
11
Event Structures and
Orthogonal Term Graph
Rewriting

J.R. Kennaway, J.W. Klop, M.R. Sleep and F.J. de Vries

11.1 INTRODUCTION

Several authors have hinted at a connection between transition systems such as are
used to describe concurrency, and the reduction sequences that arise in term rewriting
and Lambda calculus ([HL91, Sta89], and others). Here we make such a connection
precise in the context of term graph rewriting. We construct for every normalizable
term graph in an orthogonal term graph rewrite system, an elementary event structure.
The events of this structure correspond to the different possible reduction steps that
are required to reduce the term graph to normal form. The elements of the associated
domain correspond to the possible needed reduction sequences which begin from the
given term graph.

Similar connections have been remarked on for orthogonal term rewriting and
Lambda calculus, but in those contexts, the possibility of one reduction duplicat
ing another redex makes it more complicated to derive any sort of event structure,
and the resulting events are less closely related to physical computations.

In proving the results of this chapter, we found the category-theoretic definition
of graph rewriting which we introduced in [Ken91] very useful in avoiding irrelevant
technicalities. In particular, it casts further light on the physical meaning of Levy's
equivalence relation on reduction sequences, which definitions in terms of tiling dia
grams or permutation of reduction steps fail to do. Concrete definitions such as those
of [Sta80, BvEG+87] would make these proofs much more complicated, and restrict

Term Graph Rewriting: Theory and Practice.
Eds. Ronan Sleep, Rinus Plasmeijer and Marko van Eekelen. @1993 John Wiley & Sons Ltd

142 EVENT STRUCTURES

/._.~
Cons Cons

/ "'-. / "'-.
2 Cons 3 Nil

(')il

Figure 11.1 Terms and term graphs

them to one particular form of graph, while the more abstract definition may have
application to other categories of graphs.

11.2 TERM GRAPH REWRITING

By term graph rewriting we mean, informally, one of the usual methods of implement
ing rewrite rules such as appear in functional languages such as ML or Miranda. The
essential feature is that when a rewrite rule is applied whose right-hand side contains
multiple occurrences of a free variable, the corresponding subterm of the expression
being evaluated is not duplicated; instead multiple pointers are created to the original
copy. The expression is therefore no longer a string or a tree, but a graph of a particular
sort: a term graph. It is technically convenient to represent these as hypergraphs-that
is, graphs in which each edge may have any positive number of vertexes.

DEFINITION 11.2.1 Given a set E of function symbols, each having some arity (a non
negative integer), a term graph over E consists of a tuple (N, E, str), where N and E
are sets, and str (structure) is a function from E to Ex N x N*. If str(e) = (F, n, s),
then the vertexes of e are n and the members of s. n is the principal vertex of e.
(N, E, str) is subject to the following conditions:

a. If str(e) = (F, n, s) then the arity of F is the length of s.
b. Distinct hyperedges have distinct principal vertexes.

A node is empty if it is not the principal vertex of some hyperedge. A graph is closed
if it contains no empty nodes. We use empty nodes to represent free variables. While
a separate alphabet of variable symbols is a convenient means of writing term graphs
in textual form, it is only a notational device and not a part of the underlying model.

A rooted term graph is a graph together with one of its nodes. It is garbage-free if
every node in the graph is accessible from the root. Accessibility is defined thus: n' is
accessible from n if either n = n', or str(n) = (F, n", s), and n' is accessible from n"
or from some member of s.

Figure 11.1 illustrates a term represented as a term graph. On the left is the term
shown as a tree. In the middle is a visual representation of the hypergraph, where
each of the shaded ares is a hyperedge. On the right is an equivalent representation,

KENNAWAY ET AL 143

Term graph rewrite rule: Append(Cons(:r, y), z) -+ Cons(:r, Append(y, z))

Cons

/~
Term graph rewrite:

2 Append

(l
Cons

3/ \u
Figure 11.2 Term graph rewrite rule and rewrite

designed for its similarity to the tree picture. Instead of drawing the hyperedges ex
plicitly, the function symbol of each hyperedge is attached to its principal vertex, from
which arrows proceed to all the other vertexes of the hyperedge. In this example, the
term graph has multiple references to the subgraph Cons(3, Nil) where the term has
multiple occurences of that subterm. However, a hypergraph is allowed to contain
distinct isomorphic subgraphs-we do not require maximal sharing as is done e.g. in
(HP88].

