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The problem of solving large full sets of linear equations on a computer with hierarchical memory is 
considered. Blocked Gaussian elimination and QR factorization are studied in an attempt to apply exactly the 
same implementations on computers with virtual memory as on computers with cache. This differs slightly 
from the LAPACK [1] approach which, although aimed at the same architectures, focuses mainly on 
computers with vector registers and/or cache. Experiments on a Cyber 205 and an Alliant FX/4 are reported. 
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1. Introduction 

Since the introduction of digital computers there has always been the need for more fast 
memory than physically available. Back in 1953 Wilkinson [16] had already described the 
solution of linear systems larger than order 13 (which was the limit for the central memory on 
the Pilot ACE) using punch cards as secondary storage. In [2] magnetic tapes are used as 
secondary storage. At present Grimes [10] extrapolates for linear systems up to order 80,000 
using SSD or disks on a Cray X-MP and a Cray 2, respectively. 

In this paper we will discuss the overall performance (both with respect to the CPU time and 
the IO time, resulting in the wall-clock time) of blocked Gaussian elimination and QR 
factorization on a virtual memory system. For our measurements we have used a locally 
available Cyber 205 because of its easily predictable and measurable page replacement 
algorithm, but results will hold both for any virtual memory system with a suitable page 
replacement algorithm and for implementations using explicit IO. 

Finally, we will discuss the behaviour of the presented blocked Gaussian elimination 
algorithm on a computer with cache. This differs slightly from the LAPACK [1] approach 
which, although aimed at the same architectures, focuses mainly on computers with vector 
registers and/or cache. For this experiment we used an Alliant FX/4. 
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2. Virtual memory 

Before studying the behaviour of algorithms in a virtual memory environment, we have to 

explain what virtual memory is and how it behaves. 
Fast memory always has been and always will be an expensive part of a computer system. 

One of the solutions for this problem is to pretend there is much more memory than physically 

available by using (much) slower disk(s). Programs from now on have to use virtual addresses 

instead of the physical addresses. The hardware and/ or the operating system translates a 

virtual address to a physical address and checks whether the requested datum is already 

available in physical memory. Otherwise a so-called page fault occurs: the hardware has to 

fetch the datum from disk. Because of the disk-seek latency this transport is done in so-called 

pages corresponding with one or more disk blocks. 
This process is repeated until all physical memory is in use and if the latter is the case, we 

have to make use of a so-called page replacement algorithm: 

select a page, e.g., the Least Recently Used; 
if the data on this page has been altered 

then we have to write the data back to disk 
else we can discard this page without writing; 

from this moment on we can safely re-use the selected space. 

2.1. Algorithms and virtual memory 

What is the impact of virtual memory on the behaviour of algorithms? Suppose we have a 

computer with a page-size of 100 words and a memory consisting of 1000 words (i.e. 10 pages). 

Furthermore we assume a Least Recently Used page replacement algorithm. 

We are going to study an algorithm which is running linearly through a problem with a 

dataset size of 1024 words. The data itself occupies 11 pages, this is 1 page too much. One 

application of this algorithm gives rise to 11 page faults. 

However, applying the same algorithm N times gives rise to llN page faults: 

If we are running the first time through our data we have to page in the page numbered 1 

(which we from now on will address to as page 1) up to and including page 10. At the moment 

we have to page in page 11, we have to discard a previous page. Since we assumed LRU, we 

discard page 1 (and if the data on page 1 has been altered we have to write page 1 back to 
disk); now page 11 can be paged in. 

All following times we are running through the same data we have to page in the page we 

have just discarded in the previous step (e.g., at the moment we have to page in page 1, we have 

just discarded this page because we had to page in page 11; at the moment we have to page in 

page 2, we have just discarded this page because we had to page in page 1; and so on). This 
phenomenon is often referred to as page thrashing. 

Of course, a solution for this paging problem may be found by reorganizing the algorithm. 
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3. Large dense systems of linear equations 

First of all we have to define the adjective large: with large we mean a factor larger than 
physical memory. For current midrange computers say of the order n = 2000, 4000, 8000. 

