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ABSTRACT
As data collections become larger and larger, users are faced with
increasing bottlenecks in their data analysis. More data means more
time to prepare the data, to load the data into the database and to
execute the desired queries. Many applications already avoid using
traditional database systems, e.g., scientific data analysis and social
networks, due to their complexity and the increased data-to-query
time, i.e. the time between getting the data and retrieving its first
useful results. For many applications data collections keep growing
fast, even on a daily basis, and this data deluge will only increase in
the future, where it is expected to have much more data than what
we can move or store, let alone analyze.

In this demonstration, we will showcase a new philosophy for de-
signing database systems called NoDB. NoDB aims at minimizing
the data-to-query time, most prominently by removing the need to
load data before launching queries. We will present our prototype
implementation, PostgresRaw, built on top of PostgreSQL, which
allows for efficient query execution over raw data files with zero
initialization overhead. We will visually demonstrate how Post-
gresRaw incrementally and adaptively touches, parses, caches and
indexes raw data files autonomously and exclusively as a side-effect
of user queries.

1. INTRODUCTION
We are in the era of data deluge, where the amount of data out-

grows the capabilities of query processing technology. Many emerg-
ing applications, from social networks to scientific experiments, are
representative examples of this deluge, where the rate at which data
is produced exceeds any past experience. Scientific analysis such as
astronomy is soon expected to collect multiple Terabytes of data on
a daily basis, while web-based businesses such as social networks
or web log analysis are already confronted with a growing stream
of large data inputs. Therefore, there is a clear need for efficient big
data processing to enable the evolution of businesses and sciences
to the new era of data deluge.

A growing part of the database community recognizes the need
for significant and fundamental changes to database design, ranging
from low-level architectural redesigns to changes in the way users
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interact with database systems [1, 4, 5, 7, 8, 9, 10].
The NoDB Philosophy. We recognize a new need, which is a

direct consequence of the data deluge: the need to minimize or
eliminate the data-to-query time. The data-to-query time is of crit-
ical importance as it defines the moment when a database system
becomes usable, and thus useful. Modern database architectures,
however, are based on fundamental principles that represent a ma-
jor bottleneck for data-to-query time, most notably, the need to load
data before submitting queries.

The NoDB design philosophy argues for creating new database
kernel designs that minimize the data-to-query time, while also
making database systems more friendly and accessible to end-users.
This philosophy changes the way a user interacts with a database
system, primarily by eliminating one of the most important bot-
tlenecks, i.e., data loading. We advocate in situ querying as the
principal way to manage data in a database and propose extending
traditional query processing architectures to work in situ.

The overall NoDB vision was initially presented at CIDR 2011
[5], while the first feasibility study and experimental system, Post-
gresRaw, was presented at SIGMOD 2012 [2].

Contributions and Demo. We demonstrate PostgresRaw, a full
NoDB system based on PostgreSQL. Our demonstration of Post-
gresRaw aims at a) introducing the NoDB philosophy through a
system implementation and b) demonstrating the extent at which
NoDB can be adopted by a traditional database system without al-
tering the internals of the query engine. We visually demonstrate
the behavior of its core components in a range of scenarios, giving
the audience members a complete visual insight into the behavior
of PostgresRaw and the trade-offs that come with in situ query pro-
cessing. In addition, we present a comparison between Postgres-
Raw and other widely-used DBMS in an interactive way with the
audience by organizing a “friendly” race between the systems.

Innovation. PostgresRaw immediately starts processing queries
without any data preparation or loading steps. As more queries are
processed, response times improve due to the adaptive properties
of PostgresRaw. We visually demonstrate these effects by observ-
ing internal components, such as the indexes and caches on raw
data files, which allow PostgresRaw to adaptively and continuously
improve its performance. Audience members will see how the in-
dexing and caching structures of the system evolve as additional
queries arrive, or when the workload changes.

Visual Experience. The audience has the ability to interact with
the system through a graphical interface that allows them to change
the input characteristics of the workload. Properties such as the
number of attributes and the width of the attributes may signifi-
cantly change the behavior of a NoDB system. Additionally, the
graphical interface provides access to PostgresRaw specific execu-
tion configuration parameters. For instance, the user can enable



or disable the NoDB components of PostgresRaw and specify the
amount of storage space which is devoted to internal indexes and
caches. Users will be able to change these parameters and observe
the impact on performance.

2. RELATED WORK
The NoDB philosophy draws inspiration from several decades

of research on database technology and is related to a plethora of
research topics. We briefly discuss related work in this section.

