llC1llTC) ...)) =

= 'T'J ... 'T'JaH .. , ... aHJCk+1 llCkll ... llC1 llTC)

by axiom CA 7 and finally with axioms CA5 and CA6 we find

'1'[... 'T'JaH .. , ... aH, (Ck+1 llCkll ... llC1 !ITC) =

='1'1aH .. ,(Ck+1llCkll · · · llC1llTC)

which is exactly M(k + 1).

Therefore, we have M(k)=DPk(t:), for all k. This finishes the induction. D

Finally we find

PALk(t:) t= DPk(t:)=M(k)=T1aH,(Ckll · · · llC1 !ITC)

so we have

PALk(t:) t= '1'1aH,(Ckll · · · llC1llTC)

_ which is the formal V{ay to e~p~:_ss_~ha~_.:!aH,_(~k II · · · llC1 !ITC) ind~C:~ is a

palind:._otE~~~~~-se._r_: __ _

102 L. Kossen. W.P. Weijland

4. A SORTING MACHINE
A second example of a machine implemented by a 'systolic system' is a sorting
machine. A sorting machine can input a sequence of numbers and output them
in increasing order. First we will discuss a restricted sorting machine which is a
sorting machine with a restricted capacity. For a good performance of such a
restricted sorting machine with capacity n it is necessary that the machine does
not contain more than n numbers. If the absolute value of the difference of
the number of input and output actions is greater than n, the behaviour of the
restricted sorting machine is undefined. Later on, a sorting machine which can
contain an arbitrary amount of numbers will be discussed.

Before we discuss in what way the restricted sorting machine is constructed
we first state its expected external behaviour. This is done in Table 6.

SORTk(0)=sk(empty)·SORTk(0)+ 2: rk(d)·SORTk({d})
dED

SORTk(B)=sk(µB)·SORTk(B -{µ.B})+ 2: rk(d)·SORTk(B U {d}) O<IBl<k
dED

SORTk(B) =sk(µB)·SORTk(B - {µ.B})+ 2: rk(d)·Q IBl=k
dED

TABLE 6. Specification of a restricted sorting machine with capacity k (k >0)

Some explanation is useful here. B is a bag or multiset with !BI elements.
0 is the empty bag. If bag B is not empty the minimal element of B is
denoted by µB. On bags the operations U and - are defined in the standard
way. SORTk(B) is the restricted sorting machine of capacity k with contents
B. SORTk has a communication channel k. Through this channel the res
tricted sorting machine can output (sk) and input (rk) data to and from the
outside. A datum can be a number or a special symbol called 'empty'. The
relevance of sending an empty signal is made clear in the implementation part
later on. There it turns out to be an inevitable action as a result of that imple
mentation. The Q stands for the process chaos discussed in Section 2. Q is
encountered when the content of the restricted sorting machine gets greater
than its capacity. The behaviour of the machine then becomes irrelevant.

Now we will describe the implementation of a restricted sorting machine of
a certain capacity by connecting a number of identical cells. It shall be proved
that k connected cells plus one special cell is an implementation of the res
tricted sorting machine SORT21c. The notion of implementation, denoted by ~
is described in Section 2. Before we discuss a chain of cells we first turn to an
individual cell.

An individual cell has two storage locations called MIN and MAX and two
communication channels. The channels of cell C; (i >0) are called i and i - 1.

Correctness proofs for systolic algorithms: palindromes and sorting 103

Elements of a number set D can be stored in MIN and MAX. Elements of D
and 'empty' can be transmitted through the communication channels. An indi
vidual cell Ci is pictured in Figure 5.

----1i I mm I m~ l-i-1
cell i

FIGURE 5. An individual cell Ci

Each cell can be in three states.
(0) In this state both storage locations MIN and MAX are empty. The cell

C; can receive a number from the left. This number is stored in MIN and
the cell enters state (1). Another possible action is sending an 'empty' to
the left. In this case the cell remains in state (0). State (0) is also the initial
state for each cell C; (i >0).

(I) In state (I), MIN is filled and MAX is empty (really empty). A number
from the left can be received. The minimum of the content of MIN and
the received number is stored in MIN. The other number is stored in
MAX. State (2) is entered. The second possibility is sending the content of
MIN to the left and entering state (0) again.

(2) Now MIN and MAX are both filled and the content of MIN is less than
or equal to the content of MAX. The cell C; can receive a number from
the left and send the content of MAX to the right. MIN becomes the
minimum of the content of MIN and the received number. The other
number is stored in MAX. The cell remains in state (2). The other action
the cell can perform is sending the content of MIN to the left. Now two
possibilities arise: the cell receives an empty signal from the right, MIN
gets the content of MAX and the cell enters state (1). The second possi
bility is receiving a number from the right. MIN becomes the minimum of
MAX and the received number and MAX becomes the maximum of the
two. The cell C; remains in state (2).

Because we are building a restricted sorting machine an extra cell is needed.
This cell is called C0 . It is pictured in Figure 6. This cell has one communi
cation channel called 0 and contains no storage locations. C 0 remains always
in the same state. In this state C 0 is able to send an 'empty' to the left or
receive a number from the left. The number received disappears completely.
C 0 can be considered as a cell crushing the incoming numbers.

The specification of the cell C; (i~O) is given in Table 7.
All parts needed for building a restricted sorting machine have been dis

cussed. A restricted sorting machine with capacity 2k can be built by intercon
necting k + 1 cells C; (O.;;;;io;;;;;k). Ci and Ci-t(lo;;;;;io;;;;;k) communicate through
channel i -1. Channel k is the external input/output channel for the machine.

