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Mathematical morphology can be considered as a set-based approach for the 
analysis of images (23,24,17]. One of its underlying ideas is to use so-called 
structuring elements to define neighborhoods of points. Recently it has been rec­
ognized that these ideas more generally apply to any space V that has the struc­
ture of a vector space, or at least a group [ 11]. In that case one can define a 
neighborhood of a point x E V as 

N(x) = {x + a I a E A} 

where A is the structuring element. In this chapter we describe how many of the 
concepts of "classical morphology" (i.e., the case where V = Rd and where + 
denotes vector addition) can be extended to spaces of images modeled by graphs. 

A graph consists of a collection of points, called vertices, and a binary relation 
between them: two vertices either are related or they are not related. This relation 
is usually represented by a subset E ~ V x V called the edges; v and w are 
related if and on! y if ( v, w) E E. Graphs play an important role in many branches 
of mathematics and computer science. In the context of image analysis they are 
often used as a geometric representation of the scene under study. In this case the 
vertices correspond to the objects in the scene and the edges describe the (neigh­
boring) relations between these objects. In this chapter, the images we consider 
consist of an underlying graph and a scalar function defined on the set of vertices. 
In Section II we recall some basic notation and terminology. In Section III we 
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explain what we mean by a graph representation of an image, and we introduce 
the notion of a graph operator. 

Using the neighboring relations between vertices we are able to propose a 
large class of morphological operations on a graph. Beyond the basic operations 
(erosions and dilations, openings and closings), this class embraces almost all of 
the classical morphological transformations (distance function, skeletons, geo­
desic transformations, watersheds, etc.); see Section IV In Section V, we present 
a number of examples of graph representation of images. There we introduce the 
Delaunay graph, the Gabriel graph, and the relative neighborhood graph. 
Furthermore, we illustrate some of the classical morphological transformations 
for graph-based images. 

The previously mentioned class of transformations can be extended by intro­
ducing the notion of structuring graph. Exactly like structuring elements in clas­
sical morphology, structuring graphs act as probes to extract structural informa­
tion from graphs. They have a simple structure and are relatively small compared 
to the graph that is to be transformed. The structuring graph is used to construct 
a neighborhood function on the vertices by relating individual vertices to each 
other whenever they belong to a local instantiation of the structuring graph. This 
is explained in Section VI. Then, in Section VII we use these neighborhood 
functions to define dilations and erosions. Subsequently, Section VIII deals with 
openings, closings, and other filters. Finally, Section IX is devoted to brief notes 
on implementation of morphological graph operations and to some concluding 
comments. 

Let us close this introduction with the following important remark: 

Although the theory is presented in the framework of gray-level graphs, all 
the drawings are "binary" for the sake of clarity and simplicity. 

II. MORPHOLOGY FOR FUNCTIONS: CONCEPTS AND 
BASIC RESULTS 

In this section we give a brief overview of morphology for gray-level functions. 
For general results on mathematical morphology we refer to Serra's books 
[23,24]. A systematic exposition on gray-level morphology can be found in [23, 
Chapter 12] and [10]. 

Although we shall often mean by a gray-level some continuous or discrete 
numerical value, it may also represent a vector in color space. The only restric­
tion we have to make on the set of gray levels T is that it possesses a complete 
lattice structure. Recall that T is called a complete lattice if T is a partially or­
dered set in which every subset S has a least bound V S called the supremum of 
S, and a greatest lower bound/\ S, called the irifimum of S; see Birkhoff (5]. 

Let V be an arbitrary set and define Fun(V) to be the space of all functions 
f: V -> T, where the gray-level set T has a complete lattice structure. If we take 
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T = {O, l}, then Fun(V) is the space of all binary images on V, also represented 
by ef(V), the power set of V. Other choices for T, sometimes found in the litera­
ture, are T = {O, 1, 2, ... , m}, T = Z = Z U { - oo, oo}, T = R = R U 
{ -oo, oo}, T = [O, l], T = [O, oo]. With the pointwise ordering 

f s g ifj(v) s g(v) for v E V 

the space Fun(V) becomes a complete lattice. In fact, Fun(V) inherits the com­
plete lattice structure from T. In this chapter we will always assume that T = {O, 
1, ... , m}, but we point out that most results carry over to the case where T is 
an arbitrary complete lattice. 

In morphology we are interested in operators mapping the image space into 
itself. 

Definition 2. I. Let t\J be an operator on Fun(V). We say that \jJ is 
(a) increasing ifj s g implies that l\J(j) :s t\J(g), 
(b) an erosion if tjJ(/\;Ei !) = /\;Ei tjl(f) for an arbitrary family {f [ i E /}, 
(c) a dilation if l\l(ViE/ /,) = viEI l\l(j,) for an arbitrary family {J; I i E /}, 
(d) extensive if t\J(/) 2::: f for every f, 
( e) antiextensi ve if tjl(j) s f for every f, 
(f) idempotent if l\J2 = \jf, 
(g) a (morphological) filter if 1\1 is increasing and idempotent, 
(h) an opening if 1\1 is increasing, antiextensive, and idempotent, 
(i) a closing if 1\1 is increasing, extensive, and idempotent. 
An important result in morphology says that dilations and erosions always occur 
in pairs. To any dilation o there corresponds a unique erosion E (and vice versa) 
such that 

for f,g E Fun(V) (6.1) 

If E, o are operators on Fun(V) such that (6.1) holds, then Eis an erosion, o is a 
dilation, and the pair (E,o) is called an adjunction. We say that E and o are each 
other's adjoints. If E and o are ad joint, then 

EOE = E and OEO = 0 (6.2) 

There exists yet another duality relation between dilations and erosions. We de­
note by t* = m - t. Furthermore, we define the "negative" f* of the function 
fby 

f*(x) = (f(x))* = m - f(x) (6.3) 

If \jJ is an operator on Fun(V), then the dual operator l\J* is defined as 

tjJ*(f) = (lji(f*))* (6.4) 

Note that this method carries over to any gray-level space T for which there exists 
an order-reversing bijection. On T = (0, oo] one may, for example, define 
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t* = lit. The mapping!-> f* is called a dual automorphism. For more details 
we refer to [ l 0, Section III]. It is easy to see that ~ is increasing if and only if~* 
is. If o is a dilation, then o* is an erosion and vice versa. For openings and 
closings there exist similar duality relations. 

