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The minimum weighted flow time scheduling problem is studied from a probabilistic point of view. A probability distribution is 
specified over its problem instances, and the asymptotics of the optimal solution value are derived. Rewriting this value as a 
U-statistic perturbed by a small term allows us to use results from the well-established theory on these statistics. We derive a law of 
large numbers, a law of the iterated logarithm and a central limit theorem. As a byproduct we obtain a proof of asymptotic 
optimality almost surely of a greedy heuristic (the shortest weighted processing time first rule) for the solution of the NP-complete 
problem with more than one machine. 

minimum weighted flowtime schedule, strong law of large numbers, law of the iterated logarithm, central limit theorem, U-statistic, 
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1. Introduction 

In this paper we derive convergence properties 
of the optimal solution value of the scheduling 
problem with a minimum weighted jlowtime ob­
jective. For this problem we are given n jobs with 
processing times p1 and weights w1, j =I, ... , n, 
that are to be scheduled on m identical parallel 
machines. Let C1 be the completion time of job j, 
j = 1, ... , n, under a feasible schedule. Then the 
weighted flow time of this schedule is'£'/~ 1w1C1. 

Correspondence to: prof. L. Stougie, Institute for Actuarial 
Sciences and Economics, University of Amsterdam, Joden­
breestraat 23, !(JI 1 NH Amsterdam, Netherlands. 

This problem, in scheduling standard notation 
P II '£w1C1, is NP-hard for m ;;. 2 (see Garey and 
Johnson, 1979, p. 240). For the single machine 
version (m = 1) an optimal schedule is obtained 
by the (polynomial) shortest weighted processing 
time first rule (SWPT) (Smith, 1956): the jobs are 
scheduled on the machine in order of increasing 
p1/wrratio. 

In Section 2 we assume a probability distribu­
tion over the class of problem instances and anal­
yse the asymptotic behaviour of the optimal solu­
tion value of the single machine problem. More 
specifically, we derive a strong law of large num­
bers which shows that the optimal solution value 
of problem instances with a growing number of 
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jobs converges with probability 1 ( wp 1) to a 
constant, if properly normalized. Moreover we 
present a rate of convergence in the form of a 
law of the iterated logarithm, and a central limit 
theorem. The derivation of these results rely heav­
ily on the transcription of the optimal solution 
value as a U-statistic perturbed by a term that is 
asymptotically negligible. The results follow then 
easily from the well-established theory on these 
statistics. 

In Section 3 we consider the m-machine prob­
lem. We derive upper and lower bounds on the 
optimal solution value. For the upper bound we 
use the SWPT-rule as an approximation algo­
rithm. Once having established these bounds, the 
asymptotics of the optimal solution value of the 
m-machine problem appear to come straightfor­
ward from those of the single machine problem. 
As a byproduct we obtain a proof of asymptotic 
optimality (wp 1) of the SWPT-rule. 

Some concluding remarks follow in Section 4. 
Throughout the paper random variables are indi­
cated by boldface characters. 

2. The single machine problem 

Let us assume that the processing times of the 
jobs p 1, p 2 , ••• are positive, independent and 
identically distributed (i.i.d.) random variables 
and that the weights w1, w2 , ••• are positive i.i.d. 
random variables. The optimal solution value of a 
minimum weighted flowtime problem is then a 
random variable denoted by z,~,,,. 

In this section we study convergence proper­
ties of z~11 , the optimal value of the single ma­
chine problem. This value can be characterized 
through the SWPT-rule (see Section 1). Let 
(w<I>• p(I)), (w<Z>• p<2>), ... , (w<n>' p<r) be order 
statistics of n observations of the weight­
processing time pair, where the order is dictated 
by increasing pj/wrratio's, i.e., 

The completion time of the j-th job in this se­
quence is equal to E{= 1p<k>• and the optimal 
value is given by 

(2.1) 

68 

To avoid analytical difficulties we assume that the 
ratio p /w has a continuous distribution. In Sec­
tion 2.1 we show that the behaviour of z(n, 
properly normalized, is essentially that of a so­
called U-statistic. Given this knowledge, in Sec­
tion 2.2 asymptotic properties of zf,, are derived 
almost straightforwardly from the theory on U­
sta tistics. 

2.1. Towards a U-statistic 

Let h( x 1,. .. , x 1) be a symmetric real-valued 
function, called a kernel. Its domain is the /-fold 
Cartesian product of the spaces where the x;'s 
live on. For any such a kernel, the corresponding 
U-statistic, based on a sample of n independent 
observations X 1, ••• , X,, on some distribution, 
with n ;;;?; l, is obtained by averaging the kernel h 
over the observations: 

1 
U11 = (/). L. h(X11 , ... ,X,J 

11····· 11 

where the summation is over all the (/) possible 
combinations of l out of n observations. For a 
survey of the theory on U-statistics we refer to 
[Serfling 1980, Chapter 5]. 