104

~
cell 0

FIGURE 6. The terminal cell

i =O: Co= 2: r0(d)·Co +so(empty)·Co
deD

i >0: C; = 2: r;(d)·C';(d) + s;(empty)'C;
deD

C';(d) = 2: r;(e)·C";(sw (d, e)) + s;(d)'C;
eeD

C";(d, e)= 2: r;(j}s;- 1 (e)·C;"(sw(d,f))
feD

L. Kossen, W.P. Weijland

+s;(d)·(r;- 1(empty)'C';(e)+ 2: ri-1 (j}C"i(sw(e, j)))
feD

Here sw stands for swap: sw(d, e)=(min(d, e), max(d, e))

TABLE 7. Specification of an individual cell C; for i~O

When an internal cell i (that is a cell which is not the first cell in the chain)
performs an action s;(d), r;(d), s;- 1(d) or r;- 1(d), deDU{empty}, this action
must be matched by a complementary action of a neighbouring cell. For cell
Ck only actions sk- I (d) and 'k- I (d) must be answered by complementary
actions of cell k - l. This is achieved in Process Algebra by defining communi
cations c;(d) as the result of s;(d) and r;(d) and encapsulating the individual
actions s;(d) and r;(d). Of course the actions rk(d) and sk(d) are not encapsu
lated because these actions are the communications with the outside world. To
illustrate that this chain of k cells plus one special cell really gives a restricted
sorting machine of capacity 2k an example is worked out in Figure 7. In this
case k =3.

A formal description of the machine discussed before and pictured in Figure
7 is given in Table 8. We call the empty restricted sorting machine built from
k normal cells plus the terminal cell SORT*21c(t:). Hk is the encapsulation set
and contains the actions that should not be performed without a partner. To
describe the external behaviour of the restricted sorting machine we abstract
from the internal actions that still can be performed after encapsulation. Sym
bols to be abstracted from are in /. The resulting sorting machine is called
SORT*21c(t:). Now it will be proved that this restricted sorting machine is an
implementation of the restricted sorting machine defined by the specification in
Table 6.

Correctness proofs for systolic algorithms: palindromes and sorting 105

cell 3 cell 2
3 2 ~~~

cell l cell 0

input 3 3

input 7 3 7

input 2 2 3 7

input 12 2 12 3 7

input 15 2 15 3 12 7

input 4 2 4 3 15 7 12

output 2 3 4 7 15 12

input 9 3 9 4 7 12 15

input 1 3 4 9 7 12

output 1 3 4 7 9 12

output 3 4 7 9 12

output 4 7 9 12

output 7 9 12

output 9 12

output 12

FIGURE 7. Example of restricted sorting machine

106 L. Kossen, W.P. Weijland

SORT*2k(()=T1°dn,(Ckl\ · · · \ICo)

Communication actions c;(d) for each pair r;(d), s;(d), dED U {empty}, i <k:

c;(d) = r;(d)ls;(d)

Hk={s;(d), r;(d): dEDU{empty}, O~i<k}

J={c;(d): dEDU{empty}, i~O}

TABLE 8. A restricted sorting machine with capacity k fork >0

FACT. For all k~l: SORT2k(0) F= SORT*U:(t:).

Before we turn to the proof some definitions are given.

DEFINITION.

(i) A sequence <d1 , ••• , dn > is called correctly ordered (c.o.) if and only if
d;~d;+ 2 and d;~d;+ 1 for all odd i. Note that every sequence contained
in the restricted sorting machine at any time will be c.o., as illustrated in
Figure 7.

(ii) On sequences <d 1 , ... , dn > a function sw is defined inductively as follows:
sw(t:)=t:
sw(<d1>)=<d1 >

sw(w)=<min(di, d1), max(dz, d1)>*sw(w') if lwl;;;a.:2w = <d1> d1>*w'

FACT. (i) ifw is c.o. then sw(<d>*w) is c.o.
(ii) if <d>*w is c.o. then sw(w) is c.o.
(iii) ifw*<d> is c.o. then sw(w) is c.o.

PROOF. The proof consists of two parts. First we prove that SORT*2k(t:) is a
solution of the specification, formulated in Table 9. Next we prove that any

solution of that specification also is an implementation of the restricted sorting

machine specified in Table 6. First we define SORT'2k(w) for k;;;a.:O, wES*,
O~lwJ~2k and w c.o. SORT'2k(w) is defined below:

DEFINITION.

(i) SORT'0(t:)= C0

(ii) SORT'2H2(t:)=T1°dHu, (Ck+1 l\SORT'2k(t:))

(iii) SORT'2k +1(<d1 >)=T1°oH,., (C'k + 1 (d i)l\SORT'2k(t:))

(iv) SORT'2k +1(<d1 ,d2 >*w)=T1°dH,+, (C"k +1 (d1 ,d2)1\SORT'2k(w))

Now SORT"U:(t:)= SORT*U:(t:) is proved in two steps:

Correctness proofs for systolic algorithms: palindromes and sorting

SORT"2k(1::)=sk(empty)·SORT"2k(€)+ 2: rk(d)·SORT"2k(<d>)
dED

for all w with l<d1)*wl<2k and <d 1 >*w c.o.:

SORT"2k(<d1 >*w)= 2: rk(d)-SORT"2k(sw(<d>*<d 1 >*w))
deD

+ sk(d 1)-SORT"2k(sw (w))

for all w with \<d1)*W*<d2k>i=2k and <d1 >*w*<d2k> c.o.:

SORT"2k(<d1 >*w*<d2k >)= 2: rk(d)·SORT"2k(sw(<d>*<d1 >*w))
deD

first step:

+ sk(d 1)·SORT"2k(sw (w*<d2k >))