An important class of function operators is formed by the so-called flat oper­
ators (10,25]. Here we shall not give a formal treatment of such operators, but 
give only a brief sketch of the underlying idea. By a flat operator we mean an 
operator on Fun(V) that is derived from an operator on the power set ef (V) by 
thresholding. Starting with a function[, one obtains a family of sets X, by thresh­
olding the function at gray level t, that is, X, = {v E VI j(v) ::::: t}. One then 
applies the set operator ~ to this family and uses the transformed family to con­
struct l\J(f). In this chapter we shall deal exclusively with flat operators. In the 
literature many different names have been proposed for these operators, such as 
FSP filters (FSP = fuction set processing) [15] or stack filters [35]. 

Let us conclude this section with some statements concerning fiat dilations 
and erosions. In a sense that we shall not make precise here, the only way to 
define flat dilations and erosions is by considering neighborhood functions. A 
neighborhood function on Vis a mapping N : V-> et'(V). To any neighborhood 
function, there corresponds a reciprocal neighborhood function N given by 

N(v) = {w E V I v E N(w)} (6.5) 

Furthermore, with any neighborhood function one may associate an erosion and 
a dilation, adjoint to each other, given by 

o(j)(v) = sup{f(w) I w E N(v)} 

c,(j)(v) = inf{j(w) I w E N(v)} 

(6.6) 

Let e and 3 be the erosion and dilation corresponding to the reciprocal neighbor­
hood N. One can show that 

e* = 8, o* = £ (6.7) 

One can also show that every flat dilation and erosion is of the form (6.6). 

Ill. BINARY AND GRAY-LEVEL GRAPHS 

In the previous section we outlined the theory for morphological operators on the 
function lattice Fun(V) where V is an arbitrary set. In this section we are inter­
ested in the case that Vis the vertex set of a graph. There exist many good text­
books on graphs; we refer in particular to the monograph of Berge [2]. 

In this section, by graph we always mean a nonoriented graph without loops 
and multiple edges. A graph G is a mathematical structure consisting of a set of 
vertices V and edges E. We denote this as G = (V, E).Since edges are supposed 
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to be simple, they may be represented as a pair of vertices ( v, w), denoting that v 
and w are neighbors. Our assumption that G is undirected can be made explicit 
by putting (v, w) = (w, v). Let G = (V, E) and G' = (V', E') be two graphs. 
We say that G is a subgraph of G' if V ~ V' and E ~ E'. In literature, the word 
subgraph is often used in a more restricted sense [2]. By a homomorphism from 
G to G' we mean a one-to-one mapping e : V _,. V' with the property that (v, w) 

E E implies that (0(v\ 0(w)) E E'. In that case we say that G and G' are homo­
morphic and write G C G'. If the homomorphism 0 is onto (and hence a bijec­
tion), it is called an isomorphism. The graphs G and G' are called isomorphic if 
they are related by an isomorphism. We denote this as G = G'. An isomorphism 
from the graph G to itself is called a symmetry of G. We denote by Sym(G) the 
family of all symmetries of G. Obviously, this family forms a group called the 
symmetry group of G. The identity mapping id, defined by id(v) = v, is con­
tained in Sym(G) and is called the trivial symmetry of G (see Figure l ). 

Let G = (V, E) be a graph, and letf E Fun(V). Then we call fa gray-level 
graph. If the gray-level set is {O, l},fis called a binary graph. Sometimes, if we 
want to emphasize the role of the underlying graph G, we write (f [ G) instead of 
f. If (f [ G) is a gray-level graph and T E Sym(G), then we define (T f [ G) by 
T f(v) = f(T- 1v), for v E V(G). Here V(G) denotes the vertex set associated with 
the graph G. 

Definition 3. J. A graph operator is a mapping which assigns to any graph 
G = (V, E) an operator l/J ( · [ G) on the function space Fun(V). A graph operator 
is called flat if every l/J( · [ G) is a flat operator. The graph operator \jJ will be 
called G-increasing if l/J increases in G, that is, tj;(X I G) ~ l/J(X I G') for G ~ G' 
and X ~ V(G). G-decreasingness of l/J is defined analogously. The graph operator 
l/J is called increasing if for any graph G the operator ljl( · I G) is increasing. 

We say that l/J is a graph erosion if ljl( · [ G) is an erosion on Fun(V) for every 
graph G = (V, £). Analogously, we define graph dilations, openings, closings, 
filters, etc. A graph neighborhoodfunction is a mapping N that, for every graph 
G, defines a neighborhood function on the vertex set of G. A graph operator is 
called symmetry-preserving if l/1(-r f I G) = n\J(f I G), for f E Fun(V), T E 

(a) (b) 

Figure 1. The left graph (a) has only trivial symmetry, whereas the symmetry group 
of the right graph (b) contains three elements (including the trivial symmetry). 
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Sym(G), and any graph G = (V, £). Note that this last definition is the analoou. 
Th . "" c of translation invariance in classical morphology. ere ts a one-to-one corn~-

spondence between graph neighborhood functions and fiat graph ad junctions. If 
NisagraphneighborhoodfunctionthatsatisfiesN(Tvl G) = TN(v I G) for, E 
Sym(G), then the resulting adjunction is symmetry preserving. To illustrate some 
of these abstract definitions we will present an example; this example is studied 
thoroughly in the following section. 

Example 3.2. We define a graph neighborhood function N in the following 
way. If G = (V, £) is some graph and v E V, then we define N(v I G) as the 
set containing v as well as all neighbors ofv, that is, N(v I G) = {w E V I ( i·. w) 

EE} U {v}. It is obvious that N is symmetry preserving; that 
N(Tv I G) = TN(v I G) for every T E Sym(G). As a consequence, the erosion 
and dilation associated to this neighborhood function are symmetry preserving. 

Throughout the remainder of this chapter we shall, whenever no confu;ion 
arises, suppress the argument Gin the notation of both a gray-level graph and a 
graph operator. 

IV. A SPECIAL CASE: NONSTRUCTURED 
GRAPH OPERATORS 

Before the introduction of the notion of s-graph in [13), the only case of graph 
morphology that had ever been studied is what could be referred to as nonstrnc­
tured graph morphology [30,29,32]. As we shall see (Section VI), these non­
structured graph operators tum out to be a special case of the structured ones. 

