
Applied Numerical Mathematics 10 (1992) 73-85
North-Holland

APNUM 331

Solving large dense systems of linear
equations on systems with virtual memory
and with cache

Walter M. Lioen and Dik T. Winter
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, Netherlands

Abstract

73

Lioen, W.M. and D.T. Winter, Solving large dense systems of linear equations on systems with virtual memory
and with cache, Applied Numerical Mathematics 10 (1992) 73-85.

The problem of solving large full sets of linear equations on a computer with hierarchical memory is
considered. Blocked Gaussian elimination and QR factorization are studied in an attempt to apply exactly the
same implementations on computers with virtual memory as on computers with cache. This differs slightly
from the LAPACK [1] approach which, although aimed at the same architectures, focuses mainly on
computers with vector registers and/or cache. Experiments on a Cyber 205 and an Alliant FX/4 are reported.

Keywords. Linear equations, block algorithms, cache, virtual memory.

1. Introduction

Since the introduction of digital computers there has always been the need for more fast
memory than physically available. Back in 1953 Wilkinson [16] had already described the
solution of linear systems larger than order 13 (which was the limit for the central memory on
the Pilot ACE) using punch cards as secondary storage. In [2] magnetic tapes are used as
secondary storage. At present Grimes [10] extrapolates for linear systems up to order 80,000
using SSD or disks on a Cray X-MP and a Cray 2, respectively.

In this paper we will discuss the overall performance (both with respect to the CPU time and
the IO time, resulting in the wall-clock time) of blocked Gaussian elimination and QR
factorization on a virtual memory system. For our measurements we have used a locally
available Cyber 205 because of its easily predictable and measurable page replacement
algorithm, but results will hold both for any virtual memory system with a suitable page
replacement algorithm and for implementations using explicit IO.

Finally, we will discuss the behaviour of the presented blocked Gaussian elimination
algorithm on a computer with cache. This differs slightly from the LAPACK [1] approach
which, although aimed at the same architectures, focuses mainly on computers with vector
registers and/or cache. For this experiment we used an Alliant FX/4.

0168-9274/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

74 WM. Lioen, D. T. Winter / Large dense systems of linear equations

2. Virtual memory

Before studying the behaviour of algorithms in a virtual memory environment, we have to

explain what virtual memory is and how it behaves.
Fast memory always has been and always will be an expensive part of a computer system.

One of the solutions for this problem is to pretend there is much more memory than physically

available by using (much) slower disk(s). Programs from now on have to use virtual addresses

instead of the physical addresses. The hardware and/ or the operating system translates a

virtual address to a physical address and checks whether the requested datum is already

available in physical memory. Otherwise a so-called page fault occurs: the hardware has to

fetch the datum from disk. Because of the disk-seek latency this transport is done in so-called

pages corresponding with one or more disk blocks.
This process is repeated until all physical memory is in use and if the latter is the case, we

have to make use of a so-called page replacement algorithm:

select a page, e.g., the Least Recently Used;
if the data on this page has been altered

then we have to write the data back to disk
else we can discard this page without writing;

from this moment on we can safely re-use the selected space.

2.1. Algorithms and virtual memory

What is the impact of virtual memory on the behaviour of algorithms? Suppose we have a

computer with a page-size of 100 words and a memory consisting of 1000 words (i.e. 10 pages).

Furthermore we assume a Least Recently Used page replacement algorithm.

We are going to study an algorithm which is running linearly through a problem with a

dataset size of 1024 words. The data itself occupies 11 pages, this is 1 page too much. One

application of this algorithm gives rise to 11 page faults.

However, applying the same algorithm N times gives rise to llN page faults:

If we are running the first time through our data we have to page in the page numbered 1

(which we from now on will address to as page 1) up to and including page 10. At the moment

we have to page in page 11, we have to discard a previous page. Since we assumed LRU, we

discard page 1 (and if the data on page 1 has been altered we have to write page 1 back to
disk); now page 11 can be paged in.