Our main concerns are: numerical stability and wall-clock time. Numerical stability is very 
important because for large n it can in general not be known a priori whether the final result 
will have any significance! Wall-clock time is another important issue because the CPU time is 
of order n 3 and the 10 time is also of order n3• 

Because of the 10 involved in iterative methods (k steps of an iterative method will in 
general use order kn 2 IO time) we only consider the following direct methods (cf. [9]). 

3.1. Gaussian elimination 

The computational work involved in an L(D)U factorization is of order ~n 3 + O(n2 ). 

Complete pivoting is practically impossible due to the 10 involved. Partial pivoting is possible, 
but for large problems it is unknown whether Gaussian elimination is stable enough! It is 
possible to start the Gaussian elimination with partial pivoting and monitor the growth factor 
[3]. If the monitored growth factor becomes too large, one can switch to complete pivoting, but 
as mentioned above this will be practically impossible due to the 10 involved. Iterative 
improvement also has some practical difficulties: no improvement may result if the original 
matrix is too ill-conditioned; moreover, one also needs the original matrix for the residual 
computations, which will roughly double the 10 time for one iterative improvement step. 

3.2. QR factorization 

Rank revealing QR factorization [4] is not possible because of the 10 induced by the pivot 
search (column interchanging). For the orthogonalization we have four possibilities: 

- (Modified) Gram-Schmidt: 2n 3 + O(n 2 ); 

- Householder: ~n 3 + O(n 2 ); 

- Givens: ~n 3 + O(n 2 ); 

- Fast Givens: ~n 3 + O(n 2). 

In Section 6 we will explain why we use Householder reflections. 

3.3. Singular value decomposition 

For near singular systems this is theoretically the most sound method. However, the 
computational work (for a full Golub-Reinsch SVD) if of order (14 + ;2 )n3 + O(n 2 ) which is 
too much because n is large. Also, the amount of IO needed becomes unacceptably large. 

3. 4. Which method to choose? 

The advantage of QR factorization over Gaussian elimination is its intrinsic numerical 
stability because of the use of orthogonal transformations. However, the computational work is 
twice as much. In the following sections we show that both methods can be reorganized using 
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an identical IO structure. As we will show in Section 5, complete monitoring of the growth 
factor [3] will be possible for blocked Gaussian elimination only by introducing extra IO. Since 
we want to minimize the IO, the growth factor can be computed only after the last column has 
been updated. In our algorithm, however, we monitor only the growth factor of the columns 
being updated. Thus, an early abort of Gaussian elimination will sometimes, but not always be 
possible (worst case: growth in last column). Ultimately, we can even abort the Gaussian 
elimination process and restart with a QR factorization. The eventual choice will depend on 
the problem at hand. 

4. Non-blocked Gaussian elimination 

Before we are going to discuss blocked Gaussian elimination we first describe an experiment 
we performed with a non-blocked Gaussian elimination implementation. The machine we used 
was a one-pipe Cyber 205. The (Large) Page size of the Cyber 205 is 65536 words and the 
Cyber 205 uses an LRU page replacement algorithm. The Central Memory at the time was 1 
Mword, and the associated maximal Working Set was 12 (Large) Pages. 

We wanted to solve a 1000 X 1000 system (which occupies more than the available maximal 
Working Set) with the fastest in core algorithm at our disposal: ccRPCF (see [12]). This is an 
LOU decomposition with diagonal scaling l;; = U;; =di 1, and with column interchanging. 

for k = 1, ... , n do 
perform pivotal search (use maximal A kk) 
interchange columns/rows 
A :=A -A;;k1A[k+ l:n,k] XA[k,k+l:n] 
(this is a rank-1 update, a BLAS2 [6] routine) 

end do 

4.1. The solution of a 1024 X 1024 system, analysis 

For a 1024 x 1024 system exactly 64 columns fit on 1 Large Page and the total problem needs 
16 Large Pages (see Fig. 1). It is relatively easy to predict the number of page faults. After 256 
k-steps of the algorithm (the columns in the first 4 Large Pages) all work can be done in core 
(the last 12 Large Pages). 