External Files. Querying directly raw files, i.e., without load-
ing, has long been a feature of database systems. For instance,
Oracle calls this feature external tables. External files, however,
can only access raw data with no support for advanced database
features such as DML operations, indexes or statistics. Therefore,
external files require every query to access the entire raw data file,
as if no other query did so in the past. In fact, this functionality
is provided mainly to facilitate data loading tasks and not for regu-
lar querying. Instead, we propose to redesign the query processing
layers of database systems to incrementally and adaptively query
raw data files directly, while automatically creating and refining
auxiliary structures to speed up future queries.

Physical Design. Work on auto tuning tools [3] for automating
the physical design process and work on adaptive indexing [6] to in-
crementally refine indexes is highly relevant; both these directions
aim at making the process of initializing a database system much
easier. The first one by eliminating the need for hard workload
analysis, and the second via introducing incremental and adaptive
indexes. Still though the data needs to be loaded. NoDB goes a step
further by studying the data-to-query time problem at its very root,
i.e., before data is even loaded. As such, it is rather an orthogo-
nal and complementary approach to auto-tuning tools and adaptive
indexing.

3. POSTGRESRAW ARCHITECTURE
In this section, we discuss the design of our NoDB prototype,

called PostgresRaw, implemented by modifying PostgreSQL 9.0.
The main bottleneck of in situ query processing is the access to
raw data. The design of PostgresRaw is geared towards improving
access on raw data (a) by speeding up the steps required via raw
data indexing and (b) by eliminating the need to access hot raw
data via caching.

In the remaining of this section we assume that raw data is stored
in comma-separated value (CSV) files. CSV files are challenging
for an in situ engine, considering the high conversion cost and the
fact that fields may be variable length. Nonetheless, being a com-
mon data source, they present an ideal use case for PostgresRaw.

Query plans in PostgresRaw. When a query submitted to Post-
gresRaw references relational tables that are not yet loaded, Post-
gresRaw needs to access the respective raw file(s). PostgresRaw
overrides the scan operator with the ability to access raw data files
directly, while the remaining query plan, generated by the opti-
mizer, works without changes compared to a conventional DBMS.

Parsing and Tokenizing Raw Data. Every time a query needs
to access raw data, PostgresRaw has to perform parsing and tok-
enization of the raw data. Having the binary values at hand, Post-
gresRaw feeds those values in a typical DBMS query plan.

Selective Tokenizing. PostgresRaw reduces the tokenizing costs
by opportunistically aborting tokenizing tuples as soon as the re-
quired attributes for a query have been found. This occurs at a
per tuple basis. Given that CSV files are organized in a row-by-row
basis, selective tokenizing does not bring any I/O benefits; nonethe-
less, it significantly reduces the CPU processing costs.

Selective Parsing. In addition to selective tokenizing, Postgres-
Raw also employs selective parsing to further reduce raw file access
costs. PostgresRaw needs only to transform to binary the values re-
quired for the remaining query plan.

Selective Tuple Formation. To fully capitalize on selective pars-
ing and tokenizing, PostgresRaw also applies selective tuple forma-
tion. Therefore, tuples are not fully composed but only contain the
attributes needed for a given query. In PostgresRaw, tuples are only
created after the select operator, i.e. after knowing which tuples
qualify.

3.1 Indexing
Adaptive Positional Map. The adaptive positional map further

reduces parsing and tokenizing costs. It maintains low level meta-
data information on the structure of the flat file, which is used to
navigate and retrieve raw data faster. This metadata information
refers to positions of attributes in the raw file. For example, if a
query needs an attribute X that is not loaded, then PostgresRaw can
exploit this metadata information that describes the position of X in
the raw file and jump directly to the correct position without having
to perform expensive tokenizing steps to find X .

Map Population. The positional map is created on-the-fly dur-
ing query processing, continuously adapting to queries. Initially,
the positional map is empty. As queries arrive, PostgresRaw adap-
tively and continuously augments the positional map. The map is
populated during the tokenizing phase, i.e., while tokenizing the
raw file for the current query, PostgresRaw adds information to the
map. PostgresRaw learns as much information as possible during
each query. For instance, it does not keep maps only for the at-
tributes requested in the query, but also for attributes tokenized
along the way; e.g. if a query requires attributes in positions 10
and 15, all positions from 1 to 15 may be kept.

Exploiting the Positional Map. The information contained in
the positional map can be used to jump to the exact position of the
file or as close as possible. PostgresRaw opts to determine first
all required positions instead of interleaving parsing with search
and computation. Pre-fetching and pre-computing all relevant po-
sitional information allows a query to optimize its accesses on the
map.