In the present framework, as explained in detail in [30], the morphological 
operations are directly derived from the distance induced by the set of edges E 
on the set of vertices V. The graph distance dG between two vertices v and H" is 
given by the minimal number of edges to cross to go from v to w or, alternatively. 
by the length of the shortest paths connecting v tow in E. A collection of edges 
1T = (vp v2 , ••• ,vk) is called a path between v and w ifv 1 = v, vk = w, and 
(v;, v;,. 1) EE for i = I, ... ,k. The length of the path is l(1T) k - l. So \Ve 
may write 

dG( v, w) = inf{l( 1T) I 1T is a path joining v and w in £} (6.Xl 

Since the graph structure under study is not necessarily connected, it may well 
happen that no path connects v to w. In this case, we conventionally put the 
distance between these two vertices equal to oo. So, strictly speaking, dG is not a 
metric. 

Given a vertex v E V and an integer n E Z +,the ball B.(v) centered at v v1:ith 
radius n is given by 

B.(v) = {v' E VI dG(v, v') :5 n} 



GRAPH MORPHOLOGY IN IMAGE ANALYSIS 177 

Following Serra [24, Chapters 1-2] and the example mentioned at the end of the 
previous section, we can now choose the B.(v)'s as neighborhood functions (also 
called structural mappings, or sometimes structuring functions). These functions 
associate with each vertex the neighborhood it addresses in a dilation or erosion 
operation. Note that when n = 1, B 1 is exactly the neighborhood function N 
introduced in Example 3.2. 

Dilations and erosions with respect to these neighborhood functions are then 
defined as follows: 

Definition 4.1. Given a gray-level graph f on G = (V, £), the dilation fl">(j) 
and the erosion er•l(f) of size n e: 0 off are the gray-level graphs given by 

'r/v E V {'iY•l(j) = max{flv') I v' E B.(v)} (6_9) 
e'"l(j) = min{ftv') I v' E B.(v)} 

In the sequel, these operations shall be called dilation and erosion "of size n." 
Intuitively, just as in classical morphology, dilations and erosions are defined as 
local maxima and minima, respectively. One of the main differences is that, in 
the present case, the number of vertices in a given neighborhood (ball) B"(v) is 
highly dependent on the vertex v. Indeed, such properties as translation invari­
ance are meaningless in a graph. 

When n = 1 the resulting operations are called elementary dilation and ero­
sion and are simply denoted & and e. As in classical morphology, we have the 
following properties: 

3<nl = 8 o B o · · · o 8, (6.10) 

n times 

Efnl = E 0 E 0 · · · 0 E (6.11) 

n times 

Thus, operations involving large neighborhoods can be decomposed into a 
succession of elementary operators. This is taken into account for the actual im­
plementation of nonstructured graph dilations and erosions (see Section IX). 

To illustrate the effect of these operations on graphs, we shall use a binary 
example: suppose that the gray-level graph f under study takes its values in 
{ 0, l}, and let n 2: 0 be an integer. In this case, performing a dilation of size n of 
f comes down to giving value 1 to each vertex v with value 0 (i.e., such that 
f(v) = 0) having a vertex with value l in its neighborhood B"(v): 

fly) = 0 and 3v' E B J.v), fly') = 1 ~ B <•> (f)(v) = 1 

j(y) = l ~ s<•l (f)(v) = l 

(6.12) 

(6.13) 

By duality, eroding/ amounts to giving value 0 to each I-vertex v having a 0-
vertex in its neighborhood B.(v). Figure 2 illustrates the effect of an elementary 
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=> 

Figure 2. Nonstructured elementary dilation of a binary graph. 

dilation of a binary graph. In this figure, the vertices with value one are repre­
sented in black. 

In the present "nonstructured framework," beyond these basic operations and 
their associated openings and closings, the underlying distance dG is particularly 
interesting because it allows us to define numerous more advanced transforma­
tions [28,30]. We cite among others, 

• Distance functions 
• Granulometries 
• Skeletons, skeleton by influence zones (SKIZ) 
• Catchment basins, watersheds 
• Geodesic operators, reconstruction 

These graph transformations, described and illustrated in [30], tum out to be 
particularly interesting in practice, as will be illustrated in the next section for 
distance functions, granulometries, and watersheds. 

V. GRAPH REPRESENTATION OF IMAGES, 
EXAMPLES OF APPLICATION OF NONSTRUCTURED 
GRAPH TRANSFORMATIONS 

A. Modeling of Neighborhood Relationships 

At this point one may ask, why define all these morphological transformations? 
What concrete objects will they be applied to? What kind of problems will they 
help solve? It is now time to address these issues. 

The initial motivation of graph morphology was the study of neighborhood 
relationships within populations of objects [30]. The idea is to model a set or 
objects V as the vertices of a graph and to process this graph via morphological 
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transformations to extract useful information. For example, in histology, assum­
ing that the objects of V represent cells in a tissue, it seems reasonable to model 
such a population as the vertices of a neighborhood graph [30,32]. This graph 
provides plausible relationships between cells and can be chosen to be relatively 
independent of the deformations of the tissue itself. Using tools described in the 
previous section, one can then try to characterize quantitatively such notions as 

• Average number of neighbors of a cell. 
• "Isolated" cells of a given type (with respect to the underlying graphs). 
• Size distribution of the clusters of cells of a given type, or cells sharing com­

mon characteristics. Such analyses can be done in the graph itself, which 
means that the actual distances between cells do not matter; only the graph 
distance is accounted for, through the use of granulometries on the graph. 

• Average distance in the graph between two cells of a given type, closest dis­
tance between a cell of type A and a cell of type B, etc. (use of distance 
functions on graphs). 

In fact, graph morphology operations have already been successfully used in 
histology for the study of germinal centers [22]. The same kind of approach can 
be used in various problems involving the quantitative description of spatial re­
lationships between objects. 

B. Definition of Appropriate Neighborhood Graphs 

For the category of aforementioned neighborhood problems, the first step is to 
define and construct a neighborhood graph from a two-dimensional (or even n­

dimensional) population of objects. This initial population is often available un­
der the form of a discrete binary image whose connected components represent 
the objects under study. It usually results from a previous segmentation stage. 