In Table 1 we systematically count the number of generated page faults. This totals up to 
64 x (2 x (16 + 15 + 14 + 13)) = 7424 LP faults. 

Table 1 

Page faults Pivotal search Rank-1 update 
per columns 

lst 64 columns 16 16 
2nd 64 columns 15 15 
3rd 64 columns 14 14 
4th 64 columns 13 13 
all following columns in core in core 
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For simplicity we neglect the actual (problem-dependent) column interchanging. 

4. 2. The solution of a l OOO X l OOO system, actual experiment 

The following timings were obtained on a one-pipe Cyber 105: 

CPU time: 8.9 sec; 

IO time: ±I hour (7431 LP faults X 0.5 sec/LP fault); 

wall-clock time: 6 hours ( 61 times suspended). 

However, hy applying the hlock algorithm we will present in the following section, the same 
problem could be solved in approximately: 

CPU time: 8.9 sec; 

10 time: ±JO sec (20 LP faults); 

wall-clock time: 20 sec. 

So, "blocking" the Gaussian elimination roughly reduces the wall-clock time by a factor of 
I OOO. 

S. Blocked Gaussian Elimination 

In the following we assume an LRU page replacement algorithm, otherwise we have to make 
use of explicit 10 (reading and writing of files or using machine-specific asynchronous 10). 

In order to reduce the 10 we partition the matrix in vertical strips of q columns, where q + 1 
columns will fit in main memory. However, the most important algorithmic choice, in the LDlJ 
decomposition itself, is the use of row interchanging; otherwise, a sweep through the complete 
matrix has to be made for every pivotal search step. 



78 W.M. Lioen, D. T. Winter / Large dense systems of linear equations 

11 11 I I I I I 

11 11 I I I I I 

11 I I I I I I I I 

11 I I I l I I I 

11 I 11 I I J t 
11 I 11 I J J l t 

11 I 11 I 11 I I 

I I I I I I I I I I 
11 I I I It I I 

11 I I I t t l I 
11 11 I I I I I 

I I 11 I I 11 I 
11 I I I I J t I I I 

11 I I I I I I I l I 

11 I I I I I I I J JI I I 

11 I I 11 I I I I I I I I 

I I I I I I I 1 I I I I I 

t I I J I I I I I I I I JI I 
I I 11 I I I JI I I I I I I I I 
I I 11 I I 11 I I I JI I I I 
JI 11 I 111 I I I I I I I J 

I I 11 I I I I JI l I I I I I I 
I I I 

E ~< ..................... ~ 
E "' q 

Fig. 2. Fig. 3. 

Step 1. Restrict all work to be done for the LDU decomposition to the first q columns, and 
postpone all row interchanging and updates outside those q columns (see Fig. 2). With our 
previous choice of q all this work (Step 1) can be done in core. If q is not a proper divisor of n, 
then we take the first n mod q columns instead of q columns. 

Step 2 (first possibility). Apply the previous interchanges and updates successively to the 
columns q + 1, ... , n (Fig. 3). This variant is known as right-looking. During this step the first q 
columns stay in core and only the to-be-updated column varies. The disadvantages of this 
approach is that the successive columns have to be updated: they have to be read as well as 
written. 

Step 2 (second and superior possibility). Successively apply the previous interchanges and 
updates to the second q columns q + 1, ... , 2 X q (Fig. 4). This variant is known as left-looking. 
Here the second q columns will stay in core and only the columns from the previous strip 
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1, ... ,q vary. The advantage over the first possibility is that the previous columns only have to 
be read. The disadvantage for blocked Gaussian elimination is that complete monitoring of the 
growth factor [3] is no longer possible. (It was in the previous possibility, but at the cost of extra 
JO.) In this case it is only possible to monitor the growth factor of the columns being updated, 
so an early abort of Gaussian elimination will sometimes, but not always be possible (worst 
case: growth in last column). 