In our specific situation we define the kernel 
function h: ~ 2 x ~ 2 ~ IR as 

h((w, p), (w', p')) 

if p/w > p'/w', 

if p/w <p'/w', 

if p/w =p'/w'. 

The corresponding U-statistic is given by 

2 

(2.2) 

U11 = ( -l) L h((w1,p1),(wj,p1.)). 
n n I .;;,i<j.;;,n 

It is not hard to see that zf,, in (2.1) can be 
rewritten as 

'(" n 
z~,, ~j=Iwjpj 

( = u,, + . 
n n - 1) n( n - 1) 

(2.3) 

We observe that zf,, normalized by n(n - 1) is a 
U-statistic perturbed by a normalized sum of i.i.d. 
random variables. The influence of the latter 
term on the asymptotic behaviour of zf,, will turn 
out to be negligible. 
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2.2. Convergence properties of z1n 

As a prerequisite for convergence theorems on 
U-statistics that we shall use, the variance of the 
conditional expectation E(h((w, p), (w', p'))I 
( w, p )) should not be equal to zero. Let us de­
note this conditional expectation by h 1( w, p ). Un­
der this condition the theory of U-statistics re­
sembles strongly that of sums of i.i.d. random 
variables. The condition is easily verified in our 
case if we assume that ( w, p) has a distribution 
whose support contains a two dimensional convex 
set. 

Lemma 2.1. Under the aho1·e assumption and Ew 1 

< oo, lp 1 < oo, we ha1•e Yar(h 1 (w, p)) > 0. 

Proof'. If the lemma were not true, then there 
would exist constant c such that h 1(w, p) = 

c(wpl ). Now take any (w, p) and (aw, ap) from 
the convex set in the support of the distribution 
of (w, p), with a> 0, a =F I. Thus, we have 
h 1(w, p) = h 1(cxw, ap) =c. However, from defini­
tion (2.2) of h((w, p), (w', p')) it is easy to sec 
that h 1(aw, ap) = ah 1(w, p) a contradiction if 
0 < c < x. But lr 1( w, p) = 0 (wp I) can only occur 
if the distribution of p /w is rnncentrated on only 
one point, which we excluded by our assump­
tions. Obviously, the assumptions 1~·w < x, l~'p < x. 
imply fz 1(w, p) < oo (wp !). O 

Now we arc ready to apply directly theorems 
from Serfling ( I 980, Chapter 5) to establish n:­
spectivcly, a law of large numbers, a law of the 
iterated logarithm, and a central limit theorem 
for z(11 /(11(11 - !)). Let 0 = Fh((w, p), (w', p')). 

E.g. if p and w me uniformly distributed over 
(0, I), then tedious calculations lead to fl 7 / 108. 

Theorem 2.2 { /,aw of lar1:c numhers ). If 1~·w 1 < x, 
l:p 1 < -x. and f:'w 1p 1 < ?:., then 

. z(" 
hm --·---- 0 = (I ( wp I ) . 

11 ,.,. n( n - I) 

Proof. Recall formula (2.3). Using the indepen­
dence of(w, p) and (w', p')we have 

H = I:' ( h ( ( w, p ) , ( w', p' ) ) ) ·~ ~ F ( wp' + w 'p) 

by the assumptions. Hence Theorem A from Ser­
fling ( 1980, p. 190) can be applied to prove that 

lim vii = (J ( wp l) . (2.4) 

Since Ew 1p 1 < cc., the usual strong law of large 
numbers implies that 

"" ~- wp 
lim 1 -· 1 1 1 = 0 ( wp I). 

11-•"'- n( n - I) 
( 2.5) 

Together (2.4) and (2.5) imply the theorem. 0 

Theorem 2.3 (Law of the iterated logarithm). Let 
1r 2 = Yar(h 1(w, p)). Assume that <r 2 > 0, Ewf < x 

and Ep ~ < co. Then 

. ffi(z( 11 /(n(n-l))-H) 
IJmsup 11 , =I (wpl). 