Formal definitions of term graph rewriting have appeared in [Sta80, BvEG+87,
Ken91]. We shall here take the notion to be sufficiently intuitive to require no further
explanation beyond figures 11.1 and 11.2. However, the particular formalization which
we gave in (Ken91] making use of category theory turns out to greatly simplify certain
of the concepts and technical arguments which we shall later require, and we shall
briefly describe this.

We do not require any advanced concepts of category theory, just the basic notions
of category, functor, subobject, limit and colimit (the only limits and colimits we need
are pullbacks and pushouts). The hypergraphs we have defined form a category when
a notion of homomorphism is given. This notion is the obvious one: a mapping of
the nodes and edges of one graph to another which preserves function symbols and
connectivity. This category we call .:J (for jungle, a term coined in (HP88]).

Morphisms preserve structure, but rewrites are intended to change the structure
of a graph. We therefore represent rewrite rules not as morphisms of .:! , but as the
morphisms of a derived category r;;(.J), the category of partial morphisms of .J.

DEFINITION 11.2.2 Jn a category C, a partial morphism from A to B is a pair of

morphisms A ._ X -+ B where X -+ A is a monomorphism. (We may indicate

monomorphisms by<-+ or+-->.) More precisely, it is an equivalence class of such pairs.

A +--> X -+ B and A +--> Y -+ B are equivalent if there is an isomorphism X -+ Y

such that X -+ Y -+ B = X -+ B and X -+ Y <--+A = X <-+ A.
We write a partial morphism from A to B as A :::} B. We shall not always distinguish

a partial morphism from a particular representative of the equivalence class.

The partial morphism A +--> X -+ B is total if X <--+ A is an isomorphism. It is a

restriction if X -+ B is an isomorphism.
Assume that C has the pullback of any pair of arrows of which one is a monomor

phism. Then the composition of two partial morphisms A+--> X-+ B and B +--> Y-+ C

144 EVENT STRUCTURES

Z <-+ X <-+ A
l l
y <-+ B

l
c

Figure 11.3 Composition of partial morphisms

i. 1Cons

~·~ ..
• s 3. •4 .s

Figure 11.4 A term graph rewrite rule as a partial morphism

is the partial morphism A'-' X '-' Z-+ Y -+ C given by figure 11.3, in which the
square ZXY B is a pullback.

Composition of partial morphisms is associative, and the partial morphisms A ~idA
A -+idA A are identities for it. Thus the objects of C and partial morphisms form a
category, which we denote by p(C).

DEFINITION 11.2.3 A term graph rewrite rule is a partial morphism L +---' X -+ R
of .J, such that X is the subgraph of L obtained by omitting the root hyperedge (but
retaining all the nodes), and such that every empty node of R is in the range of
X -+ R. A redex of this rule in a closed graph G is a total morphism from L to G.
The hyperedges of G in the range of this morphism are pattern-matched by the redex.
The pre-reduct of this redex is the graph H obtained as the pushout of L => R and
L =>G. One may show that this graph always exists (although p(:J) does not have all
pushouts).

Figure 11.2 exhibited a term graph rewrite by the rule Append(Cons(x, y), z) -+

Cons(x,Append(y, z)). Figure 11.4 displays the formulation of this rule as a partial
morphism of .J. The attached numbers indicate the actions of the morphisms on
nodes. Notice how empty nodes represent variables-we do not need a separate set of
variable symbols.

Our definition of rewriting as a pushout of partial morphisms is not yet complete,
hence the name pre-reduct. It omits the notion of garbage collection. To define this
we must introduce the notion of a rooted graph.