This modeling purpose is generally best served by the neighborhood graphs 
of the Delaunay triangulation family (see, for example, [20]), namely the Delau­
nay triangulation (DT) itself, the Gabriel graph (GG) [8], and the relative neigh­

borhood graph (RNG) [27]. Indeed, these graphs do not depend on any parame­
ter such as a maximal distance between objects or a minimal number of 
neighbors, a property that is very useful in practice (32]. This property implies 
in particular that these graphs are independent of any scaling and can therefore 
be used equally well for various kinds of populations. In addition, DTs, GGs and 
RNGs are connected graphs, are planar, and are included in one another, thus 
enabling a modeling of neighborhood relationships of increasing strength. 

These graphs are defined from the well-known Voronol diagram (see, e.g., 
[20, § 5 .5]). Let us assume for simplicity that the objects to be modeled are 
points pi' pi' ... , Pn in the continuous place R2 • Recall that the VoronoYpolygon 

associated with P;• denoted V(p), is given by 
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V(p) = {p E R2 J Vj =I= i, d(p,p) < d(p,p)} (6.14) 

The set of the boundaries of these Vorono'i polygons is called the Vorono'i dia­
gram (see Figure 3). 

This definition easily extends to the discrete framework and to the case where 
the objects to be modeled are no longer isolated points. One often speaks then of 
influence zones and skeleton by influence zones (SKIZ). 

The definitions of DT, GG, and RNG follow straightforwardly. Let 
V = {p; I i = l, ... , n} be the initial set of points. 
Definition 5.1. The Delaunay triangulation of Vis the graph <§d, = (V, Ed,) 
such that Ed, is the set of the point pairs (p;,p) whose associated Voronoi' poly­
gons are adjacent, i.e., share an edge. 

When V does not contain any cocircular 4 points, one can show that DT is 
effectively a triangulation that is connected and planar. 

To define the Gabriel graph and the relative neighborhood graph, it is conve­
nient to start from two regions associated with a pair (p,q) of points in the plane: 
D(p,q) denotes the closed disk having [p,q] as a diameter and Cr(p,q) is the 
intersection of the two open disks of radius pq respectively centered in p and q, 
sometimes called the crescent. These notions are illustrated in Figure 4. Note 
thatD(p,q)\{p,q} ~ Cr(p,q). 

Definition 5 .2. The Gabriel graph G gg = (V, Eg) of V and the relative neigh­
borhood graph Grng = (V, Emg) of V are such that 

Egg is the set of the point pairs (p;,p), with pk tE. D(pi'p), if k * i, j. 
Emg is the set of the point pairs (p;,p), with pk tE. Cr(p;,p), if k =I= i, j . 

• 

• 
• 

Figure 3. Example of Vorono'i diagram. 
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Figure 4. Regions on which the definitions of Gabriel graphs and relative neighbor­
hood graphs are based. 

Delaunay Triangulation Gabriel Graph Relative Neighborhood Graph 

Figure 5. Three different neighborhood graphs stemming from the Vorono"i diagram. 

These three different graphs are illustrated by Figure 5. Obviously, the follow­
ing inclusion relations hold: 

(6.15) 

Definitions 5.1 and 5.2 can be extended to connected components of arbitrary 
size and shape in the plane (32, pp. 119-120]. 

C. Computation of DT, GG, and RNG 

The typical algorithms for determining these neighborhood graphs in practice 
rely on computational geometry techniques [20]. When the connected compo­
nents (objects) of the population are relatively circular or small in comparison to 

the distance between them, they can be assimilated to isolated points. One can 
then first apply some well-known Vorono"i diagram algorithms, like the "divide-
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and-conquer" approach described in [20, Chapter 5] or incremental techniques 
such as that proposed in [6]. These algorithms run in at most O(n log(n)) time, n 
being the number of points. DT and GG can then be derived in a straightforward 
(and linear) manner. For RNG, the situation is much more complex, but it can 
anyhow be derived in O(n log(n)) from the Voronoi' diagram [26]. 

However, regardless of the computational efficiency of these methods, they 
are rather limited by the fact that they work only with isolated points as input 
data. Indeed, when the objects of the population are arbitrary connected compo­
nents of a discrete binary image, they are to be modeled by polygons and the 
complexity of the associated algorithms becomes horrifying! Therefore, it seems 
much more appropriate to make use of digital techniques introduced in [30,28] 
and detailed in [32]. Let us now briefly describe and illustrate these algorithms. 

For this purpose, we shall start from Figure 6a, whose connected components 
will be the vertices of our graphs. The successive steps of the algorithm are as 
follows: 

1. Labeling of the connected components of the original image: each of them 
will be assigned a unique number. This labeling can be accomplished ex­
tremely efficiently by using, e.g., the first-in-first-out (FIFO)-based algo­
rithms described in [34]. 

2. Computation of the labeled influence zones of these connected components. 
Roughly speaking, the labels associated with each component are propa­
gated in the image until they completely fill up the remaining space, yielding 

..,. . .. . -· 41! •. -,. - .... 
•. •• ·· . . r .. ,. ~ .... . . ~ . -~. .•. . .. . . ., ... ... ... . •.. . • ··. · ... ~··f.':..;;'···.~ 
~ • '· f# • ~ '·• ••. . A • ·l1., ..... .. .. . .. , .. -.. ........ . . . ;~~.. .,., ... ~ .. 
•• •• . ,._ • M._. • . .. ·.. . ... ~~-:· .... ~ .. . . . .... . ., .. . .. .•. .. . ... 

• • - ~' • •.•..•.•••. 411 
.. ., ~- •• ........ 'It a,, .. • t •,.-... ~••e.•., . .._. •. . . ....... •·•·· _.,. ...... - . ~· 

(a) 

Figure 6. (a) Original binary image with several connected components and (b) level 
lines of the distance function of its background. 
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a digital equivalent of the Voronol diagram. This computation has to be per­formed as accurately as possible (see [32, Chapter 5) ), and discrete dis­tances such as the city block, chamfers, octagonal, or hexagonal distances [7) are generally not good enough. Here we shall make use of an exact Eu­clidean distance function algorithm described in [33] (see Figure 6b). The associated labeled influence zones are displayed in Figure 7a. The bounda­ries of these zones constitute the actual SKIZ (see Figure ?b). 
3. Contour tracking of the influence zones. By tracking the contours of zone with label i, one gets successively all the labels of the neighboring zones. This allows an easy computation of the "discrete" Delaunay triangulation of our initial binary image. By using some additional constraints detailed in [32], one gets the Gabriel graph in the same way. The Delaunay triangula­tion and Gabriel graph corresponding to Figure 6a are displayed in Figure 8. Similar techniques also enable us to derive discrete RNGs starting from ar­bitrary connected components. 