Step 3. Restrict all work to be done for the LDU decomposition to the second a columns 
q + 1, ... , 2 X q (Fig. 5). Again we postpone all row interchanges and updates outside those q 
columns. 

Finally, repeat Steps 2 (second possibility) and 3 on the appropriate columns until the whole 
matrix has been treated. 

The 10 of the original algorithm is of order n3• It can easily be seen that the IO is reduced 
by a factor q (cf. Du Croz et al. [7]) as opposed to the original algorithm, but it is still of order 
rl3 ! 

5.1. Blocked Gaussian elimination, analysis 

In [7,14,15] one can find an analysis of blocked Gaussian elimination. To keep this kind of 
analysis simple, one has to make some simplifications. 

The following assumptions yield exact results for the prediction of the number of page faults 
in the experiments described in Section 7. In the following analysis only square (n X n) matrices 
:md page sizes p (in words) satisfying n .i::;; p < n 2 are considered (as in [14]). Furthermore, we 
:issume the original matrix aligned on a page boundary and p a multiple of n. (So the packed 
-ow storage and row storage of [14] coincide.) The last two assumptions are stronger than in [7] 
;vhere one starts making "crude assumptions" and constructs approximate formulas which are 
:tsymptotically valid for large n. 

Suppose q not a proper divisor of n: 
- for Step 1 (k = O) we have to make 

n 
(n mod q)-page faults. 

p 

- for k = 1, ... , ln/q J (Steps 2 and 3) we have to make 

n n n 
q- + (n mod q)- + (k - l)q-page faults. 

p p p 

)ummation yields the following total for the number of page faults: 

n ln/qJ n 
(1 + ln/qj)(n mod q)- + E kq-

P k=l P 

( qln/qjn n) 
= 2P + (n mod q) P (l + ln/ql). (5.1) 
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For q a proper divisor of n the analysis is somewhat different, but the result above still 

holds. So, this formula then simply reduces to 

;l; ( 1 + ~)' 
which in turn approximately equals 

n3 

2pq 

This is the same as the asymptotic result for p ~ n [7, equation (3.1)]. A careful analysis yields 

that it is slightly favorable for the n mod q =I= 0 case to do n mod q columns in Step 1 as 

opposed to doing n mod q columns in the last Steps 2 and 3. This is a refinement of the 

algorithm described in [7]. 

6. Blocked QR factorization 

Every nonsingular matrix A can uniquely be factorized as 

A=QR, 

where Q is an orthogonal matrix and R an upper triangular matrix. 

During the QR factorization process the columns of A are orthogonalized with respect to all 

previous columns. Pivoting is not needed because the matrix A is assumed to be nonsingular. 

The IO structure of blocked QR is identical to that of Gaussian elimination: in the first step 

we orthogonalize all columns in one strip; during the second step we orthogonalize-with 

respect to all previous columns-all columns in the next strip; in the third step we orthogonal

ize all columns in this next strip with respect to each other. Finally, as was the case for blocked 

Gaussian elimination, the last two steps are repeated until the whole matrix is done. The 

orthogonalization process can be accomplished using 

- projections-Gram-Schmidt: 2n 3 + O(n 2 ). 

There are mainly two possibilities for performing the Gram-Schmidt algorithm [9]: CGS 

'.Classical Gram-Schmidt) and MGS (Modified Gram-Schmidt). Because of numerical stability 

MGS is preferred. However, even with MGS we eventually will lose orthogonality. The solution 

is iterating the MGS process: IMGS. Experiments of Hoffmann [11] indicate that two iterations 

suffice. This doubles both the CPU time and the IO time. Because our goal is minimizing the 

amount of IO, we have to use one of the following (numerically stable) orthogonal transforma
tions: 

- reflections-Householder: 5n 3 + O(n 2), 

- rotations-Givens: In 3 + O(n 2), 

- rotations-Fast Givens: }n3 + O(n2). 