All following times we are running through the same data we have to page in the page we

have just discarded in the previous step (e.g., at the moment we have to page in page 1, we have

just discarded this page because we had to page in page 11; at the moment we have to page in

page 2, we have just discarded this page because we had to page in page 1; and so on). This
phenomenon is often referred to as page thrashing.

Of course, a solution for this paging problem may be found by reorganizing the algorithm.

WM. Lioen, D. T. Winter / Large dense systems of linear equations 75

3. Large dense systems of linear equations

First of all we have to define the adjective large: with large we mean a factor larger than
physical memory. For current midrange computers say of the order n = 2000, 4000, 8000.

Our main concerns are: numerical stability and wall-clock time. Numerical stability is very
important because for large n it can in general not be known a priori whether the final result
will have any significance! Wall-clock time is another important issue because the CPU time is
of order n 3 and the 10 time is also of order n3•

Because of the 10 involved in iterative methods (k steps of an iterative method will in
general use order kn 2 IO time) we only consider the following direct methods (cf. [9]).

3.1. Gaussian elimination

The computational work involved in an L(D)U factorization is of order ~n 3 + O(n2).

Complete pivoting is practically impossible due to the 10 involved. Partial pivoting is possible,
but for large problems it is unknown whether Gaussian elimination is stable enough! It is
possible to start the Gaussian elimination with partial pivoting and monitor the growth factor
[3]. If the monitored growth factor becomes too large, one can switch to complete pivoting, but
as mentioned above this will be practically impossible due to the 10 involved. Iterative
improvement also has some practical difficulties: no improvement may result if the original
matrix is too ill-conditioned; moreover, one also needs the original matrix for the residual
computations, which will roughly double the 10 time for one iterative improvement step.

3.2. QR factorization

Rank revealing QR factorization [4] is not possible because of the 10 induced by the pivot
search (column interchanging). For the orthogonalization we have four possibilities:

- (Modified) Gram-Schmidt: 2n 3 + O(n 2);

- Householder: ~n 3 + O(n 2);

- Givens: ~n 3 + O(n 2);

- Fast Givens: ~n 3 + O(n 2).

In Section 6 we will explain why we use Householder reflections.

3.3. Singular value decomposition

For near singular systems this is theoretically the most sound method. However, the
computational work (for a full Golub-Reinsch SVD) if of order (14 + ;2)n3 + O(n 2) which is
too much because n is large. Also, the amount of IO needed becomes unacceptably large.

3. 4. Which method to choose?

The advantage of QR factorization over Gaussian elimination is its intrinsic numerical
stability because of the use of orthogonal transformations. However, the computational work is
twice as much. In the following sections we show that both methods can be reorganized using

76 W.M. Lioen, D. T. Winter / Large dense systems of linear equations

an identical IO structure. As we will show in Section 5, complete monitoring of the growth
factor [3] will be possible for blocked Gaussian elimination only by introducing extra IO. Since
we want to minimize the IO, the growth factor can be computed only after the last column has
been updated. In our algorithm, however, we monitor only the growth factor of the columns
being updated. Thus, an early abort of Gaussian elimination will sometimes, but not always be
possible (worst case: growth in last column). Ultimately, we can even abort the Gaussian
elimination process and restart with a QR factorization. The eventual choice will depend on
the problem at hand.

4. Non-blocked Gaussian elimination

Before we are going to discuss blocked Gaussian elimination we first describe an experiment
we performed with a non-blocked Gaussian elimination implementation. The machine we used
was a one-pipe Cyber 205. The (Large) Page size of the Cyber 205 is 65536 words and the
Cyber 205 uses an LRU page replacement algorithm. The Central Memory at the time was 1
Mword, and the associated maximal Working Set was 12 (Large) Pages.