TABLE 9. Intermediate specification of a restricted sorting
machine with capacity 2k

for all k;;;;oI, w c.o. and O~w~2k:

SORT"2k(w)=SORT'2k(w)

second step: for all k;;;;ol: SORT'2k(E:)=SORT*2k(t)

107

(*)

(**)

PROOF (*). The first step will be proved by induction on k and the length of

the content. k = 1: three subcases have to be considered:

(i)

SORT'2 (E:) = 'T1°aH1 (C1llCo) =

='T1°aH1 (2: r 1 (d)-C'1(d)+s1(empty)-C1 llCo)
deD

= 2: r 1 (d)-'T1°aH, (C' 1(d)llCo)+s1 (empty)·'T1°3H 1 (C 1 llCo)
deD

Using the definition of SORT'2k(w) the intended result is obtained:

SORT'2(t:)= 2: r 1 (d)·SORT'2(<d>)+s 1 (empty)-SORT'2(t:)
dED

(ii)

SORT'2(<d 1 >)='T1°aH1 (C'1 (di)llCo)

='T1o3HJ 2: r 1 (d)-C"1 (sw(d, d1))+s1 (d1)-C1 llCo)
dED

108 L. Kossen, WP. Weijland

= L r1 (d)·T1°aH, (C"1(sw{d,d1))llSORT'o{t:))+
deD

+s 1(d1)·T1°aH, (C1 llSORT'o(t:))

Using again the definition of SORT'21<-(w):

SORT'2(<d1 >)= L r1(d)·SORT'2(sw(<d, d1 >))+s1(d)-SORT2(t:)
deD

(iii)

SORT'2(<d1, d1>)=T1°aH, (C"1 (di. d1)llC0)

= L r1 (d)·T1°aH, ((so(d2)·C"1 (sw(d, d1)))llC0)+
deD

+s1 (d1)·T1°aH, ((ro(empty)·C'1 (d2)+ L ro(e)·C"1 (sw(d2, e)))llCo)
eeD

= L r1(d)-T·T1°aH, (C"1 (sw(d, d1))llCo)+s1 (d1)·T·T1°aH, (C'1 (d2)llC0)
deD

so we have

SORT'2(<d1> d1>)= Lr1(d)·SORT'2(sw(<d, d1 >))+s1(d1)·SORT'2(<d2 >)
deD

k =n +I where n >0. Five cases have to be considered:

SORT'2<n +1)(t:)=T1°aH.+, (Cn +1 llSORT'2n(t:)) =

=T1°aH.+1 (L rn+I (d)·C'n+l (d)+sn +I (empty)-Cn +1 llSORT'in(t:))
deD

= Lrn + 1(d)·T1°an.+, (C'n+l (d)llSORT'2n(t:))+
deD

+sn+1(empty)·T1°aH.+, (Cn +1 llSORT'2n(t:))

= L rn +1(d)·SORT'2(n +t)(<d>)+sn +I (empty)·SORT'2cn + J)(t:)
deD

This expression is in the form of the specification of Table 9.

(i)

Correctness proofs for systolic algorithms: palindromes and sorting 109

=T1°0H.,, (2: rn +I (d)-C"n + J (sw(d, di))+ Sn+ 1(d1)·Cn+1 /ISORT'2n(1t))
dED

= 2: rn + 1(d}T1°0H-+.(C"n+1(sw(d,d1))//SORT'2n(t:))+
dED

= 2: rn + l (d)·SORT'2(n +l)(sw(<d,d1>))+sn+1(di)·SORT'2(n+1)(€)
dED

Again in the form of the specification of Table 9.

= 2: rn + 1 (d}T1°0H." (sn(d2)·C" n + J (sw(d, d J))I/SORT' 2n(t:)) +
dED

+Sn+ 1 (d)-T1°oH,+, ((rn(empty)·C'n + 1 (d2) +

+ 2:rn(e)·Cn+1(sw(d2, e)))llSORT'2n(£))

(induction hypothesis)

= 2: rn + 1 (d)·T·T1°0a.+, (C"n + J (sw(d, di))l/SORT'2n(<d2 >))+
dED

+Sn+ l (d1)-T·T1°oH,+, (C'n + 1 (d2)1/SORT'2n(t:))

= 2: rn + 1(d)·SORT'2(n + l)(sw(<d, d J, d1))) +Sn+ 1(d)·SORT'2(n + J)(<d2 >)
dED

which is the in tended form.

(ii)

(iii)

(iv)

110 L. Kossen, W.P. Weijland

= }: rn + 1 (d)·T1°aH," (sn(d2)-C"n + 1 (sw(d, d i))llSORT' 2n(w')) +
dED

+Sn+ 1 (d l)"r1°aH,+, ((rn(empty)'C' n +I (d2) +

+ }:rn(e)-C"n+ 1(sw(d2, e)))l/SORT'2n(w'))

(induction hypothesis)

= }: rn + 1 (d)·7·71°aH.+1(sn(d2)·C"n+1(sw(d,d1))II
dED

llSORT'2n(sw(<d2)*(d3 >*w')))+

+Sn+ 1(d1)·rT1°aH,+, (C" n + 1 (sw(d2, d3))11SORT' 2n(sw(w")))

= }: rn + 1(d)·SORT'2(n + l)(sw(<d>*w)) +Sn+ 1(d1)-SORT'2(n + J)(sw(<d2)*w'))
dED

again the intended form.