11 ., 21r(2 log log n) ~ 

Proof. Recall formula (2.3). By independence of 
(w, p) and (w', p') we have 

<?C. (2.6) 

Therefore, we may apply Theorem C from Ser­
fling ( 1980, p. 191) to obtain 

/11 ( U -- H) 
lim sup /1 

n ,,, 2 <r ( 2 log log n) 
=I (wp I). (2.7) 

By Cauchy-Schwartz' inequality we have 

so that the strong law of large numbers implies 
that for every f> / 0 

( 2.H) 

Together (2.7) and (2.8J imply the theorem. r:1 

Theorem 2.4 (Central limit theorem). Ll't a: 
Var(h 1(w, p)). Assunw thut 1r~ '0, Fwj~' "t., Hpf 
<'" ·x-. 'f1wn 

Proof. Since we have the same assumptions here 
as in Theorem 2.3, (2.6) holds. Therefore we may 
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apply Theorem A from Serfling (1980 p. 192) to 
obtain 

(2.9) 

This together with (2.8), which holds here too, 
implies the theorem. D 

3. The m-machine problem 

The stochastic assumptions and the notation of 
the previous section are maintained here. In ad­
dition, we assume that the number of machines is 
fixed. 

3.1. Upper and lower bounds on z,~.n 

For a lower bound on z:;, n we refer to East­
man et al. (1964): for any s~hedule of the jobs, 
such that on each machine the jobs assigned to it 
are scheduled in order of increasing p /w-ratio, 
the sum of the weighted completion times is 
bounded from below by 

m - 1 n 1 
- 2-- L wjpj + -z~,,. 

m j=l m 

Simple exchange arguments show that any opti­
mal schedule must satisfy this property. Hence, 

m - l n 1 
z,~,n ~ - 2-- L WjPj + -z~n 

m j=I m 
(3.1) 

For an upper bound we consider the before men­
tioned SWPT-rule as an approximation method 
for the solution of the m-machine problem. Every 
next job to be scheduled is assigned to the ma­
chine that is first available. Switching for once 
again to order statistics (see Section 2), we notice 
that the j-th job to be scheduled will start no 
later than 0/m)L:{: 11 Pck» j = 1, ... , n. Hence, its 
weighted completion time is bounded from above 
by 

j-1 

(1/m)wu) L, Pckl+wulP<j)• j= 1,. . .,n. 
k=I 

Summation over j yields the following upper 
bound on the value of the solution produced by 

70 

the SWPT-rule, denoted by z;".',,PT, which is on its 
turn an upper bound on z:,,,,. 

1 n j-1 n 

z:,,,, .;;; z;'::T .;;; - L w(j) L PckJ + L W(j)PUJ 
m j=l k=l i=l 

1 n j m-1 n 

= - I: w<j) I: PckJ + -- L w(j)p(j). 
m j=I k=l m j=l 

Since the first term on the right hand side is 
equal to (1/m)z(n (see (2.1)), we may rewrite the 
above inequality as 

1 m -1 n 
z:, n .;;;z;w:T.;;; -z)\ + -- L WjPj· 

· · m · m i=l 
(3.2) 

We see that both the upper and the lower bound 
consists of a term 0/m)z(,, and a term including 
['J= 1wjpj, which in Section 2.2 turned out to 
become negligible asymptotically. 

3.2. Convergence properties of z!,,, 

From the upper and lower bound (3.2) and 
(3.1) it is clear that the asymptotics of z:,,,, follow 
those of 0/m)z(n' Therefore we give the follow­
ing convergence theorems for z!,n without proof. 

Theorem 3.1 (Law of large numbers). If Ew 1 < oo, 

Ep 1 < oo and Ew 1p 1, then 

z* 0 
lim m,n = -
n--+oon(n-l) m 

(wp 1). 

Theorem 3.2 (Law of the iterated logarithm). Let 
u 2 = Var(h 1(w, p)). If Ewi < oo, Epi < oo and u 2 

> 0, then 

. mfrl(n(:!_:l) -0/m) 
hmsup 112 =1 (wpl). 

n--+oo 2a(2 log log n) 

Theorem 3.3 (Central limit theorem). Let u 2 = 

Var(h 1(w, p)). If Ewi < oo, Epi < oo and a 2 > 0, 
then 

mfrl ( z:,,n 0 ) 
2;- n(n - 1) - m ~ N(O, l). 

All of the above holds if we substitute zswPT for m,n 
z:;,,n- This implies among other things asymptotic 
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optimality (wp 1) of the SWPT-rule for the mini­
mum weighted flowtime scheduling problem: 

lim 
SWPT * 

zm,n -zm,n 
=0 (wp 1). 

n->oco z!.n 

4. Concluding remarks 

The results presented in this paper generalize 
and extend results on the unweighted minimum 
flowtime problem in Frenk et al. (1984). We 
notice that it is also possible to obtain the results 
using the entropy approach to empirical process 
theory (cf. Pollard, 1984). The results in Section 3 
indicate nice behaviour of the SWPT-rule as an 
approximation method for the m-machine prob­
lem. It complements results on the worst-case 
behaviour of this method presented in Weiss et 
al. (1987). 
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