We wanted to solve a 1000 X 1000 system (which occupies more than the available maximal
Working Set) with the fastest in core algorithm at our disposal: ccRPCF (see [12]). This is an
LOU decomposition with diagonal scaling l;; = U;; =di 1, and with column interchanging.

for k = 1, ... , n do
perform pivotal search (use maximal A kk)
interchange columns/rows
A :=A -A;;k1A[k+ l:n,k] XA[k,k+l:n]
(this is a rank-1 update, a BLAS2 [6] routine)

end do

4.1. The solution of a 1024 X 1024 system, analysis

For a 1024 x 1024 system exactly 64 columns fit on 1 Large Page and the total problem needs
16 Large Pages (see Fig. 1). It is relatively easy to predict the number of page faults. After 256
k-steps of the algorithm (the columns in the first 4 Large Pages) all work can be done in core
(the last 12 Large Pages).

In Table 1 we systematically count the number of generated page faults. This totals up to
64 x (2 x (16 + 15 + 14 + 13)) = 7424 LP faults.

Table 1

Page faults Pivotal search Rank-1 update
per columns

lst 64 columns 16 16
2nd 64 columns 15 15
3rd 64 columns 14 14
4th 64 columns 13 13
all following columns in core in core

W.M. Lioen, D. T. Winter / Large dense systems of linear equations

I

I I I I I I I
I I I I I I
I I I I I I

I I I
I I I
I I I I I
I I I I I
I I I I I
I I I I I

I I

1024 I I

I I I
I I
I I
I I I
I I
I I
I I I

I I I
I I

I I
I I I

.__L........l....__-L .

256 768

~------ ·--------;...
4 LP 12 LP

Fig. l.

For simplicity we neglect the actual (problem-dependent) column interchanging.

4. 2. The solution of a l OOO X l OOO system, actual experiment

The following timings were obtained on a one-pipe Cyber 105:

CPU time: 8.9 sec;

IO time: ±I hour (7431 LP faults X 0.5 sec/LP fault);

wall-clock time: 6 hours (61 times suspended).

However, hy applying the hlock algorithm we will present in the following section, the same
problem could be solved in approximately:

CPU time: 8.9 sec;

10 time: ±JO sec (20 LP faults);

wall-clock time: 20 sec.

So, "blocking" the Gaussian elimination roughly reduces the wall-clock time by a factor of
I OOO.

S. Blocked Gaussian Elimination

In the following we assume an LRU page replacement algorithm, otherwise we have to make
use of explicit 10 (reading and writing of files or using machine-specific asynchronous 10).

In order to reduce the 10 we partition the matrix in vertical strips of q columns, where q + 1
columns will fit in main memory. However, the most important algorithmic choice, in the LDlJ
decomposition itself, is the use of row interchanging; otherwise, a sweep through the complete
matrix has to be made for every pivotal search step.

78 W.M. Lioen, D. T. Winter / Large dense systems of linear equations

11 11 I I I I I

11 11 I I I I I

11 I I I I I I I I

11 I I I l I I I

11 I 11 I I J t
11 I 11 I J J l t

11 I 11 I 11 I I

I I I I I I I I I I
11 I I I It I I

11 I I I t t l I
11 11 I I I I I

I I 11 I I 11 I
11 I I I I J t I I I

11 I I I I I I I l I

11 I I I I I I I J JI I I

11 I I 11 I I I I I I I I

I I I I I I I 1 I I I I I

t I I J I I I I I I I I JI I
I I 11 I I I JI I I I I I I I I
I I 11 I I 11 I I I JI I I I
JI 11 I 111 I I I I I I I J

I I 11 I I I I JI l I I I I I I
I I I

E ~< ~
E "' q

Fig. 2. Fig. 3.

Step 1. Restrict all work to be done for the LDU decomposition to the first q columns, and
postpone all row interchanging and updates outside those q columns (see Fig. 2). With our
previous choice of q all this work (Step 1) can be done in core. If q is not a proper divisor of n,
then we take the first n mod q columns instead of q columns.

Step 2 (first possibility). Apply the previous interchanges and updates successively to the
columns q + 1, ... , n (Fig. 3). This variant is known as right-looking. During this step the first q
columns stay in core and only the to-be-updated column varies. The disadvantages of this
approach is that the successive columns have to be updated: they have to be read as well as
written.