Since the IO for QR using reflections and rotations is identical, we do not use Givens 

rotations because they involve twice as much computational work. Because of the possibility of 
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element growth you have to monitor the matrix elements during Fast Givens to avoid overflow. 
The nontrivial overhead results in a QR algorithm that is slower than the Householder 
approach, so we will use Householder reflections. 

7. Virtual memory experiments 

As we already mentioned in our introduction we used a locally available Cyber 205 because 
of its easily predictable and measurable page replacement algorithm, but the results will hold 
both for any virtual memory system with a suitable page replacement algorithm and for 
implementations using explicit IO. For the following experiments we used a two-pipe Cyber 205 
with a central memory of 4 Mword and a maximal Working Set of 50 (Large) Pages. (As we 
mentioned before, the (Large) Page size p of the Cyber 205 is 65536 words and an LRU page 
replacement algorithm is used.) The algorithms we used are the above-described blocked LDU 
and blocked QR. For our strip we use 47 of the 50 Large Pages. In general we need 2 pages for 
the columns we use for our delayed updates because such a column can cross a page boundary; 
furthermore, we need 1 page as workspace. 

First we give the expected number of page faults using formula (5.1) and adding the matrix 
size in pages (the trivial number of page faults for the matrix initialization). For n = 2048 the 
matrix occupies 64 LP; exactly 32 columns fit on a page, our strip is 47 pages, so k = 1504; the 
computed number of page faults is 145. For n = 4096 the matrix occupies 256 LP; exactly 16 
columns fit on a page, our strip is 47 pages, so k = 752; the computed number of page faults is 
1087 (see Tables 2 and 3). As we might expect from the computational complexity, the CPU 
time for QR is roughly twice as big as the CPU time for LDU. As predicted in Section 6, the 
10 times are almost identical. If we compare the results of the blocked LDU with the results of 
the non-blocked LDU in Section 4, we see that 10 and CPU are now in balance. 

To illustrate the sensitivity of the algorithms for the parameter q we present an accidental 
mistake as an additional experiment: the first time we ran the blocked LDU code we forgot 
that the workspace also took one Large Page. This resulted for n = 2048 in 800 LP faults 
(instead of 177)! 

Table 2 
Experiment with blocked LDU 

n 

2048 
4096 

Table 3 

LP faults 

117 
1214 

Experiment with blocked QR 

n 

2048 
4096 

LP faults 

145 
1111 

IO time 

89 sec 
607 sec 

IO time 

73 sec 
556 sec 

CPU time 

60 sec 
356 sec 

CPU time 

137 sec 
891 sec 

wall-clock 

184 sec 
749 sec 

wall-clock 

200 sec 
1341 sec 
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Table 4 
Translation 

Virtual memory 

Physical memory 
Disks 
Page fault 
Page 
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Cache 

Cache 

Page replacement algorithm 

Physical memory 
Cache miss 
Cache line 
Cache policy 

8. Cache 

Normally processor(s) are faster than the central memory. E.g., loading operands and storing 
results takes more time than performing a multiply. One of the solutions is using a cache, a 
piece of extremely fast memory between the processor(s) and central memory. 

As can be seen from the translation table (Table 4) cache behaves like virtual memory. 
Therefore we can apply exactly the same blocked algorithms we described before on a 
computer with cache. 

9. Cache experiments 

For the following experiments we used a locally available Alliant FX/4. We only used the 
Alliant here as an example for demonstrating the cache effects. 

Problems we encountered on the Alliant are: the algorithm has to be fast enough to see 
cache effects and the cache policy is not LRU: it behaves random. For a better description of 
the Alliant's cache see [17]. All results we present are based on 64-bit precision. The Alliant 
FX/ 4 cache size is 256k = 32 kwords, so matrices up to order 181 will fit in cache. 