D. Examples of Application 
Besides the histology applications mentioned earlier, graph morphology has been used for very different problems. To give the reader some flavor we shall briefly mention some of them below. 

Figure 7. (a) Labeled Euclidean influence zones of the connected components of Figure 6a; different shades of gray represent different influence zones. (b) Corresponding Voronoi diagram: boundaries of these influence zones. 
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(a) 

Figure 8. (a) Delaunay triangulation and (b) Gabriel graph corresponding to Figure 
6a. 

1. Fracture Simulations in Porous Media 

Graph morphology provides nice tools for the study of heterogeneous media at a 
macroscopic level, based on information on their microstructure [14]. Typically, 
one starts from a digitized picture of a medium and models its microstructure as 
a graph. This graph can be either of DT or GG type (see previous section) or 
based on the underlying discrete grid, depending on the kind of information that 
is to be extracted. 

Here we are concerned with the study of crack propagation in propous media 
(see [31]). We assume that we have a binary picture of the medium (pores, value 
1; matrix, i.e., medium itself, value O; see Figure 9a) and that a traction is ex­
erted on it. Under this force, cracks will appear in the material, and we are inter­
ested in finding out what the crack paths look like, what their lengths are, etc. 
The assumption underlying our approach is that crack paths tend to go pref­
erentially through the pores of the material. Moreover, assuming a crack has 
reached a particular pore p, its next propagation step will most probably be one 
of the pores in the immediate neighborhood of p. Therefore, we first model the 
set of pores as the vertices of a neighborhood graph and choose a specific vertex 
or set of vertices V, as crack initiations. Then we actually simulate the propaga­
tion of a crack in the graph starting at the vertices of V,. 

The graph that seems most relevant to this kind of problem is the Gabriel 
graph described in the previous section. For the actual simulation, one uses dis­
tance functions on this graph (see [14,31]): the graph distance function asso-
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Figure 9. Using distance functions on a Gabriel graph to extract possible fracture 
lines in a porous material. 
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ciated with the set V1 is first determined; that is, to each vertex (pore), one assigns 
its distance to the closest crack initiation. This allows one to find the vertices VE 
at one edge of the material that are first reached by a "wave" starting from Vr 
Next, a backward distance function (back-propagation of a wave starting from 
VE) allows one to determine the actual crack paths between V1 and VE. 

This technique has been tested on concrete examples as well as artificially 
designed random media and gives very promising results. It is illustrated in Fig­
ure 9 for the case of a medium made of graphite nodules (the pores) disconnected 
from a pig iron matrix. The Gabriel graph of the nodules (Figure 9c) is derived 
from the Voronol diagram of Figure 9b. The forward and backward distance 
functions are then displayed modulo 2, each vertex being represented as its as­
sociated Voronol zone, for the sake of clarity. Lastly, the extracted crack paths 
are shown in Figure 9f. 

2. Hierarchical Representation and Segmentation of Images 

Image segmentation is one of the most common problems in the field of image 
processing. A task that is often related to image segmentation is concerned with 
the "hierarchization" of an image, that is, the production of a series of images 
with decreasing level of detail: between two successive images of the series, 
details of least importance are suppressed while the important features are pre­
served. These two related issues can be approached in a common way by means 
of watersheds on images and graphs [29 ,32). 

As explained in further detail in [29], the watershed transformation, whose 
use is more and more common in image analysis, associates with every minimum 
of a picture its catchment basin, that is, its influence zone. Computing the water­
sheds of the gradient of an image I allows one to decompose I into regions, each 
of which corresponds to a perceptually relevant feature. Unfortunately, due to 
noise, one often observes an oversegmentation; the regions into which the picture 
has to be decomposed are fragmented, sometimes very badly. For example, Fig­
ure I Ob has been obtained by computing the catchment basins of the gradient of 
Figure I Oa and assigning to each basin the mean gray level of the corresponding 
pixels in the original image. This image is often referred to as a mosaic image. 
The oversegmentation of Figure IOb can be clearly noted. 

To get rid of this problem while producing a series of images with decreas­
ing level of detail, the method originally proposed in [29) considers the adja­
cency graph of the catchment basins. A morphological gradient of this graph G is 
easily produced, for example, by computing the transform max(8(G) - G, 
G - e(G)). Then determining the watersheds of this graph allows one to merge 
catchment basins into catchment basins of second order. The resulting image, 
called a mosaic image of order 2 (see Figure lOc), has less detail than the previ­
ous one but the main features have been preserved. The procedure can be iterated 
to produce mosaic images of order 3, 4, etc. Unlike the classical Gaussian pyra­
mids the present method has the advantage that it avoids blurring effects and 
preserves the most significant contours at best. 
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(b} (c} 

Figure 10. Successive image simplification by watersheds on graphs. 

3. Study of Cornea Cell Populations 

This is one of the medical applications in which graph morphology is currently 
under investigation. Images of the type shown in Figure 11 * represent popula­
tions of cornea cells. The cells have roughly polygonal shapes, and the main 
problem is to determine the distribution of the number of edges of each cell. 
Beyond that, one would also like to answer such questions as: Do the small cells 
tend to have small cells as neighbors? What is the size of clusters of cells of a 
given type? The same questions can also be asked for the cells with few (or with 
many) edges. 

To address these issues, we use the adjacency graph of the cells, which is 
obtained after watershed segmentation of the image in Figure 11 and contour 
tracking of each extracted region. As can be seen in Figure 12, this graph is a 
triangulation. Determination of the number of neighbors of a given vertex yields 
the number of edges of the associated cell in a straightforward manner. One can 
then assign to each cell its number of edges, thus producing a gray-level graph. 
Granulometries on this graph then provide useful information on the repartition 
of these cells in the tissue. The same analyses can be performed by assigning 
each cell its size or any other relevant parameter [30]. 

VI. STRUCTURING GRAPHS AND NEIGHBORHOOD 
FUNCTIONS 

The basic idea underlying classical morphology is to extract information from an 
image by probing it at any position with some small geometric shape called a 
structuring element. Using operations related to the partial order of the underly­
ing image space (e.g., supremum, infimum), one may construct a large class of 
image operators that are translation invariant. This approach easily carries over 
to gray-level graphs if one introduces the concept of a structuring graph or 
s-graph. 