Step 2 (second and superior possibility). Successively apply the previous interchanges and
updates to the second q columns q + 1, ... , 2 X q (Fig. 4). This variant is known as left-looking.
Here the second q columns will stay in core and only the columns from the previous strip

1111J11
11I1111

I I 11111
11t111 l
11 1111
11 I 111
11 111
11 111
11 I 11
11 111
11 I 11
11 I 11
11 111
11 111
11 I 11
11 I 11
11 I 11
111 111
111 111
111 111
II I 1 I I I
1111ll1

E > q

Fig. 4. Fig. 5.

1, ...
be re
grow
IO.)
so ar
case:

Stt
q+l
colur

Fil
matri

5.1. 1

In
anal)

Tt
in th1
and J

assur
rows
wher
asym

Su

Sumr

WM. Lioen, D. T. Winter / Large dense systems of linear equations 79

1, ... ,q vary. The advantage over the first possibility is that the previous columns only have to
be read. The disadvantage for blocked Gaussian elimination is that complete monitoring of the
growth factor [3] is no longer possible. (It was in the previous possibility, but at the cost of extra
JO.) In this case it is only possible to monitor the growth factor of the columns being updated,
so an early abort of Gaussian elimination will sometimes, but not always be possible (worst
case: growth in last column).

Step 3. Restrict all work to be done for the LDU decomposition to the second a columns
q + 1, ... , 2 X q (Fig. 5). Again we postpone all row interchanges and updates outside those q
columns.

Finally, repeat Steps 2 (second possibility) and 3 on the appropriate columns until the whole
matrix has been treated.

The 10 of the original algorithm is of order n3• It can easily be seen that the IO is reduced
by a factor q (cf. Du Croz et al. [7]) as opposed to the original algorithm, but it is still of order
rl3 !

5.1. Blocked Gaussian elimination, analysis

In [7,14,15] one can find an analysis of blocked Gaussian elimination. To keep this kind of
analysis simple, one has to make some simplifications.

The following assumptions yield exact results for the prediction of the number of page faults
in the experiments described in Section 7. In the following analysis only square (n X n) matrices
:md page sizes p (in words) satisfying n .i::;; p < n 2 are considered (as in [14]). Furthermore, we
:issume the original matrix aligned on a page boundary and p a multiple of n. (So the packed
-ow storage and row storage of [14] coincide.) The last two assumptions are stronger than in [7]
;vhere one starts making "crude assumptions" and constructs approximate formulas which are
:tsymptotically valid for large n.

Suppose q not a proper divisor of n:
- for Step 1 (k = O) we have to make

n
(n mod q)-page faults.

p

- for k = 1, ... , ln/q J (Steps 2 and 3) we have to make

n n n
q- + (n mod q)- + (k - l)q-page faults.

p p p

)ummation yields the following total for the number of page faults:

n ln/qJ n
(1 + ln/qj)(n mod q)- + E kq-

P k=l P

(qln/qjn n)
= 2P + (n mod q) P (l + ln/ql). (5.1)

80 WM. Lioen, D. T. Winter /Large dense systems of linear equations

For q a proper divisor of n the analysis is somewhat different, but the result above still

holds. So, this formula then simply reduces to

;l; (1 + ~)'
which in turn approximately equals

n3

2pq

This is the same as the asymptotic result for p ~ n [7, equation (3.1)]. A careful analysis yields

that it is slightly favorable for the n mod q =I= 0 case to do n mod q columns in Step 1 as

opposed to doing n mod q columns in the last Steps 2 and 3. This is a refinement of the

algorithm described in [7].

6. Blocked QR factorization

Every nonsingular matrix A can uniquely be factorized as

A=QR,

where Q is an orthogonal matrix and R an upper triangular matrix.

During the QR factorization process the columns of A are orthogonalized with respect to all

previous columns. Pivoting is not needed because the matrix A is assumed to be nonsingular.