Adaptive Behavior. The positional map is an adaptive data
structure that continuously indexes positions based on the most
recent queries. This includes requested attributes as well as pat-
terns, or combinations, in which those attributes are used. As the
workload evolves, some attributes may no longer be relevant and
are dropped by the LRU policy. Similarly, combinations of at-
tributes used in the same query, which are also stored together in
chunks, may be dropped to give space for storing new combina-
tions. Populating the map with new combinations is decided dur-
ing pre-fetching, depending on where the requested attributes are
located on the current map. The distance that triggers indexing of
a new attribute combination is a PostgresRaw parameter. In our
prototype, the default setting is that if all requested attributes for
a query belong in different chunks, then the new combination is
indexed.

3.2 Caching
PostgresRaw also contains a cache that temporarily holds previ-

ously accessed data, e.g., a previously accessed attribute or even
parts of an attribute. If the attribute is requested by future queries,
PostgresRaw will read it directly from the cache.

The cache holds binary data and is populated on-the-fly during
query processing. Once a disk block of the raw file has been parsed
during a scan, PostgresRaw caches the binary data immediately. To
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Figure 1: Demonstration walkthrough

minimize the parsing costs and to maintain the adaptive behavior of
PostgresRaw, caching does not force additional data to be parsed,
i.e., only the requested attributes for the current query are trans-
formed to binary. The cache follows the format of the positional
map such that it is easy to integrate it in the PostgresRaw query
flow, allowing queries to seamlessly exploit both the cache and the
positional map in the same query plan.

The size of the cache is a parameter than can be tuned depending
on the resources. PostgresRaw follows the LRU policy to drop and
populate the cache. Overall, the PostgresRaw cache can be seen as
the place holder for adaptively loaded data.

3.3 Statistics
Optimizers rely on statistics to create good query plans. Most

important plan choices depend on the selectivity estimation that
helps ordering operators such as joins and selections. Creating
statistics in modern databases, however, is only possible after data
is loaded.

We extend the PostgresRaw scan operator to create statistics on-
the-fly. We carefully invoke the native statistics routines of the
DBMS, providing it with a sample of the data. Statistics are then
stored and are exploited in the same way as in conventional DBMS.
In order to minimize the overhead of creating statistics during query
processing, PostgresRaw creates statistics only on requested at-
tributes, i.e., only on attributes that PostgresRaw needs to read and
which are required by at least the current query. As with other fea-
tures in PostgresRaw, statistics are generated in an adaptive way;
as queries request more attributes of a raw file, statistics are incre-
mentally augmented to represent bigger subsets of the data.

4. DEMONSTRATION
The demonstration will be executed in three parts. The first part

introduces the audience to the NoDB philosophy and the motiva-
tion behind minimizing the data-to-query time. The second part
presents the NoDB philosophy in action, particularly its tradeoffs,
giving a detailed insight into the system. The third part provides a
direct comparison between our implementation, PostgresRaw, and
other conventional DBMS. This third part is executed as a “friendly
race” between systems, followed with a strong visual component
and audience participation. Figure 1 summarizes the three parts.

4.1 Part I: Introduction to NoDB
In this part of the demonstration, we use a poster to introduce the

audience to the NoDB philosophy and explain how in situ query
processing can be used to minimize data-to-query time. Further-
more, we show the design of our NoDB prototype and we explain
how PostgresRaw accesses the raw data files adaptively and incre-
mentally without any previous data loading. Finally, we illustrate
how the positional map and the flexible caching structure are used
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to enhance performance of future queries.

4.2 Part II: Describing NoDB systems
The second part of the demo illustrates the trade-offs with in situ

query processing. For this, we show how the adaptive indexing
mechanism maintains positional information over a variety of dif-
ferent datasets. Similarly, we show how the dynamic caches cope
with different raw data and queries.

User Interface. The demonstration uses an interactive graph-
ical user interface to expose run-time statistics of internal system
components during query execution. In particular, we monitor the
storage space occupied by the positional map and the caching struc-
tures and we visualize which parts of the raw data files are known
to the positional map, caches or both. We allow the user to vary
the available space for indexing and caching in order to examine
the impact of these parameters on the performance. In addition,
we provide usage statistics regarding the accessed attributes of the
raw data file. Finally, the interface allows users to enable or disable
some system components, e.g. the caches. An example screenshot
of the user interface is shown in Figure 2.

The structure and the data type of the input raw data files are cru-
cial for any database system, drastically affecting its performance.
Therefore, our demonstration allows users to change the type of
raw data files. For instance, tuples with fewer attributes or smaller
attributes limit the effectiveness of the positional map. At the same
time, caching should give priority to attributes that are more ex-
pensive to parse and cheaper to maintain in memory e.g. integer
attributes. Therefore, we allow the user to directly generate their
own input comma-separated value (CSV) files and choose param-
eters such as the number of attributes and the number of tuples in
the file, the width of attributes, as well as the type of the input data.