*Example provided by Dr. Barry Masters, USUHS, Bethesda, Maryland. 
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Figure 11. Population of cornea ,~ells at high magnification. 

Figure 12. Adjacency graph corresponding to Figure 11. 

Definition 6.1. Ans-graph Sil consists of a graph G.-u = (V·"' E_;o1) and two no­
nempty subsets B.ciJ• R"1 ~ V,4 , respectively called the buds and the roots. 

Matching an s-graph Sil to the graph G at vertex v amounts to finding a homo­
morphism 0 mapping G." into G such that v E 6(Roi). Such a mapping 6 is called 
an embedding of s'i. into G at v. (Note: We point out that we use the word "match­
ing" in a different meaning than is usual in the current literature on graphs.) 

We can use an s-graph .sl1. to construct for any given graph G = (V, E) a 
neighborhood function N,4 on '!/'( V) as follows: 

Njv I Gl = LJ{e(Bsil I e is an embedding of .sl1. into G at v} (6.16) 
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Here the second argument G indicates the dependence on the underlying graph 
G. It is obvious that 

for every,. E Sym(G) 

In Figure 13 we have illustrated the concept of an s-graph and the correspond­
ing neighborhood function. In this figure and the following ones, roots of s­
graphs are designated by arrows and buds are drawn in bold. Comparing this 
construction of a neighborhood function with classical translation-invariant mor­
phology, where the neighborhoods are translates of a small set called the struc­
turing element, the roots of the s-graph correspond to the origin of the structuring 
element (note that an s-graph may have more than one root) and the buds to the 
points of the structuring element. An important difference from classical mor­
phology, however, is that for graphs the neighborhood structure may differ at 
each vertex so that the s-graph must prescribe the structure near a vertex. 

Figure 13 shows that the neighborhood determined by an s-graph .511. depends 
on several factors. Adding points to the bud set (s-graph %) or to the root set (s­
graph Cf6) or decreasing the underlying graph (s-graph 2ll) has the effect that the 
neighborhood increases. This motivates us to define a partial order :5 on the 
collection of alls-graphs which formalizes this observation. For twos-graphs .<ii., 

A B c D 

Figure 13. s-graphs A, B, C, D and their corresponding neighborhood functions at 
vertex v. 
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~ we say that sit :::5 ~ (stated as sit is more selective than~) if Nsti(v I G) ~ 
N'11l(v I G) for any graph G and any vertex v on that graph. If sit :::5 ~ and~ :::5 

sit, then sit and 00 are equivalent and we write sit = ~. In the example depicted 
in Figure 13 we have sit :::5 ~, 00 = '<i: , .sl1. :::5 qj). In [ 13] we have shown the 
following result. 

Proposition 6 .2. Let Sil., ~ be s-graphs. Then we have .sl1. :::5 ~ if and only if 

(i) G00 C G.!tt 

(ii) Nsti(v I GsJ) ~ N'li3(v I GsJ.), for any v E RsJ.. 

In particular, .sl1. = 00 if and only if G dl = G'lll and N sti<v I G sJ.) = N'lll(v I G .!11) for 
any v E R.!11. 

In section II we have seen that to any neighborhood function N on the set V 
there corresponds a unique reciprocal neighborhood function N. So if sit is an s­
graph and G = (V, E) a graph, then there exists a reciprocal neighborhood N of 
the neighborhood function N dl( • I G). One may wonder if there exists ans-graph 
~such that the reciprocal neighborhood function of Ndl(· I G) equals N'lll(- I G) 
for any graph G. In [13] we have shown that one can give an affirmative answer 

to this question by defining the so-called reciprocal s-graph .5iJ., as follows: 

G(i = Gs1, B(i = Rdl, R(i = Bsti 

see Figure 14a. Then we have the relation 

Nrll(v I G) = N(A(v I G) 

If the s-graph sit coincides with its reciprocal, or more precisely if stl = .$4, then 
we say that sit is symmetric. Some examples can be found in Figure 14b. 

A 

' A v 
A 

(a) 

(b) 

Figure 14. (a) Ans-graph A and its reciprocal A; (b) symmetric s-graphs. 
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VII. DILATIONS AND EROSIONS 

In Section II we indicated how to define gray-level dilations and erosions using 
neighborhood functions. In combination with the construction method for neigh­
borhood functions from s-graphs described in the previous section, we have 
found a systematic way to build graph dilations and graph erosions from s­
graphs. 

Let .Sil be an s-graph and let N dL be its corresponding neighborhood function. 
Consider an arbitrary graph G = (V,E). Then &dl and edl, given by 

8dl(j)(v) = sup{fiw) I w E NlJJ.(V I G)} (6.17) 

edl(j)(v) = inf{fiw) I w E Ndl(v I G)} 

for f E Fun(V), define a graph dilation and a graph erosion, respectively, and the 
pair (edl,8dl) forms an adjunction. Furthermore, both operators are symmetry pre­
serving. They are illustrated in Figure 15. 

Recall from Section II that the dual of an operator lji on Fun(V) is defined as 
lji*(f) = (lji(f*))*, where f* = m - f is the negative of f. Since the mapping 
f-+ f* turns suprema into infima and vice versa, one may conclude that the dual 

y 

~ = structuring graph 

di/~ 

-l . 

Figure 15. Dilation and erosion of a graph with respect to ans-graph. 
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of a dilation is an erosion and, conversely, that the dual of an erosion is dilation. 
In [ 13] we have established the following result. 

Proposition 7.1. For any s-graph d we have 

and 

We point out that a similar property holds in classical morphology. Although 
the resemblances between graph morphological operators and the classical trans­
lation-invariant morphological operators are striking, there are also some impor­
tant differences. In particular, it is well known that any translation-invariant di­
lation o on the binary image space ~(Rd) is a Minkowski addition, that is, 
o(X) = XEB 8({0}). A similar result holds for gray-level dilations. Unfortunately, 
there exists no graph analogue of this fact. This means in particular that compo­
sitions or suprema of dilations using one structuring graph cannot be obtained 
using only one (larger) s-graph. This is due to the fact that the local graph struc­
ture near a vertex may be very diverse, and therefore the neighborhood deter­
mined by an s-graph depends not only on the number of buds and roots but also 
on the structure of the s-graph itself. This is quite different from classical mor­
phology, where this local structure is independent of the position and therefore 
plays no role. 