The IO structure of blocked QR is identical to that of Gaussian elimination: in the first step

we orthogonalize all columns in one strip; during the second step we orthogonalize-with

respect to all previous columns-all columns in the next strip; in the third step we orthogonal

ize all columns in this next strip with respect to each other. Finally, as was the case for blocked

Gaussian elimination, the last two steps are repeated until the whole matrix is done. The

orthogonalization process can be accomplished using

- projections-Gram-Schmidt: 2n 3 + O(n 2).

There are mainly two possibilities for performing the Gram-Schmidt algorithm [9]: CGS

'.Classical Gram-Schmidt) and MGS (Modified Gram-Schmidt). Because of numerical stability

MGS is preferred. However, even with MGS we eventually will lose orthogonality. The solution

is iterating the MGS process: IMGS. Experiments of Hoffmann [11] indicate that two iterations

suffice. This doubles both the CPU time and the IO time. Because our goal is minimizing the

amount of IO, we have to use one of the following (numerically stable) orthogonal transforma
tions:

- reflections-Householder: 5n 3 + O(n 2),

- rotations-Givens: In 3 + O(n 2),

- rotations-Fast Givens: }n3 + O(n2).

Since the IO for QR using reflections and rotations is identical, we do not use Givens

rotations because they involve twice as much computational work. Because of the possibility of

WM. Lioen, D. T. Winter / Large dense systems of linear equations 81

element growth you have to monitor the matrix elements during Fast Givens to avoid overflow.
The nontrivial overhead results in a QR algorithm that is slower than the Householder
approach, so we will use Householder reflections.

7. Virtual memory experiments

As we already mentioned in our introduction we used a locally available Cyber 205 because
of its easily predictable and measurable page replacement algorithm, but the results will hold
both for any virtual memory system with a suitable page replacement algorithm and for
implementations using explicit IO. For the following experiments we used a two-pipe Cyber 205
with a central memory of 4 Mword and a maximal Working Set of 50 (Large) Pages. (As we
mentioned before, the (Large) Page size p of the Cyber 205 is 65536 words and an LRU page
replacement algorithm is used.) The algorithms we used are the above-described blocked LDU
and blocked QR. For our strip we use 47 of the 50 Large Pages. In general we need 2 pages for
the columns we use for our delayed updates because such a column can cross a page boundary;
furthermore, we need 1 page as workspace.

First we give the expected number of page faults using formula (5.1) and adding the matrix
size in pages (the trivial number of page faults for the matrix initialization). For n = 2048 the
matrix occupies 64 LP; exactly 32 columns fit on a page, our strip is 47 pages, so k = 1504; the
computed number of page faults is 145. For n = 4096 the matrix occupies 256 LP; exactly 16
columns fit on a page, our strip is 47 pages, so k = 752; the computed number of page faults is
1087 (see Tables 2 and 3). As we might expect from the computational complexity, the CPU
time for QR is roughly twice as big as the CPU time for LDU. As predicted in Section 6, the
10 times are almost identical. If we compare the results of the blocked LDU with the results of
the non-blocked LDU in Section 4, we see that 10 and CPU are now in balance.

To illustrate the sensitivity of the algorithms for the parameter q we present an accidental
mistake as an additional experiment: the first time we ran the blocked LDU code we forgot
that the workspace also took one Large Page. This resulted for n = 2048 in 800 LP faults
(instead of 177)!

Table 2
Experiment with blocked LDU

n

2048
4096

Table 3

LP faults

117
1214

Experiment with blocked QR

n

2048
4096

LP faults

145
1111

IO time

89 sec
607 sec

IO time

73 sec
556 sec

CPU time

60 sec
356 sec

CPU time

137 sec
891 sec

wall-clock

184 sec
749 sec

wall-clock

200 sec
1341 sec

82

Table 4
Translation

Virtual memory

Physical memory
Disks
Page fault
Page

WM. Lioen, D. T. Winter / Large dense systems of linear equations

Cache

Cache

Page replacement algorithm

Physical memory
Cache miss
Cache line
Cache policy

8. Cache

Normally processor(s) are faster than the central memory. E.g., loading operands and storing
results takes more time than performing a multiply. One of the solutions is using a cache, a
piece of extremely fast memory between the processor(s) and central memory.

