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ABSTRACT 
The stochastic realization problem of finite-valued processes asks for the clas
sification of all minimal finite stochastic systems such that the output process 
of such a system equals a given process in distribution. This problem is mo
tivated by the use of stochastic models in signal processing, communication, 
and control. The problem of characterizing the minimal number of states 
in this problem leads to a factorization problem for positive matrices and 
hence to the study of positive linear algebra. The results of the paper are 
a characterization of primes in the positive matrices and examples of such 
primes. 
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1 INTRODUCTION 

The aim of this paper is to show that the stochastic realization problem of finite-valued 
processes reduces to the problem of factorization of positive matrices. The solution of 
the latter problem leads to a study of positive linear algebra. The results of the paper 
concern the classification of primes in the positive matrices. 

The motivation of the stochastic realization problem of finite-valued processes is the 
use of stochastic models in signal processing, communication, and control. For these re
search areas, stochastic models with finite-valued variables arise natura.lly or are useful 
approximate models. For example, in speech processing a hidden Markov model is used, 
see the tutorial paper by L.R. Rabiner [7]. Use of stochastic models with finite-valued 
processes leads to the system identification problem: how, given data for the output 
process, to determine the parameters of the model such that this model is a good ap
proximation to the data? This problem requires the solution of the stochastic realization 
problem for finite-valued processes. The results of the corresponding problem for Gaus
sian processes have proven to be highly useful for system identification in engineering, 
biomathematics, and economics. 

A finite stochastic system is defined below as a pair of finite-valued stochastic processes, 
called the state process a.nd the output process, satisfying a. conditional independence 
condition. A weak stochastic realization of a given process is a stochastic system such 
that its output process equals the given process in distribution. A stochastic realization 
of a finite-valued process is ca.lled minimal if the number of states in the state space is 
minima.I. The weak finite stochastic realization problem of a finite-valued process is to 
show existence of a weak stochastic realization in the form of a finite stochastic system 
and to classify a.11 minimal stochastic realizations. 
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An early reference on this ptsblem is [3]. The current status of the finite stochastic re

alization problem is that it is liill!!Jlved. During the 1960's several publications appeared 

that provide a necessary and 1111fficient condition for the existence of a finite stochas

tic realization, see [4, 6]. Unsolved questions are the characterization of minimality of 

the state space and the classification of all minimal stochastic realizations. The main 

bottleneck is currently the characterization of minimality of the state space. This point 

leads to a factorization problem for positive matrices. The solution of the latter problem 

requires a study of positive linear algebra. To this end the concept of a prime in the 

positive matrices is used. The results of the paper are contributions to the characteri

zation of primes in the positive matrices. The proofs of these results are deferred to a 

future publication. 
The outline of the paper is as follows. The stochastic realization problem for finite

valued processes is formulated in section 2. In section 3 the factorization problem for 

positive matrices is posed and primes in the positive matrices are characterized. 

2 WEAK STOCHASTIC REALIZATION OF A FINITE 

VALUED PROCESS 

In this paper the set R+ = [0, oo) is called the set of the positive real numbers and 

(0, oo) the set of the strictly positive real numbers. Let Z+ = {l, 2, ... } denote the set 

of the positive integers and N = {O, 1, ... } the set of the natural numbers. For n E Z+ 

let Z,. = {1, 2, ... , n}. Denote by R'.\. the set of n-tuples of the positive real numbers. 

Denote the simplex in R+ by 

n 

s+ = {x E R+II>i = l}. 
i=l 

The set R'.f.xn will be called the set of the positive matrices. Both R+ and R'.f.x" are 

examples of a. semi-ring. They are not rings because they do not admit an inverse 

with respect to addition. For the same reason R'.f. is not a vector space. The structure 

(R+, R+xn) may be defined as a left semi-module. 

Let (0, F, P) be a probability space consisting of a set 0, a O'-algebra F, and a prob

ability measure P. 