The performance drop we observe for ccRPRB is typical for a problem larger than the cache 
size of a given machine. The gradual decrease in performance indicates a random cache policy 
(Fig. 6). 

performance in 
MFLOP/s 

Alliant FX/4 

10 

3264 128 256 

problem size 
512 

MIOLDU 

Fig. 6. CCRPRB: non-blocked LDU decomposition; Miowu: blocked LDU decomposition. 
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performance in 
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15 

10 

5 
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problem size 

DGEFA 

MIOLDU 

DGETRF 

CCRPRB 
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Fig. 7. DGETRF: preliminary result of (64)blocked LAP ACK [1]; DGEFA: an Alliant FX/4 tuned, blocked FX/Linpack 
result (Kuck et al. [13]); ccRPRB: non-blocked LDU decomposition; MIOLou: blocked LDU decomposition. 

The maximal performance we obtain for MIOLDU, 10.4 MFLOP /s, is satisfactory in the sense 
that it is almost the peak performance of the Alliant FX/4 for the arithmetical operations used 
in our algorithm. 

The most important observation, however, is that the same blocked LDU we used for virtual 
memory also gives satisfactory results for cache. 

10. Other blocking strategies 

One might ask whether vertical strips is an optimal blocking strategy. It is also possible to 
partition the matrix into square blocks. 

This has the advantage that we can make use of matrix-matrix operations on the blocks 
instead of using rank-1 updates on strips (this is the BLAS3 [5] approach); intermediate results 
can be kept in vector registers, so we can save result stores and operand loads. 

In Fig. 7 we compare our previous results with two fully blocked Gaussian eliminatiw 
implementations on the Alliant FX/4. As expected DGEFA performs better than our block1 
LDU implementation. The performance gain is already explained above and is not due to 
decrease in 10, so, in this sense, it falls out of the scope of this paper. 

11. Conclusions 

In most computers there are more memory hierarchies than one in first instance might think 
of: 

punch cards, 
paper tape, 
drum, 
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magnetic tape, 
disk (virtual memory), 
electronic disks: RAM disk/SSD /XMU /ECS, 
shared memory, 
local memory, 
cache, 
( vector-)registers. 

In this paper we presented blocked algorithms for a two-level memory hierarchy. For three-level 
memory hierarchies even nested blocking is analyzed in [8]. 

One might be tempted to say "I have a Cray 2-512 (512 Mword) and can solve systems up to 
order 23170 in core! Why should we bother at all?" As we already showed in the introduction, 
history learns memory is always too small. Even more important is the fact that most people 
don't have access to a machine like a Cray 2-512. 

More general: block partitioning allows for parallel computations on different blocks. Even 
on the above-mentioned Cray 2 we greatly benefit from block partitioning (think of the 
performance of the FX/Linpack routine on the Alliant FX/4). 

For local memory multiprocessors we have to minimize the slow inter-processor data 
transport e.g., we can do domain decomposition on a hypercube. 

As we have shown with our experiments, one can use the same blocking strategy for virtual 
memory systems as for cache memory systems. The opposite approach, using the same 
well-behaving blocking strategy for cache memory systems as for virtual memory systems, does 
not necessarily work! Our experiments differ from the LAP ACK approach which, although 
aimed at the same architectures, focuses mainly on computers with vector registers and/or 
cache. The LAP ACK project uses implicit blocking of the data and uses BLAS3 routines on the 
blocks. This works very nicely for cache memory systems; however, if one would use exactly the 
same algorithm on a virtual memory system one might again expect thrashing. Because of the 
relatively small cache line size and the relatively small cache miss penalty compared to the page 
size and the high page fault penalty, there is no direct need for explicit blocking of the original 
data for a cache memory system. It might be possible to construct implicitly blocked algorithms 
that behave well for virtual memory systems, by carefully accessing the matrix blocks; however, 
best performance is to be expected by explicitly blocking the matrix and storing the individual 
matrix-block elements in contiguous memory. 

Finally, in Section 5.1 we mentioned a small refinement of the algorithm described in [7]. 
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