= L rn + 1 (d)"r1°aH.+, (sn(d2)·C"n +l (sw(d, d1))llSORT'2n(w'))+
deD

+Sn+ 1 (di)·7)0 aH,+, {(rn(empty)-C'n + 1 (d2)+

+ L rn(/}C"n +I (sw(d2,f)))llSORT'2n(w')}
feD

(induction hypothesis)

= L rn +1 (d)·7·71°aH.+, (C"n + 1 (sw(d, d1))llSORT2n(sw(<d2 >*w"')))+
deD

= L Tn +I (d)-SORT'2(n +1i(sw(<d>*w))+
deD

+sn + 1(d1)·SORT'2cn + l)(sw(<d2 >*w'))

which is the intended form.

(v)

From this we can conclude SORT'(w) satisfies the specification in Table 9.
Using RSP we get for all k;;;;ol, w c.o. and O..;;lwl..;;2k:

SORT'2k(w)=SORT"21c(w).

This ends the proof of (*). D

Correctness proofs for systolic algorithms: palindromes and sorting

PROOF(**). SORT'2k(E)=SORT*2k(t:), is proved by induction on k.

k = 1SORT'2(t:)=T1°0H1 (C111Co)=SORT*2(t:)

k> 1 SORT'2k(E)=T 0 oH, (Ck llSORT'2k -2(€))

=T1°aH,(CkllT1°aHk-J(Ck-lll ... llCo))

Because Hk n I= 0 one can rewrite this to

=T1°aH, 0 T1(CklloH,_,(Ck-1'I · · · llCo))

Because a(Ck)!a(aH,_, (Ck-i 11···llC0))n/=0 axiom CA2 can be applied

=T1°aH,(Ckllonk-l(Ck-lll .. · llCo))

111

Becausea(Ck)!a(Ck-111 · · · llC0)nHk-I C,Hk-I axiom CAI can be applied

=T1°aH, 0 on*-'(CkllCk-1ll · · · llCo)

Using axiom CA5 the induction step is completed

=T1°oH.(Ck llCk-1 II · · · llCo)=SORT*2k(t:)

This ends the proof of(**). D

Comparing the specification of Table 9 to the one in Table 10 we directly con
clude that SORT"'2k(t:) F SORT"2k(t:) follows from the definition of F.

Because of the transitivity of F and since x = y =:::> x F y we only need to
prove the equation SORT"'2k(t:)=SORT2k(0) to prove SORT2k(0) F

SORT*2k(t:). Consider the specification in Table 10 then it follows that
SORT2k(Bw) (Bw denotes the bag containing the elements of w, w c.o.,
O~!w!~2k) satisfies this specification, substituting it for SORT'"2k(w). It is
crucial here that of any correctly ordered sequence the first element also is the
minimal element of that sequence. Using RSP we can conclude
SORT"'2k(t:)=SORT2k(0). So, SORT2k(0) F SORT*2k(t:). D

SORT"'2k{t:)=sk(empty)-SORT"'2k(t:)+ ~ rk(d)-SORT"'2k(<d>)
deD

SORT'"zk(<d1 >*w)= ~ rk(d)-SORT"'2k(sw(<d>*<d1 >*w))+
deD

+sk(d1)·SORT"'2k(sw(w')) for l<d1 >*wl<2k -1, <d1)*W c.o.

SORT'"2k(<d1 >*w*<d2k >)= ~ rk(d)·iJ+sk(d1)·SORT"'2k(sw(<d1 >*w*<d2k >))
dED

for l<d1 >*w*<d2k>l=2k, w c.o.

TABLE 10. Intermediate specification of restricted sorting machine using n

112 L. Kossen, W.P. Weijland

5. A PALINDROME-RECOGNISER WITH UNRESTRICTED CAPACITY

In this section we will remove the restriction on the length of the input string
of Section 3. Thus no terminal cell is present. The specification of this machine
is given in Table 11 (compare with Table 2). k is the name of the
input/output channel. Note that the subscript k in PALk(w) has nothing to
do with its capacity. It just indicates the name of the input/ output channel.

PALk(t:)= 2: rk(x)-sk(true)-PALk(x)+sdtrue)·PALk(t:)
XES

PALk(w)= 2":rdx)·sk(ispal(xw))-PALk(xw) (lwl>O)
XES

TABLE 11. Specification of palindrome recogniser with unbounded capacity

When more capacity is needed, a new cell is created. A cell can be in two
major states: it is a cell left from the last cell or the last cell in the chain. The
last cell is always empty. When the last cell is filled it creates a new cell on the
right.

As an extension of ACP the mechanism of process creation is described in
[3]. With this mechanism it is possible to create a new process concurrent with
the present one. To make process creation possible a creation atom and a spe
cial operator E.p are introduced. We assume that a creation atom is neither a
result of a communication nor communicates with another atom. For all dED,
where Dis a set of data, creation atoms cr(d) are introduced. This in combina
tion with the special operator E.p gives a mechanism to create a process c/>(.d).
When E.p is applied to a process all the atoms which are not creation atoms
will be executed without any problem. Whenever a creation atom is detected a
new process will be started. The axioms for process creation are formulated in
Table 12.

E.p(a)=a

E.p(r) =7

Eq,(cr(d)) = cr(d)-E.p(c/>(.d))

E.p(rx)=r-E.p(x)

Eq,(ax)=a·E.p(x)

E.p(cr(d}x) = cr(d} E.p(<j>(d)llx)

Eq,(x +y)=E.p(x)+ E.p(y)

a tf.cr(D), a EA U { 8}

dED

TABLE 12. Axioms for process creation

Correctness proofs for systolic algorithms: palindromes and sorting 113

The atom cr(d) indicates that the process c/>(d) has been created.

Since a creation atom neither communicates nor is the result of a communi
cation, the following propositions hold.

PROPOSITION I. For all closed terms x: E,poE,p(x)=Eq.(x).