DEFINITION 11.2.4 A rooted graph is a (total) morphism•-+ G, where• is the graph
with one node and no edges. It is garbage-free if every node of G is accessible from
the node which is the image of the morphism•-+ G. The result of garbage-collecting
this rooted graph, GC(• -+ G), is a garbage-free rooted graph • -+ G' such that there
is a monomorphism G' -+ G such that • -+ G' -+ G = • -+ G, and such that G' is
the largest subgraph of G for which this is so. (Category theorists may note that this

Lo =>
Jj.

• ---> Go =>

KENNAWAY ET AL

R
Jj.
H => H'

Figure 11.5 Reduction step

Ro L1 => R1
Jj. Jj. Jj.

Gfi => G1 => G~ => G2

Figure 11.6 Reduction sequence

145

... => Gn

amounts to an adjoint to the inclusion of the category of garbage-free rooted graphs in

the category of rooted graphs, the latter being the comma category • l :J.)

Note that when G is closed, GC(• -+ G) = e -+ G' where G' is the unique closed
subgraph of G for which • -+ G' is garbage-free.

In :J, •-+ G factors through G'. In p(:J), we can also factor e-+ G' through e-+ G

as • -+ G => G', where G => G' is the restriction morphism G <--> G' =:: G'.

DEFINITION 11.2.5 Given a rooted graph• -+ G, the result of reducing a red ex L => G

of a rule L => R is depicted in figure 11.5. The square LRGH is a pushout, performing

a pre-reduction as above. • -+ G => H is in fact total, since the domain of G => H

includes all the nodes of G. We can therefore apply garbage-collection to it and obtain

a rooted graph • ---> H => H'. This is the reduct of the redex.

This defines a single reduction step. A reduction sequence can be constructed by
stringing successive reductions together as in figure 11.6. One important feature of this
definition of rewriting is that it gives additional information besides the final graph:
it also gives a partial morphism from the initial graph to the final graph which has a
concrete and intuitive meaning. Let the morphism be Go <--> X -+ Gn. Consider X as
a subgraph of Go. Then the nodes and hyperedges of Go outside X are those which
the sequence erases. Hyperedges in X are preserved by the reduction. Nodes which
are empty in X but nonempty in G are changed. Other nodes of X are preserved.
The nodes and hyperedges of Gn outside the range of X -+ Gn are created by the
reduction.

DEFINITION 11.2.6 Let there be given two distinct redexes L1 => G and L2 => G of

rules L1 => R1 and L 2 => R 2 . They are disjoint if there is no hyperedge of G which is

erased by reduction of one redex but pattern-matched by the other.

A rule system is orthogonal if no graph contains non-disjoint redexes.

In the remainder of the chapter we restrict our attention to orthogonal systems.

146 EVENT STRUCTURES

11.3 REDUCTION GRAPHS

Besides the graphs with whose rewriting we are concerned, we deal with another sort
of graph.

A reduction graph of a term graph t is a rooted directed graph labeled as follows.
Each node is labeled with a term graph. For each arc, the term labeling its source is
reducible in one step to the term labeling its target. The root of the graph is labeled
with t, and all nodes are accessible from the root. It is possible for different nodes to
be labeled with the same term.

We can consider several different reduction graphs of a term graph t. First, there is
the reduction tree oft, denoted RT(t). As its name implies, it is a tree. The out-arcs
of each node are in 1-1 correspondence with the set of all the redexes of the term
graph labeling that node. These two properties uniquely identify RT(t). Its nodes are
in 1-1 correspondence with the set of finite reduction sequences starting from t.

The minimal reduction graph oft, MG(t), is obtained from RT(t) by identifying
together all nodes bearing the same label, and corresponding out-arcs of such nodes.

A third reduction graph concerns us here: the Levy graph of t, or LG(t). This
stands midway between RT(t) and MG(t). Like MG(t), it is obtained from RT(t)
via an equivalence relation on reduction sequences, but one finer than that associated
with MG(t): the relation of Levy-equivalence. This is defined in the next section.