Definition 2.1 A (discrete-time) finite stochastic system is a collection 

{O,F,P,T, Y,X,y,x} 

where (0, F, P) is a probability space, T = Z an index set, Y = Zm, X = Zn for 

m, n E Z+ are called respectively the output space and the state space, y : n x T --+ Y, 

x : 0 x T --> X are stochastic processes called respectively the output process and the 

state process such that for all t E T 

(Fr V Ft+,Ft- V Ft11_J.jF"(t)) E CJ, (1) 

meaning that the future of the output and state process at time t and the past of these 

processes at time t are conditional independent given the state at time t. Here 

pt+= O'({x(s),Vs?: t}), Ff-= O'({x(s), Vs ~ t}). 

A finite stochastic system is called stationary if the joint proce$s (x, y) is stationary. 

The above definition implies that the state process is a Markov process. The output of a 

finite stochastic system is also called a. hidden Markov process or a probabilistic function 

of a Markov chain. 

Consider a finite stochastic system with Y = Zm. For t E Z+ denote v E yt by 

v = (v1, v2, · · ·, v1). Let Y* denote the set of finite sequences with values in Y, 
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Y* = {vlv E Y 1 for some t E Z+}. 

For v, u E Y* denote by uv E Y* the sequence u followed by the sequence v. Let 

C(Y*) = { all probability measures on Y*}. 

Note that C(Y*) is a convex set. For p E G(Y*) let 

Cp = conv {p(.lu)l'v'u E Y*} 

where conv denotes the convex hull generated by the specified conditional probability 

distributions. 

Problem 2.2 The weak finite stochastic realization problem for a finite-valued process. 

Let Y be a finite set, say Y = Zm form E Z+. Let p E C(Y*) be a probability distribution 

on Y* corresponding to a stationary process. 

a. Which conditions. are necessary and sufficient for the existence of a stationary finite 

stochastic system such that the distribution of the output process of this system 

equals the given distribution? If such a system exists it is called a weak stochastic 

realization of the given distribution. 

I>. Determine the minimal number of states of a weak stochastic realization. 

c. Classify all weak stochastic realizations of the given distribution for which the state 

space is minimal. 

Theorem 2.3 {4, 6} Let p E G(Y*) be a probability distribution corresponding to a 

stationary process. There exists a stationary finite stochastic system with state space 

X = Zn which is a weak stochastic realization of p iff there exists a convex polyhedral 

set C1 C C(Y*) such that: 

1. Gp c C1; 

~. C1 is generated by n distributions, or 

C1 = conv {q;(.),i E Zn}i 

3. C1 is closed with respect to conditioning, or for any i E Zn 

q;(.iy) = q;(.y)/q;(y) E C1. 

The theorem presented above solves the existence part of problem 2.2. The parts b and c 

of this problem are unsolved. Part b asks for the characterization of the minimal number 

of states of a stochastic realization. As argued in [6] this question may be related to 

the factorization problem of a Hankel matrix into the product of two positive matrices. 

Such a factorization problem is explored in the next section. 

The realization problem for deterministic positive linear systems is closely related to 

the stochastic realization problem of finite-valued processes. A finite-dimensional pos

itive linear system is a linear dynamical system in which the input, state, and output 

space are spaces over the positive real numbers, say X = R'.j.. Systems in this class 

are useful models in biomathematics, where they are called linear compartmental sys

tems, economics, chemometrics, and other research areas. A recent book on this class 

of systems is [l]. The realization problem of this class is also unsolved, it leads to a 

factorization problem for positive matrices that is identical to that for the weak finite 

stochastic realization problem. For a special case of the realization problem for deter

ministic continuous-time positive linear systems see [5]. Identifiability of compartmental 

systems is discussed in [9]. There exists an example that shows that the conditions for 

minimality of a finite-dimensional linear system are not necessary for the minimality of 

a finite-dimensional positive linear system. 
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3 POSITIVE LINEAR ALGEBRA 

3.1 FACTORlZATION OF POSITIVE MATRlCES 

As argued in the previous section, the stochastic realization problem of finite-valued 
processes leads to a factorization problem of a positive matrix. This problem is defined 
below. 

Definition 3.1 A positive matrix factorization of A E Ri"m is a pair (B, C) E Ri"n x 
R'.i."m such that 

A=BC. (2) 

The minimal n E N for which such a factorization exists will be called the positive rank 
of A and denoted by pos-rank(A). A minimal positive matrix factorization is a positive 
matrix factorization in which n = pos-rank (A). 

