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q-SPECIAL FUNCTIONS, A TUTORIAL 

H. T. KoELINK AND T. H. KooRNWINDER 

SUMMARY 

This tutorial provides the necessary prerequisites on q-special functions for 
understanding the lectures by Koornwinder and Koelink at this conference (see 
the summaries in this Volume). 

Fix a base q, for convenience 0 < q < 1. A q-shifted factorial (a; q)k is 
a product of k factors 1 - aqi (j = 0, 1, ... , k - 1). The limit for k - oo 
is a meaningful infinite product denoted by (a; q)co· A q-hypergeometric se­
ries is a sum I::'::o c,. such that c0 = 1 and ck+1 /c1c is rational in q". Such 
a series is denoted by .,.ef>,(a1 , ... ,a,.;b1 , •.• ,b,;q,z), which stands for a power 
series in z with coefficients given by quotients involving a.o. q-shifted factorials 
(a.;; q)1c and (b;; q),.. After some rescaling this tends to a hypergeometric se­
ries .,. F, ( a 1 , .•. a.,.; bi, ... , b,; z) as q j 1. The q-binomial series 1 <Po( a; ; q, z) can 
be evaluated as the quotient of two infinite q-products. By specialization or 
limit transition one gets an evaluation of 1 </;o(O;; q, z) and o<Po(;; q, z), which are 
q-exponential functions. 

A q-integral J0
1 f(t) dqt is defined as the sum over k from 0 to oo of f(qk) (qk -

q1c+ 1). The evaluation formula for the q-binomial series can equivalently be 
written as a q-analogue of the integral representation for the beta function. 

The 2 </; 1 q-hypergeometric series was introduced by Heine as a q-analogue of 
the Gaussian hypergeometric series 2F1 • Analogous to Euler's integral repre­
sentation it has a q-integral representation. There are also q-analogues of the 
various transformation formulas and the summation formula (at z = 1) for the 
2F1. 

Little q-Jacobi polynomials are orthogonal polynomials on the interval [O, 1) 
with respect to the q-beta measure. In particular, in the little q-Legendre case 
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there is orthogonality measure dqx on [O, 1]. These polynomials are expressible 
as terminating 2</>1 's. They correspond to Jacobi polynomials of argument 1- 2a: 
(i.e., living on [0,1]). Corresponding to Jacobi polynomials living on an arbitrary 
bounded interval we have big q-Ja.cobi polynomials which are expressible as 3<J; 2 's. 
Little and big q-J acobi polynomials have many properties similar to those of the 
classical orthogonal polynomials (Jacobi, Laguerre and Hermite). For instance, 
they are eigenfunctions of a second order q-difference operator. 

The most general class of orthogonal polynomials which is yet considered as 
'classical' is formed by the Askey-Wilson polynomials. This is a four-parameter 
family of orthogonal polynomials on the interval [-1, 1] with respect to a con­
tinuous weight function. The polynomials are expressible as 4</J3's and contain 
all other 'classical' orthogonal polynomials as special cases or limit cases. 

For further reading see Gasper & Rahman [2] on q-hypergeometric series and 
Askey & Wilson [1] on Askey-Wilson polynomials. 

REFERENCES 

1. R. Askey and J. Wilson, Some basic h.ypergeomdric orthogona.l polynomia.ls that generalize 
Jacobi pol71nomia.l1, Mem. Amer. Math. Soc. 14 (1985), no. 319. 

2. G. Gasper and M. Rahman, Ba.1ic hypergeometric •ene•, Cam.bridge University Press, 
1990. 

MATHEMATICAL INSTITUTE, UNIVERSITY OF LEIDEN, P.O. Box 9512, 2300 RA LEIDEN, 

THE NETHERLANDS 

CWI, P.O. Box 4079, 1009 AB AMSTERDAM, TH! NETHERLANDS 