PROPOSITION 2. For all closed terms x,y: E,p(xl[y)=E,p(x)llE,p(Y).

We assume these propositions to hold for all recursively defined processes. An

example of process creation is given below. This example can be found in [3].

Ex.AMPLE. D={d}, ip(d)=a·cr(d)llb·cr(d), alb=~. When P=Eq.(cr(d)) then
using proposition 2 we have P=cr(d)"(aPllbP).

Now let's return to our palindrome-recogniser and see how, in this specific

example, process creation works. We will first discuss an individual cell C;
which is pictured in Figure 8.

bool een

symbol 2

symbol 1

cell i

FIGURE 8. An individual cell C;

Note that the names of the channels are reversed in comparison with
Section 2.

A cell C; can be in three states.
(0) The cell is the last cell and it is empty. When a symbol is received from

the left a new cell is created. The symbol is stored in symboll and the cell

enters state (1). The second possibility is that a true signal can be sent to

the left. In this case, the cell remains in the same state.
(1) The cell contains one symbol. It can receive a symbol from the left and a

boolean value from the right in either order. These are stored in locations

symbol2 and boolean respectively. The cell enters state (2).
(2) The cell contains two symbols. We need the boolean value b to be calcu

lated in the following way:

b =boolean/\ (symbol I= symbol2)

The cell sends value b to the left and symbol2 to the right. The cell enters

state (1) again.

A formal description of an individual cell is given in Table 13. C;, C';, and

114 L. Kossen, W.P. Weijland

C"; correspond to the states (0), (1) and (2) respectively.

C; = ~ r;(x)·cr(i + l)·si(true)-C';(x)+s;(true)·C;
xeS

C;(x)=({ ~r;(y)}ll{ ~r;+1(v)})·C";(x,y, v)
yeS veB

C";(x,y, v)=(s;(!x=yl and v)lls;+1(Y))-C;(x)

q,(_i + l)=C;+1

TABLE 13. Specification of an individual cell

An example (the same example as pictured in Section 4) is written out in
Figure 9 on the next page. A formal definition of the palindrome-recogniser
with input/output channel k is given in Table 14.

PAL*k(t:)=T1°dH, 0 f.i,(Ck)

Communications for ;;;;i.1: c;(d)=s;(d)lr;(d)

Process creation for i ;;;;.1: 'i>(i) = C;

Hk={s;(d),r;(d): dESUB, i>k}

/={c;(d),cr(i): dESUB, ;;;;i.1}

TABLE 14. Formal definition of implementation of palindrome-recogniser

This definition is extended in the following Table 15.

IPALk(t:)=T1°dH, 0 f.i,(Ck)

IPALk(x)=T1°dH, 0 f.i,(C'k(x)llIPALk+ I (t:))

IPALk(yx)=T1°dH, 0 f.i,(C' k(x)llIPALk+ 1 (Y))

IPALHk(ywx)=T1°dH, 0 f.t,(C"k(x,y, ispal(w))llIPALk + 1(w))

IPALk(wx)=T1°dn, 0 f.i,(C'k(x)llIPALHH1(w)) lwl;;..2

Hk> I, communications, cp: see Table 14.

TABLE 15. Alternative implementation of the palindrome-recogniser k ;;i. I

Correctness proofs for systolic algorithms: palindromes and sorting

output true -§
input a --§--§
output true --§--§
inputb ~

output false -§-§--§
~

input a t:::::j ~

output true ~ td .. t:Lf1=j

input a

output false

input b

output false

input a

output true

input a

FIGURE 9. Example of unrestricted palindrome-recogniser

115

116 L. Kossen, W.P. Weij/and

PROOF. Consider the definitions in Tables 14 and 15. It is immediate that for
all k PAL*k(t:)=IPALk(t:). We will prove that the processes given in Table 15
are specified by the specification formulated in Table 16. From Table 11 and
Table 16 it is not difficult to see that PALk(t:)=PAL'k(t:). Substitute PALk(t::)
for PAL'k(E) and ,.-PALk(xw) for PAL'k(xw). This is a solution of the
specification in Table 16 and by RSP it follows that PALk(t:)=PAL'k(t:). So
what we need to prove is that the process defined in Table 15 is specified by
the specification in Table 16.

xeS

xeS

TABLE 16. Alternative specification of the palindrome-recogniser fork;;;;.. I

PROPOSITION. IPALk(t:) satisfies the specification in Table 16.

PROOF. This is proved for all k simultaneously with induction on the length of
the content of the palindrome-recogniser. The proof considers five cases where
in each case the previous cases are assumed to hold for all k.

I w=t: (i)

IPALk(t:)=,.1°an. 0 E.p(Ck)

= ~ rk(x)·r1°an, 0 E.p(sk(true)·C'k(x)llCk+1)+sk(true)-T1°aH, E.p(Ck)
xeS

Using E.p(xl[y)=E.p(x)llE.p(y), E.p(x)=E.poE.p(x) and the axioms CAI, CA2,
CA5 and CA 7, and the fact that when I and H don't contain creation atoms
E.; can be pushed through the 'TJ and aH operators, we find

= ~ rk(x)·sk(true)·'T1°aH, 0 Eq.(C'k(x)i1T1°aH .. , 0 E,p(Ck + 1))
xeS

Correctness proofs for systolic algorithms: palindromes and sorting

= ~ rk(x)·sk(true)"'r1°aH, 0 Eq,(C'k(x)/IIPALk +I (t:))+
xeS

So for all k ;;;:;. l :

IPALk(t:)= ~ rk(x)·sk(true)· IPALk(x)+ sk(true)·IPALk(t:).
xeS

J w=x I

IPALk(x)=T1°0H, 0 Eq,(C'k(x)llIPALk +I (t:))

using step (i) we get

=T1((~ rk(y)·ck+ 1 (true)+
yes

117

(ii)