As can be seen from the translation table (Table 4) cache behaves like virtual memory.
Therefore we can apply exactly the same blocked algorithms we described before on a
computer with cache.

9. Cache experiments

For the following experiments we used a locally available Alliant FX/4. We only used the
Alliant here as an example for demonstrating the cache effects.

Problems we encountered on the Alliant are: the algorithm has to be fast enough to see
cache effects and the cache policy is not LRU: it behaves random. For a better description of
the Alliant's cache see [17]. All results we present are based on 64-bit precision. The Alliant
FX/ 4 cache size is 256k = 32 kwords, so matrices up to order 181 will fit in cache.

The performance drop we observe for ccRPRB is typical for a problem larger than the cache
size of a given machine. The gradual decrease in performance indicates a random cache policy
(Fig. 6).

performance in
MFLOP/s

Alliant FX/4

10

3264 128 256

problem size
512

MIOLDU

Fig. 6. CCRPRB: non-blocked LDU decomposition; Miowu: blocked LDU decomposition.

WM. Lioen, D. T. Winter / Large dense systems of linear equations

performance in
MFLOP/s

Alliant FX/4

15

10

5

0

3264 128 256 512

problem size

DGEFA

MIOLDU

DGETRF

CCRPRB

83

Fig. 7. DGETRF: preliminary result of (64)blocked LAP ACK [1]; DGEFA: an Alliant FX/4 tuned, blocked FX/Linpack
result (Kuck et al. [13]); ccRPRB: non-blocked LDU decomposition; MIOLou: blocked LDU decomposition.

The maximal performance we obtain for MIOLDU, 10.4 MFLOP /s, is satisfactory in the sense
that it is almost the peak performance of the Alliant FX/4 for the arithmetical operations used
in our algorithm.

The most important observation, however, is that the same blocked LDU we used for virtual
memory also gives satisfactory results for cache.

10. Other blocking strategies

One might ask whether vertical strips is an optimal blocking strategy. It is also possible to
partition the matrix into square blocks.

This has the advantage that we can make use of matrix-matrix operations on the blocks
instead of using rank-1 updates on strips (this is the BLAS3 [5] approach); intermediate results
can be kept in vector registers, so we can save result stores and operand loads.

In Fig. 7 we compare our previous results with two fully blocked Gaussian eliminatiw
implementations on the Alliant FX/4. As expected DGEFA performs better than our block1
LDU implementation. The performance gain is already explained above and is not due to
decrease in 10, so, in this sense, it falls out of the scope of this paper.

11. Conclusions

In most computers there are more memory hierarchies than one in first instance might think
of:

punch cards,
paper tape,
drum,

84 WM. Lioen, D. T. Winter / Large dense systems of linear equations

magnetic tape,
disk (virtual memory),
electronic disks: RAM disk/SSD /XMU /ECS,
shared memory,
local memory,
cache,
(vector-)registers.

In this paper we presented blocked algorithms for a two-level memory hierarchy. For three-level
memory hierarchies even nested blocking is analyzed in [8].

One might be tempted to say "I have a Cray 2-512 (512 Mword) and can solve systems up to
order 23170 in core! Why should we bother at all?" As we already showed in the introduction,
history learns memory is always too small. Even more important is the fact that most people
don't have access to a machine like a Cray 2-512.

More general: block partitioning allows for parallel computations on different blocks. Even
on the above-mentioned Cray 2 we greatly benefit from block partitioning (think of the
performance of the FX/Linpack routine on the Alliant FX/4).

For local memory multiprocessors we have to minimize the slow inter-processor data
transport e.g., we can do domain decomposition on a hypercube.