As a second distinction between graph and classical morphology, we note that 
Matheron's theorem, which, in the classical case, states that every increasing 
translation-invariant operator can be decomposed as an intersection of dilations 
or as a union of erosions, does not have an analogue in graph morphology. This 
follows immediately from the following considerations. The s-graph construc­
tion of a neighborhood function on the vertex set of a graph is not the most 
general method for obtaining neighborhood functions that are invariant under the 
symmetries of the graph. In fact, the s-graph approach requires a certain amount 
of local structure to be present near a vertex. One may construct more general 
neighborhood functions by requiring in addition that the local structure contents 
near a vertex does not exceed a certain amount. For example, we may define 

N(v) = {v} U {w E VI (v, w) E £} if v has at most two neighbors 

and 

N(v) = {v} otherwise 

Such a construction gives rise to graph neighborhood functions (and hence graph 
dilations) that are not G-increasing in general; see Figure 16. In particular, the 
operators resulting from this construction are symmetry preserving but cannot be 
written as an infimum of graph dilations of the form o.s11· 
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Figure 16. A neighborhood function that is not G-increasing; see text. 

VIII. OPENINGS, CLOSINGS, AND OTHER FILTERS 

An operator is called a morphological filter if it is increasing and idempotent. 
ldempotence is an important property for an operator because it means that re­
peated application of such an operator has no further effect on the outcome. In a 
sense, one could argue that any operator (morphological or otherwise) designed 
to clean noise from an image has to be applied repeatedly until the result remains 
constant. In practice, such an iterative procedure results in idempotent operators; 
see Heijmans and Serra [12]. A formal theory for morphological filters has been 
designed by Matheron [ 16]. In this section we shall apply some of his results to 
the framework of gray-level graphs. Although we shall mainly be concerned with 
openings and closings and construction methods for such operators, we will con­
sider alternating sequential filters at the end. 

Openings and closings lie at the heart of the theory of morphological filters. 
Here we shall only consider openings. The corresponding results for closings 
follow easily by duality in the following way: if ljJ is an opening then ljl* is a 
closing and vice versa. We refer to [13, Remark 6.5] for some difficulties con­
cerning the definition of closings in the graph framework. 

A well-known construction of openings is to compose an erosion and its ad­
joint dilation. For instance, 891 e:.s11 is an opening for any s-graph .st1.. In Figure 17 
we have depicted an example of an opening obtained in this way. 

A second way to build openings, closely related to the previous one, also uses 
s-graphs. We use the following notation: if G = (V, E) is a graph, X k V and t 
E T, then we define 'lf,(X) as the gray-level graph that equals t at the vertices in 
X and inf T elsewhere. Let .s4 be ans-graph. We define the graph operator a 91 by 
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Figure 17. Two different openings of a binary graph with respect to a given s-graph. 

This expression looks rather complex at first sight, but it becomes much simpler 
for binary graphs (X j G) where X ~ V. In that case a.sll(X j G) is the union of all 
embedded bud sets 6(B .sll) where 6 is an embedding of sf/. into G (at an arbitrary 
vertex) such that 6(B .s11) ~ X. 

It is obvious that a .s11 is 

1. an opening 
2. a flat operator (i.e., it commutes with thresholding: see Section II) 
3. symmetry preserving 
4. G - increasing 

The opening alil is called a structural graph opening. This terminology stems 
from [21], where it has been shown that under rather mild assumptions (includ­
ing translation invariance) structural openings form the basis for the collection of 
all openings. In [ 13] this result has been extended to the case of graphs. 
Proposition 8.1. Let a be a graph opening that is flat, symmetry preserving and 
G- increasing. Then a can be decomposed as a supremum of structural graph 
openings. 
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One can also show that (see [13]) that 

() s'l 8.91 :5 O'.s'l 

An example where this inequality is strict is depicted in Figure l 7b. 
So far we have seen two ways to construct openings: the first is by composi­

tion of an erosion and its adjoint dilation, the second by definition of structural 
openings. Another powerful tool for building openings is provided by the so­
called inf-overfilters (again, the corresponding results for closings follow by 
duality; here one must introduce the concept of a sup-underfilter). An increasing 
operator ljJ is called an inf-overfilter if 

ljJ(id /\ l!J) = ljJ 

It is obvious that every extensive operator is an inf-overfilter. Furthermore, one 
can easily show that the class of inf-overfilters is closed under suprema and self­
composition. Our interest in inf-overfilters stems from the fact that id /\ ljJ is an 
opening if lJi is an inf-overfilter. Now, if (E, o) is an adjunction, and if o' is a 
dilation such that o' ;:::: o, then o'e is an inf-overfilter. Namely, 

8'e ;:::: 8'e(id /\ 8'e) = 8'(E /\ i::3'i::);:::: o'(E /\ EOE) = o'E 

The considerations above are valid on arbitrary complete lattices. Here we shall 
apply them to our graph framework. Let di, 0il be two s-graphs such that di ~ 
0il. Then os'l :5 8gi. Now the abstract theory gives us that 0213E.sa is an inf-overfilter 
and hence that id /\ o,213 E .sa is an opening; see Figure 18 for an example. 

In classical morphology there exists yet another way to define openings. Take 
A to be a symmetric structuring element (i.e., x E A iff - x E A) that does not 
contain the origin, and define 

o.(X) = (X EB A) n X 

One can easily show that a. defines an opening. If A is a ring-shaped set (annulus) 
centered about the origin, then o. removes isolated particles; see Figure 5.2 of 
[24]. For this reason a is called an annular opening. We can generalize this 
notion to graph morphology in the following way. Recall from Section VI that an 
s-graph is called symmetric if .11 = stl 
Proposition 8 .2. Let stl be a symmetric s-graph; then id /\ o.sa is an opening. 

Proof. Though it is not difficult to give a direct proof for gray-level graphs, 
the demonstration for binary graphs is much more transparent. Since we are deal­
ing exclusively with flat operators, a restriction to binary graphs means no loss 
of generality. Furthermore, we will suppress the argument Gin the notation. 

For a binary graph X ~ V the dilation can be written as 

8.sa(X) = LJ N .sa(x) 
xEX 
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x 

Strucruring graphs : 

A 

Figure 18. Example of an inf-overfilter. 