Query Execution Breakdown. To highlight the difference be-
tween in situ and conventional database query execution, we moni-
tor the query execution in PostgresRaw and PostgreSQL. Then, we
present a time execution breakdown (shown in Figure 3). We show
two variations of PostgresRaw. The first variation (PostgresRaw
PM+C) combines positional map and caching while the second one



(Baseline) does not use any of the aforementioned techniques and
constitutes the naive way of accessing external files. This compo-
nent allows the user to examine how the positional map and the
caching structure reduce in situ query processing overheads. Both
systems share the same query execution engine. Therefore, the di-
rect comparison between the two systems will help us understand
the impact of in situ querying.

Query Adaptation. To demonstrate how PostgresRaw progres-
sively adapts to changes in the workload, we vary queries such as to
trigger changes both in the positional map and in the cache. In this
scenario, we use simple Select-Project queries that are organized
into epochs. The queries within each epoch refer to a specific part
of the input data file, representing their exploratory behavior. As
the workload evolves, new access patterns are observed, new com-
binations of attributes are indexed or cached and old information
may no longer be relevant and will be evicted from our structures.
We will show how PostgresRaw adapts to these changes during
query execution and how the contents of the positional map and the
cache evolve. We will visually illustrate this behavior using our
graphical interface by properly shading the area of the input file
that is queried in each epoch.

Updates. In this scenario, we allow the users to perform updates
directly on the raw data files without using PostgresRaw. The user
can either directly update one of the raw data files in an append-
like scenario using a text editor or simply give a pointer to a new
data file. In both cases, PostgresRaw is responsible for detecting
the change in the input files and update the auxiliary NoDB data
structures. The user will be immediately able to query the new or
the updated file and observe the changes in the results of the next
queries.

4.3 Part III: Friendly race between Postgres-
Raw and other DBMS

In this part of the demonstration, we compare the behavior of
PostgresRaw against conventional DBMS using as a metric the
data-to-query time and how it is reflected in user experience. We
use MySQL, DBMS X (a commercial system) and PostgreSQL
against PostgresRaw with positional maps and caching enabled.
For the purpose of this part, we consider the interaction with the au-
dience highly important. Thus, we propose a friendly race among
the available database systems focusing on user experience.

Each of the contestants will be responsible for one of the DBMS.
All DBMS execute the same sequence of input queries and take as
input the same raw data files and the same schema. The data is not
loaded in advance into any system. As a result, for conventional
DBMS, the contestant will have to load the data before executing
the queries.1 The contestant is also free to tune the configuration
parameters of the systems and/or build additional auxiliary data
structure such as indices or materialized views. After the “starting
shot”, all contestants try to get the query results as soon as possi-
ble. Finally, each of the contestants will report the total execution
time for the workload and the time spent to initialize each of the
systems.

The experiment above will highlight a representative use case
scenario and a major motivation for NoDB systems. PostgresRaw
needs only a pointer to the raw data files and it starts executing
queries immediately. On the other hand, the conventional DBMS
have to go through a time consuming initialization phase (data load-
ing and tuning). In the end, a few individual queries may take

1MySQL and DBMS X offer “external files” functionality, which
enables direct querying over raw files as if they were database ta-
bles. The users can choose to execute the queries using this feature
as well.

longer to respond in comparison with a traditional system; how-
ever, the data-to-query time is reduced and continuously improves
over time. Therefore, PostgresRaw has already answered a number
of queries while the traditional DBMS have not yet started pro-
cessing the first query. The aforementioned behavior is particularly
attractive for scenarios where the user wants to quickly examine
new data in search of certain properties, or quickly skim through a
few data attributes relevant to a given task. Our user interface will
also provide an automatic demonstration of the above “race”. In
this case, we use pre-defined scenarios with reasonable choices for
data loading and building indices before running the queries. In the
end, we report the data-to-query time for each of the systems.

5. CONCLUSIONS
Very large data processing is increasingly becoming a necessity

for modern applications in businesses and in sciences. For state-
of-the-art database systems, the incoming data deluge is a prob-
lem. With NoDB, we introduce a database design philosophy that
turns the data deluge into a tremendous opportunity for database
systems. It requires drastic changes to existing query processing
technology but eliminates one of the most fundamental bottlenecks
present in classical database systems for the past forty years, i.e.,
the data loading overhead. Until now, it has not been possible to ex-
ploit database technology until data is fully loaded. NoDB systems
permanently remove this restriction by enabling in situ querying.

This demo showcases PostgresRaw, the first mature NoDB sys-
tem. Through a graphical user interface the demo allows the user
to see the adaptive behavior of PostgresRaw that results in efficient
execution over raw data. The system monitors the state of its main
components, i.e., indexing and caching, and shows how raw data is
touched on demand as more and more queries arrive. By providing
an interactive interface, users can set their own scenarios regarding
the data input and the various systems knobs, observing the effect
of different parameters on the system performance.
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