As we have shown with our experiments, one can use the same blocking strategy for virtual
memory systems as for cache memory systems. The opposite approach, using the same
well-behaving blocking strategy for cache memory systems as for virtual memory systems, does
not necessarily work! Our experiments differ from the LAP ACK approach which, although
aimed at the same architectures, focuses mainly on computers with vector registers and/or
cache. The LAP ACK project uses implicit blocking of the data and uses BLAS3 routines on the
blocks. This works very nicely for cache memory systems; however, if one would use exactly the
same algorithm on a virtual memory system one might again expect thrashing. Because of the
relatively small cache line size and the relatively small cache miss penalty compared to the page
size and the high page fault penalty, there is no direct need for explicit blocking of the original
data for a cache memory system. It might be possible to construct implicitly blocked algorithms
that behave well for virtual memory systems, by carefully accessing the matrix blocks; however,
best performance is to be expected by explicitly blocking the matrix and storing the individual
matrix-block elements in contiguous memory.

Finally, in Section 5.1 we mentioned a small refinement of the algorithm described in [7].

References

[l] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney and D. Sorensen, LAPACK Working Note #20: LAPACK: a portable linear algebra library for
high-performance computers, CS-90-105, University of Tennessee (1990).

[2] D.W. Barron and H.P.F. Swinnerton-Dyer, Solution of simultaneous linear equations using a magnetic-tape
store, Comput. J. 3 (1) (1960) 28-33.

[3] P.A. Businger, Monitoring the numerical stability of Gaussian elimination, Numer. Math. 16 (1971) 360-361.
[4] T.F. Chan, Rank revealing QR factorizations, Linear Algebra Appl. 88/89 (1987) 67-82.
[5] J.J. Dongarra, J. Du Croz, S. Hammarling and I. Duff, A set of level 3 basic linear algebra subprograms, ACM

Trans. Math. Software 16 (1) (1990) 1-17.

WM. Lioen, D. T. Winter / Large dense systems of linear equations 85

[6] J.J. Dongarra, J. Du Croz, S. Hammarling and R.J. Hanson, An extended set of FORTRAN basic linear algebra
subprograms, ACM Trans. Math. Software 14 (1) (1988) 1-17.

[7] J.J. Du Croz, S.M. Nugent, J.K. Reid and D.B. Taylor, Solving large full sets of linear equations in a paged
virtual store, ACM Trans. Math. Software 7 (4) (1981) 527-536.

[8] K. Gallivan, W. Jalby, U. Meier and A.H. Sameh, Impact of hierarchical memory systems on linear algebra
algorithm design, Internal. J. Supercomputer Appl. 2 (1) (1988) 12-48.

[9] G.H. Golub and C.F. van Loan, Matrix Computations (North Oxford Academic, Oxford, England, 1983).
(10) R.G. Grimes, Solving systems of large dense linear equations, J. Supercomputing 1 (1988) 291-299.
(11) W. Hoffmann, Iterative algorithms for Gram-Schmidt orthogonalization, Computing 41 (1989) 335-348.
[12) W. Hoffmann, Solving linear systems on a vector computer, J. Comput. Appl. Math. 18 (3) (1987) 353-367.
[13) Kuck & Associates, Inc., Para-Linpack/FX users' guide, Release 2.1, Document ~8809012 (1988).
(14) A.C. McKellar and E.G. Coffman Jr, Organizing matrices and matrix operations for paged memory systems,

Comm. ACM 12 (3) (1969) 153-165.
(15) KS. Trivedi, Prepaging and applications to structured array problems, UIUCDCS-R-74-662, Ph.D. Thesis,

University of Illinois at Urbana-Champaign, IL (1974).
[16) J.H. Wilkinson, Linear algebra on the Pilot Ace, in: Automatic Digital Computation, Proceedings Symposium

held at the National Physical Laboratory, Teddington (1954).
(17) D.T. Winter, Influence of memory systems on vector processor performance, Appl. Numer. Math. 10 (1992)

59-72 (this issue).