It is obvious that id A 0.11 is antiextensive. To get idempotence it suffices to show 
that 

(id A o.11)(id A 0.11) 2::: id A 0.11, 

or equivalently that 

o.11(id A 0.11) 2::: id A 8.11 

Let X ~ V and Y = X n 8.11(X). We show that 

0.11(Y) d y 

Let y E Y. Then y E 8.11(X) and soy E N.11(x) for some x EX. Since s'J. is 
symmetric we get x E N:A(y) ~ o.11(X), since y E X. Therefore, x E X n 
o.1a(X) = Y, and with y E N'll(x) this yields y E o.11(Y), which was to be proved. 
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An example of an annular opening is depicted in Figure 19. 
A class of morphological filters which turned out to be quite successful for the 

cleaning of noisy images are the so-called alternating sequential filters. For a full 
account of the underlying theory we refer to [24,25]. Here we only sketch the 
underlying idea. Let al' a2 , a 3 , ••• be a sequence of openings, and <1> 1• <1> 2 , <P 3 , 

.. a sequence of closings such that 

and if j ~ i (6.18) 

The families a; and <!>; may be chosen independently; often, however, they are 
taken to be each other's dual. The operators 

LJ 
x 8A(X) X n8A(X) 

(a) S1ruc1uring graph : ~ ~-_________. 
A 

(b) __/ D CJ /V t=J 
Figure 19. (a) Example of an annular opening. (b) Some typical invariants of the 
annular opening; note that every invariant is a "union of translates" of the invariant at the 
left. 
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are called alternating sequential filters or AS filters. In [25] two other AS filters 
have been introduced. A systematic way to obtain Ot.i and <l>i is to put 

and 

where (E, 3) is an adjunction and ei denotes the ith power of E. 

The effect of an AS filter is that it successively removes larger and larger noise 
particles. Furthermore, it treats fore- and background in a more or less similar 
way. In graph morphology we can construct AS filters by choosing structural 
openings a.sa, and their dual closings <l>.sa, that satisfy the semigroup property 

(6.18). At this point it is important to recall the following results from [13]. Let 
s'l, @ be s-graphs; we say that @ is s'l-open if for every v E B'!JI, there is an 
embedding of s'1 into G'!li at v. 

Proposition 8 .3. Let s'1@ bes-graphs. The equalities 

hold if and only if@ is s'l-open. 
Now take a sequence of s-graphs s'li such that s'li+ 1 is s'1;-open. See Figure 20 

for a number of such sequences. Then 3'11 is s'li-open if j 2: i. Let Ot.; = asa, and 

<!>; = <!>S'l, be the corresponding structural openings (respectively, closings). Then 

the operators Mi and Ni defined above are AS filters. 
Proposition 8.3 also lays the foundation for the definition of granulometries 

that in tum yield size distributions. We can think of a granulometry as a collec­
tion of openings a; (i 2: 1) that satisfies the first condition in Eq. (6.18). 

IX. CONCWDING REMARKS 

Before we conclude this chapter, let us give a few hints on the implementation of 
morphological transformations on graphs. We already dealt briefly with the ob­
tention of neighborhood graphs from binary images (see Section V). Transform­
ing such objects morphologically first involves encoding them in an appropriate 
way. This is achieved via a data structure derived from the adjacency matrix of 
the graph [2] and is detailed in [28,30]. Given a vertex, this structure allows 
direct access to its neighbors. 

For the algorithms themselves, two cases have to be considered: structuring 
and nonstructuring graphs. The first case is by far the more difficult one; what 
one has to do basically is to find all the different ways of matching the structuring 
graphs within the graph to be transformed. This is achieved by scanning the 
search tree as efficiently as possible. The implementation of nonstructured graph 
operators is much easier. Indeed, as mentioned in Section IV, all the nonstruc-
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(d) -­
A1 
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Figure 20. Families of s-graphs to be used as AS filters and granulometries on 
graphs. Note that A;+ 1 does not necessarily have more buds than A;. 

tured graph morphology operations are based on the distance induced by the set 
of edges E on the vertex set V. Therefore, breadth-first scannings will be at the 
basis of most algorithms. They are implemented via the use of a queue of ver­
tices, that is, FIFO structure (see Figure 21). This is explained in further detail 
in [28,32,34]. 

For example, to determine the distance function of a graph-that is, to assign 
to a vertex its distance to a particular set W of vertices-one starts from the 
vertices of Wand does a breadth-first scanning. In this procedure, the vertices at 
distance 1 are first met, then those at distance 2, etc., until stability is reached. 
This algorithm-as well as many others described in [32]-is particularly effi­
cient because each vertex is considered a minimal number of times. It was used 
for the first example presented in Section V. Another example of a distance func­
tion, on a Delaunay triangulation this time, is presented in Figure 22. 

Graph morphology provides a collection of morphological tools for the inves­
tigation of populations of objects for which neighborhood relations are of inter­
est. Here objects may be physical or biological objects, such as the nuclei in a 
microscopic image of some cell tissue, but they may also refer to a symbolic 
description of a scene. As to the latter case, one may think of the situation in 
which the objects represent the intensity extrema of a scene (see [18]). One can 
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New vertices 
added 

~ •• ,, .. ~ 
First vertex to be extracted 

Figure 21. How a queue (FIFO structure) of vertices works. 

Figure 22. Example of a distance function on the Delaunay triangulation of Figui-ce 
Sa. In (a), darker vertex values represent larger distances; in (b), the distance function is 
displayed modulo 2. 

model spatial relationships between objects by different types of graphs. In this 
chapter we have discussed three such graphs, namely the Delaunay triangulation. 
the Gabriel graph, and the relative neighborhood graph. 

Although the intrinsic structure of a gray-level graph is much poorer than that 
of the Euclidean space Rd or the discrete space Zd, it is still rich enough to define 
a large class of morphological operators for such images that inherit many of the 
nice properties of their classical analogues. Thereto we have introduced the con­
cept of a structuring graph that generalizes the structuring element in classical 
morphology. If the structuring graph consists of only two vertices connected by 
an edge, then the resulting graph operators are of the so-called nonstructured 
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type. They are easy to implement but still allow the construction of a large col­
lection of morphological algorithms. Structured graph operations, which use 
more information about the local graph structure near a vertex, allow a much 
larger collection of morphological operations (see, e.g., the sequence of structur­
ing graphs depicted in Figure 20, which can be used to define granulometries and 
AS filters), but they are definitely harder to implement. As often in science, the 
future will tell us to which extent these structured and nonstructured graph oper­
ations tum out to be useful in practical applications. 
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