Cracking Big Data

by Stratos Idreos

A fundamental and emerging need with big amounts of data is data exploration: when we are
searching for interesting patterns we often do not have a priori knowledge of exactly what we are
looking for. Database cracking enables such data exploration features by bringing, for the first time,
incremental and adaptive indexing abilities to modern database systems.

Good performance in state of the art
database systems relies largely on proper
tuning and physical design. Typically, all
tuning choices happen up front,
assuming sufficient workload knowl-
edge and idle time. Workload knowledge
is necessary in order to determine the
appropriate tuning actions, ie to decide
which proper indexes should be created,
while idle time is required in order to
actually perform those actions. In other
words, we need to know what kind of
queries we are going to ask and we need
to have enough time to prepare the
system for those queries.

However, in dynamic environments
with big data, workload knowledge and
idle time are scarce resources. For
example, in scientific databases, new
data arrive on a daily or even hourly
basis, while query patterns follow an
exploratory path as the scientists try to
interpret the data and understand the pat-
terns observed; there is no time and
knowledge to analyze and prepare a dif-
ferent physical design every hour or
even every day; even a single index may
take several hours to create.

Traditional indexing presents three funda-
mental weaknesses in such cases: (a) the
workload may have changed by the time
we finish tuning; (b) there may be no time
to finish tuning properly; and (c) there is
no indexing support during tuning.

In this project, we propose a new
approach to the physical design problem,
called database cracking. Cracking intro-
duces the notion of continuous, incre-
mental, partial and on demand adaptive
indexing. Thereby, indexes are incre-
mentally built and refined during query
processing. The net effect is that there is
no need for any upfront tuning steps. In
turn, there is no need for any workload
knowledge and idle time to set up the
database system. Instead, the system
autonomously builds indexes during
query processing, adjusting fully to the
needs of the users. For example, as a sci-
entist starts exploring a big data set,

ERCIM NEWS 89 April 2012

query after query, the system follows the
exploration path of the scientist, incre-
mentally building and refining indexes
only for the data areas that seem inter-
esting for the exploration path. After a
few queries, performance adaptively
improves to the level of a fully tuned
system.

From a technical point of view cracking
relies on continuously physically reor-
ganizing data as the users pose more and
more queries. Every query is used as a
hint on how data should be stored. For
example a data column referenced in
queries is continuously reorganized (par-
titioned) as part of processing those
queries. The actual query selection
bounds are used for partitioning. This
brings structure and partitioning infor-
mation, allowing future queries to access
data faster. Future queries exploit the
partitioning information gained from the
previous queries but they also introduce
even more partitioning, bringing the con-
tinuous adaptation property. From a per-
formance point of view cracking
imposes a minimal overhead compared
to the default performance of using no
indexes, while at the same time it contin-
uously converges at the optimal perform-
ance of using full indexes even though it
requires zero initialization cost.

Cracking was proposed in the context of
modern column-stores and has been
hitherto applied for boosting the select
operator performance, joins, mainte-
nance under updates, and arbitrary
multi-attribute queries. In addition,
more recently these ideas have been

Source: Shutterstock

"

extended to exploit a partition/merge-
like logic as well as workload robust-
ness is achieved via stochastic cracking.
Future and ongoing research aims to
tackle concurrency control, disk based
cracking, maintenance under long query
sequences and holistic indexing.

This project takes place primarily at the
Database Architectures group of CWIin
Amsterdam, The Netherlands and is
part of the MonetDB column-oriented
database system research projects.
Other labs involved include HP Labs,
Palo Alto, USA, National University of
Singapore (NUS) and Rutgers
University, USA. Several researchers
are involved: Stratos Idreos (CWI),
Eleni Petraki (CWI), Stefan Manegold
(CWI), Martin Kersten (CWI), Goetz
Graefe (HP Labs), Harumi Kuno (HP
Labs), Panagiotis Karras (Rutgers U.),
Felix Halim (NUS), and Roland C Yap

(NUS).

CWI and Stratos Idreos won several
awards for this research, including the
2011 ERCIM Cor Baayen Award and
the 2011 ACM SIGMOD Jim Gray
Dissertation award.

Links:
http://homepages.cwi.nl/~idreos/
http://www.monetdb.org

Please contact:

Stratos Idreos

Database Architectures group
CWI, The Netherlands

Tel: +31 20 592 4169
E-mail: s.idreos@cwi.nl

39