+ck+1(true)· ~rk(y))·oH, 0 Eq,(C"dx,y, true)llIPALk+1(e)))
yes

=T· ~rk(y)-T1°0H, 0 Eq,(C"k(x, y, true)llIPALk +I (t:))
yes

(using step (i) and T2).
So for all k;;;:;. 1 :

IPALk(x)=,.. ~rk(y)·IPALk(yx).
yes

J w=yx j

IPALk(yx) =T1°aH, 0 Eq,(C'k(x)llIPALk + 1 (y))

Using (ii) and T2,

=T· ~rk(z)·T1°oH, 0 Eq,(C" k(x, z, true)JllPALk + 1 (y)))
zeS

So for all k ;;;:;. I :

IPALk(yx)=,.. ~rk(z)·IPALHk(zyx).
zeS

I w=yvx, lvl;;;:a.O I
IPALHk(yvx)=T1°aH, 0 Eq,(C"k(x, y, ispal(v))llIPALk+ 1 (v))

Using the induction hypothesis we obtain:

(iii)

(iv)

118 L. Kossen, W.P. Weijland

=11(sk(lx =yl/\ispal(v))·ck+ 1(y)+

+ck+ 1(y)·sk(ix =yi/\ispal(v)) ·oH, 0 £.,.(C'k(x)llIPALHk+i (yv)))

=1·sk(ix =yl/\ispal(v)) ·T1°oH, 0 £.,.(C'k(x)llIPALHk+l (yv))

So for all k ;;i.1 :

IPALHk(yvx)=rsk(ispal(yvx)) ·IPALk(yvx).

I w =vx, lvl;;i.2 I
IPALk(vx)=11°oH, 0 £.,.(C' k(x)llIPALHk +1 (v))

Using the induction hypothesis and T2 we obtain:

=1· ~rk(Y)·11°aH, 0 £.,.(C"k(x,y, ispal(v))llIPALk + 1 (v)))
yes

So for all k;;i.l:

IPALk(vx)=1· ~rk(y)·IPALHk(yvx).
yes

(using T2)

(v)

This ends the proof of the proposition. Then, using RSP as described above we
obtain the desired equality PAL*k(t:)=PALk(t:). D

6. THE SORTING MACHINE WITH UNRESTRICTED CAPACITY

After handling the restricted sorting machine in Section 5 we now come to the
sorting machine with unrestricted capacity. The specification of a sorting
machine with infinite capacity, which we ca11 sorting machine from now on, is
given in Table 17. Note that the subscript in SORTk(B) indicates the name of
the input/output channel.

The implementation of the sorting machine is diif erent from the implemen
tation of the restricted sorting machine. The number of cells of the restricted
sorting machine was fixed but the sorting machine is built by using a variable
number of cells. The last cell is always empty. When this last cell receives a
number from the left it creates a new cell. When a stop signal is received the
cell stops working and disappears.

SORTk(0)= ~ rk(d)·SORTk({d})+sk(empty)·SORTk(0)
deD

SORTk(B)= ~ rk(d)·SORTk(B U {d})+sk(Ji.B)·SORTk(B -{µ.B}) IBl>O
deD

TABLE 17. Specification of a sorting machine with infinite capacity for k;;i.1

Just like the cells of the restricted sorting machine these cells can contain

Correctness proofs tor systolic algorithms: palindromes and sorting 119

two numbers in MIN and MAX. The content of MIN is less than or equal to
the content of MAX. The last cell can create a new cell when needed. A cell
Ci is pictured in Figure 10. Note that the names of the channels are reversed
in comparison with Section 5.

_i I nlln I = lt---i+ 1

cell i

FIGURE 10. An individual cell

A cell can be in three states.
(0) The cell is empty. From the left the cell can receive a number or the stop

signal. When the cell receives a number from the left a new cell on the
right is created. The number is stored in MIN. The cell enters state (1).
When the cell receives the stop signal the cell stops working and disap
pears.

(I) The cell contains one number, stored in MIN. (a) The cell can receive a
number from the left. The minimum of the content of MIN and the
received number is stored in MIN. The larger of the two numbers is
stored in MAX. State (2) is entered. (b) The cell can send the content of
MIN to the left. Because the cell has become empty a stop signal is send
to the right. The cell enters state (0).

(2) The cell contains two numbers, stored in MIN and MAX. (a) When a
number is received from the left, the content of MAX is send to the right.
The minimum of the content of MIN and the received number is stored in
MIN. The other number is stored in MAX. The cell remains in the same
state. (b) When a number is sent to the left two possibilities arise. If an
empty signal is received from the right, then the content of MAX is stored
in MIN, MAX becomes empty and the cell changes to state (1). Receiving
a number from the right doesn't change the state of the cell. The
minimum of the content of MAX and the received number is stored in
MIN. The other number is stored in MAX.

A formal description of an individual cell is given in Table 18.

C; = ~r;(d)'cr(i + l)·C',(d)+r,(stop)+s;(empty)·C;
deD

C';(d)= ~r;(e)'C'';(sw(d, e))+s;(d)'s;+ 1(stop)·C;
eeD

C'';(d,e)= ~r;(f)·s; + 1 (e)·C'';(sw(d, /))+
feD

+s;(d)·(~r; +1(/}C",(sw(j, e))+ r; + 1(empty)C',(e))
feD

sw(d,e)=(min(d, e), max(d,e))

TABLE 18. Specification of cell i, ;;;i:.o

120 L. Kossen, W.P. Weij/and

In Figure 11 below a chain configuration of cells is pictured to illustrate how
the unbounded sorting machine works. Note how cells are created and killed.
These cells are connected in the same way as is done in the restricted sorting
machine implementation. The behaviour of the sorting machine with
input/output channel k is described in Table 19. Note that the subscript of
SORT*k(f) indicates the name of the input/ output channel, and has nothing to
do with its capacity.