Problem 3.2 The positive matrix factorization problem. Let A E Ri"m. Determine 
the positive rank of A and classify all its minimal positive matrix factorizations. 

This problem is unsolved. Its solution requires a study of positive linear algebra. Such 
a study is started in the next subsection. 

3.2 PRlMES IN THE POSITIVE MATRlCES 

The set of the positive matrices may be considered from several view points, such as: a 
set of matrices, an algebraic structure, and a geometric structure. The set of positive 
matrices is a semi-ring. This structure differs from a ring in that it does not have an 
inverse with respect to addition. A positive matrix may be associated with a convex 
polyhedral cone. This geometric interpretation will not be explored below because of 
space limitations. 

Classes of positive matrices are introduced next. The set of permutation matrices in 
R'.i."n is denoted by P.+"". The set of diagonal matrices in R'.i."n is denoted by Df."n. A 
strictly positive diagonal matrix is a diagonal matrix whose diagonal elements are striclty 
positive. A monomial matrix is a positive matrix such that every row and every column 
contains exactly one strictly positive element. The set of monomial matrices in R'.;."n is 
denoted by M~xn. A doubly stochastic matrix is a positive matrix such that the sum of 
the row elements for every row and the sum of the column elements for every column, 
equals one. The set of doubly stochastic matrices in R'.;."n is denoted by DS'.f."n. For 
terminology on positive matrices see [2]. 

Definition 3.3 A prime in the positive matrices is a positive matrix A E R'.;."" such 
that: 

1. A is not a monomial matrix; 

!!. if A= BC, with B, C E R'.f.xn, then either B or C is a monomial matrix. 

The above definition of a prime has been introduced by D.J. Richman and H. Schneider 
in 1974 [BJ. For an exposition on primes in the positive matrices see [2, section 3.4]. It 
may be shown that a positive matrix A E R"+xn has an inverse in Rnxn or A-1 E R""n 'ff . . . + ' + ' 
1 A is a monomial matnx. The monomial matrices are therefore the group of units in 
the positive matrices. The concept of a prime in the positive matrices thus agrees with 
the algebraic definition. . 

Problem 3.4 Classify all primes in the positive matrices. 
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Results on the classification of primes in the positive matrices are summarized below. 

Theorem 3.5 a. The matrix A E R'.\.xn is a prime in the positive matrices iff 

(3) 

with Mi, M2 E M-:;_xn, n1, n2 E N, n1 + n2 = n, S E Ds+ixni is fully indecom

posable [BJ and a prime in the positive matrices, ap.d I E R"''xn, is the identity 

matrix. 

b. If 

are two factorizations as displayed in {3} with S1 E DS~'xn, and S2 E DS~axn, 

then ni = n3 and 

for P1, P2 E P.~ixn,. Thus in {3) A determines S up to permutation equivalence. 

Theorem 3.5 reduces the classification of primes in the positive matrices to the classifica

tion of fully indecomposable doubly stochastic matrices which are primes in the positive 

matrices. 
The structure (DS+xn, ., I) is also a monoid. The group of units in this structure is 

the set of permutation matrices. One may then define a prime in the doubly stochastic 

matrices analogously to that of a prime in the positive matrices, see definition 3.3. 

If a doubly stochastic matrix is a prime in the positive matrices then it also a prime 

in the doubly stochastic matrices. The converse of this statement is conjectured and it 

seems to be true in several cases. The classification of primes in the doubly stochastic 

matrices has been developed to quite an extent. Because of space limitations the result 

is not stated here. Below follow examples of primes in the positive matrices. 

Proposition 3.6 a. The matrix A E Rtx3 is a prime in the positive matrices iff 

(
0 1-ss) 

A = M1 s 0 1 - s M2, 
1 - s s 0 

(4) 

for Mi,M2 E M!x3, and s E (0, 1). 

b. The following positive matrices are prime in the positive matrices: 

(;_, 0 0 :-·) s 0 (5) M1 0 1-s s O M2 

0 0 1-s s 

for M1,M2 E M!x4, s E (0, 1), 

1 - 5 s 
0 1-s 
s 0 

(6) 

0 0 
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