SORT\(€)=,-1°aH, E,p(Ck), k;;;;.. 1

Communication: c;(d=r;(d)ls;(d), dEDU{empty, stop}), i;;;;.:l

Process creation: cp(i) = C;, i ;;;;.:2

Hk = {r;(d), s;(d): d ED U {empty, stop}, i ;;;;..k + l} U b(stop)}

I= { C;(d), cr(i + l): dED u {empty, stop}, j;;;;,. 1}

TABLE 19. Formal description of a sorting machine with input/ output channel k

FACT. Fora!/ k;;;;..I SORT*k(€)=SORTk(0).

PROOF. The definitions of c.o. and sw (see Section 5) will be used in this
proof. Similarly to the restricted sorting machine section an intermediate
specification is given in Table 20. This specification includes the possibility to
stop the sorting machine. An extended definition for the chain of cells is given
in Table 21.

SORT'k(e)= :L rk(d)·SORT"k(<d>)+rk(stop)+sk(empty)·SORT"k(€)
dED

SORT"k(<d1 >*w)= :L rk(d)·SORT"k(sw(<d>*<d1 >*w))+
dED

TABLE 20. Intermediate specification of unrestricted sorting machine

By putting rk(stop) in Hk the machine described above is obtained. This
step is necessary to make a proof by induction possible. However, the desired
equation is obtained after abstraction from rk(stop) in SORT' k(t:).

Correctness proofs for systolic algorithms: palindromes and sorting 121

input 3

input 7

input 2 2 3 7

input 12 2 12 3 7

input 15 2 15 3 12 7

input 4 2 4 3 15 7 12

output 2 3 4 7 15 12

input 9 3 9 4 7 12 15

input 1 3 4 9 7 12 15

output 1 3 4 7 9 12 15

output 3 4 7 9 12 15

output 4 7 9 12 15

output 7 9 12 15

output 9 ~
output 12 -@D-ITJ

output 15 -CD
FIGURE 11. Example of unrestricted sorting machine

122 L. Kossen, WP. Weijland

SORT'k(t:)=1)0 a8 ·, Eq,(Ck)

SORT'k(<d1 >)=T1°aH', Eq,(C'k(d1)llCH1)

SORT'k(<di. d2 >)=T1°aw, 0 E.p(C"k(di. d1)llCk+i) <di. d2> c.o.

SORT'k(<di. d2 >*w)=T1°aH', 0 E.p(C"k(di. d2)llSORT'k(w))
<di. d1}*W c.o., lwl>O

Communication: c;(d)=r;(d)ls;(d) deDU{empty, stop}, i;?!:-1

Process creation: q,(_i) = C;

H'k ={r;(d),s;(d): deD U {empty, stop}, i;?!:.k + l}

l={c;(d), cr(i+l): deDU{empty, stop}, i;?!:-1}

TABLE 21. Alternative definition for the implementation

PROPOSITION.

(I) for all k;?!:-1,w c.o.: SORT"k(w)=SORT'k(w)
(II) for all k;?!:-1,SORTk(0)=a8 .,(SORT'k(t:)), where H*k = {rk(stop)}
(III) for all k;?!:. l,SORT*k(t:)=a8 ., (SORT'k(t:)), where H*k = {rk(stop)}

i;?!:-2

PROOF. (I) This will be done by induction on the length of the content simul
taneously for all k. The cases (i), (ii) and (iii) are the basic steps. Case (iv) is
the induction step.

(i) for all k

SORT'k(t:)= ~ rk(d)·SORT'k(<d>)+rk(stop)+sk(empty)·SORT'k(t:)
deD

SORTk(E:) = TJoaw. oE.p(Ck)

=T1°aH', 0 E.p(~ rk(d)·cr(k + 1)-C'k(d)+rk(stop)+sk(empty)·Ck)
deD

= ~ rk(d)·T1°aH', 0 E.p(C'k(d)llCk+ 1)+rk(stop)+sk(empty)·T1°aH', Eq.(Ck)
deD

= ~ rk(d)·SORT'k(<d>)+rk(stop)+sk(empty)·SORT'k(t:)
deD

(ii) SORT'k(<d1 >)= ~ rk(d)·SORT'k(sw(<d, d1 >))+sk(d"1)-SORT'k(t:)
deD

SORT'k(<d1 >) = T1°aw, 0 E.p(C'k(d1)llCk+1) =

= ~ rk(d)·T1°aH', 0 Eq.(C"k(sw(d, d1))llCk +1)+sk(d1)·T1°aH', 0 Eq.(Ck)
deD

Correctness proofs tor systolic algorithms: palindromes and sorting 123

= ~ rk(d)·SORT'k(sw(<d, d1 >))+sk(d1)-SORT'k(t:)
deD

(iii) SORT'k(<d1, di>)=

= ~ rk(d)-SORT'k(sw(<d, di. di >))+sk(d1)·SORT'k(<di >) <d1> di> c.o.
deD

SORT'k(<dJ, di>)= .:~>k(d)·T1°0H'• 0 "Eq,(C"k(di. d1)llCk+I)
deD

= ~rk(d)·T1°oH'. 0 Eq,(C"k(sw(d, di))llC'k+I(di)llCk+i)+
deD

+sk(d1)·T1°0H'• 0 E.p(C'k(di)llCk +1).

Using the standard concurrency axioms and E.i,(xl[y)=E.,,(x)llE.,,(y) we obtain:

T1°oH'. 0 £.,.(C"k(sw(d, d1))llC'k+ I (di) II Ck +i) =
=T1°0H'• (E.,.(C" k(sw(d, d 1)))11.E,p(C' k +I (di)ll Ck +1)).

Applying conditional axioms CA, E.i, 0 E.i,(x)=E.i,(x) and using the fact that
when I and H don't contain creation atoms Eq, can be pushed through the 'l"J

and a H operators this last expression becomes

=T1°aw. 0 B.p(C"k(sw(d, d1))llT1°ow>+, 0 E.p(C'k + 1 (d2)l1Ck +1)).

Using the definitions in Table 21:

=T1°aw. 0 E.p(C"k(sw(d, d1))llSORT' k +I (<d2 >))=SORT' k(sw(<d, di. di>)).

Making this observation the desired result is obtained:

SORT'k(<dl> di>)=

= ~rk(d)·SORT'k(sw(<d, d1, d1>))+sk(d1)·SORT'k(<d2>).
deD

(iv) This case is the induction step. The proposition will be proved for all k
and w, JwJ~3, assuming it has already been proved for all k";;!!: l and w',
Jw'J<lwl. In this proof w= <di. d1>*v is c.o., lvl";;!!: I and v = <d3 >*v'.

SORT'k(w)= ~ rk(d)·SORT'k(sw(<d>*w))+sk(d1)-SORT'k(sw(<d2 >*v))
deD

SORT'k(<di. di>*v)=T1°oH'• 0 "Eq,(C"k(di. d1)llSORT'k + 1 (v))

Using the induction hypothesis on SORT'k +I (v), lvl";;!!: 1, we obtain:

= ~ rk(d)·T1°0H'• 0 £.,.(C"k(sw(d, d1))llSORT11k+1 (sw(<d2)*V)))
deD

124 L. Kossen, W.P. Weijland

Considering the definition of sw we obtain:

= ~ rk(d)'SORT'k(sw(<d>*w))+sk(d1)-SORT'k(sw(<d2>*v))
dED

Using RSP we have the desired result. This ends the proof of proposition I.

PROOF. (II) For w c.o. SORT'k(w) satisfies the specification in Table 20. Then
it is easy to deduce that on•, (SORT'k(l)) is specified by the specification in the
following Table 22.

on•, (SORT'k(l))= ~ rk(d)-oH•, (SORT'k(<d>))+sk(empty)·on•, (SORT'k(l))
deD

on•, (SORTk(<d1 >*w))= ~ rk(d)'on•, (SORT\(sw(<d, d1 >*w)))
deD

TABLE 22. Specification of OH·,(SORT'k(l))

To prove proposition II substitute for all c.o. w SORTk(Bw) for
OH•, (SORT'k(w)) where Bw is the bag containing the elements in the sequence
w. Because the first element of a c.o. w is the minimal element of the sequence
it is easy to see that SORTk(0) satisfies the specification in Table 22. Then,
with RSP the equation in proposition II is proved.

PROOF. (III) This is proved using the conditional axioms CA5 and CA7.
We find:
for all k~ 1:

On•,(SORT'k(l))=oH•, 0 'T1°oH', 0 E,p(Ck)='T1°0H*,UH', 0 £,p(Ck)=SORT*k(l)

so we can conclude for all k SORT*k(l)=SORTk(0). D

REFERENCES
1. J.A. BERGSTRA (1989). A Process Creation Mechanism in Process Algebra.

This volume.
2. J.A. BERGSTRA, J.W. KLoP (1986). Algebra of communicating processes.

J.W. DE BAKKER, M. lIAzEWINKEL, J.K. LENSTRA {eds.). Mathematics and
Computer Science, CWI Monograph 1, North-Holland, Amsterdam, 89-
138.

3. J.A. BERGSTRA, J.W. KLOP, E.-R. 0LDEROG (1987). Failures without
chaos: a new process semantics for fair abstraction. M. WIRSING (ed.).
Proc. IFIP Conf. on Formal Description of Programming Concepts - Ill,
Ebberup 1986, North-Holland, 77-103.

Correctness proofs for systolic algorithms: palindromes and sorting 125

4. S.D. BROOKES, C.A.R. HOARE, A.W. ROSCOE (1984). A theory of commu
nicating sequential processes. J. ACM 31, 560-599.

5. J.C. EBERGEN (1986). A Technique to Design Delay-Insensitive VLSI Cir
cuits, CWI Report CS-R8622, Centre for Mathematics and Computer Sci
ence, Amsterdam.

6. M. HENNESSY (1986). Proving systolic systems correct. TOPLAS 8(3),
344-387.

7. C.P.J. KOYMANS, J.C. MULDER (1989). A Modular approach to Protocol
Verification using Process Algebra. This volume.

8. K.T. KUNG (1979). Let's design algorithms for VLSI systems. Proceed
ings of the Conference on VLSI: Architecture, Design, Fabrication, Califor
nia Institute of Technology.

9. C.A. MEAD, L.A CONWAY (1980). Introduction to VLSI-systems,
Addison-Wesley Publ. Comp., Reading, Massachusetts.

10. G.J. MILNE (1983). CIRCAL: a calculus for circuit description. Integra
tion 1, 121-160.

11. M. REM (1983). Partially ordered computations with applications· to
VLSI-design. J. DE BAKKER, J. VAN LEEUWEN (eds.). Proc. Found. of
Comp. Sci. IV.2, MC Tract 159, Centre for Mathematics and Computer
Science, Amsterdam, 1-44.