11.4 LEVY-EQUIVALENCE

Consider the rewrite rule A(B) - C and the graph D(A(x : B), A(x)). The graph
contains two redexes. There is an obvious sense in which we can reduce them both,
in either order, and it is clear that the result is the same: D(C, C). This notion
is formalized as Levy-equivalence. Levy originally defined this for Lambda calculus
[Lev78, Lev80], but it applies to orthogonal rewriting in general [HL91]. For term
graph rewriting, it is rather simpler than for Lambda calculus or term rewriting, and
our categorical formulation of rewriting makes it simple to define. The construction is
performed by the following lemmas.

LEMMA 11.4.1 In figure 11. 7, let the squares L1R1GG1 and L2R2GG2 be pre
reductions of redexes ri : L1 => G and r2 : L2 => G. Then the pushout of G => G1
and G => G2 exists as the third square of that figure, and the rectangles L1 R1 GG2 and
L2R2GG1 represent pre-rewrites of G2 and G1 respectively to G'.

PROOF. By orthogonality, the node r1(root(L1)) of G cannot be the image by r2 of
any nonempty node of L2. The domain of G => G1 consists of every node of G except
ri(root(L1)). Therefore L2 => G => G1 must be total. Its pushout with L 2 => R 2
therefore exists, and by standard facts about pushouts in general, it must be given by
adjoining the pushout L2R2GG2 with a pushout GG1 G2G. Similarly, L1 => G => G2

is total, and the rectangle L1R1G2H must also be a pushout. O

LEMMA 11.4.2 Let • - G pre-reduce to • - H. Then GC(• - G) reduces to
GC(• - H) by either a single step reduction or an empty reduction. ("Garbage col
lection commutes with reduction.")

KENNAWAY ET AL 147

• Li => Ri

"""
.(I. -U-

L2 :::;. G :::;. Gi => Hi
JJ .(I. -U-

R2 :::;. G2 :::;. G'
.(I. ~

H2 H

Figure 11.7

L => R
-U- -U-

• -+ G => H => H'

-U- -U- /'
G' => H"

Figure 11.8

PROOF. It is enough to show this for a single step pre-reduction of • -+ G to • -+ H.
Let GC(•-+ G) = • -+ G:::;. G' and GC(e -+ H) = • -+ G:::;. H'. If the root of
L is not in the domain of L :::;. G :::;. G', then the node changed by the reduction of
L => G, and all nodes added by that reduction, are garbage in H. Thus G' = H', and
GC(• -+ G') reduces to CC(• -+ H') by the empty reduction.

Otherwise, take the pushout H" of G :::;. H and G :::;. G' (see figure 11.8). H"
is also the pushout of L => R and L => G => G'. Since G :::;. G' is a restriction
morphism, so is H :::;. H". Therefore H :::;. H' factors through H => H". Therefore
GC(•-+ G => G' => H") = GC(•-+ G => H). o

LEMMA 11.4.3 In figure 11. 7, let G pre-reduce to Gi and G 2 , and reduce to Hi and
H2, by reduction of the distinct redexes ri : £1 => G and r2 : £2 => G. Then Hi
and H 2 both reduce to the same graph H, which is obtained by garbage-collecting the
pushout G' of G => G1 and G => G2.

PROOF. From the preceding lemmas. D

The reductions of H 1 and H 2 to H constructed by this lemma are called the projec
tions of r 2 over r 1 and of r 1 over r2 respectively, denoted by r2/r1 and ri/r2. Projection
of single reduction steps is extended to reduction sequences by the equations: r/(r' ·s)
= (r/r')/s and (r · s)/s' = (r/s') · (s/(s'/r)), where rand r1 are single steps and s
and s' are reduction sequences.

DEFINITION 11.4.4 On finite reduction sequences, Levy equivalence is the equivalence
relation ==:.L generated by the following axioms:

a. r · (1·1 /r·) ~L r' · (r/r')
b. s ==:. L s' :::;. s · s" ==:. L s' · s" /\ s" · s ==:. L s" · s' .

148 EVENT STRUCTURES

LG(I(I(I(x))))

I(I(x))-+ I(x)

/ x ~
I(I(I(x))) _,. I(I(x)) I(x) _,. x

~ x /
I(I(x))-+ I(x)

MG(I(I(I(x))))
3 2 1 I(I(I(x))) _,. I(I(x))-+ I(x)-+ x

Figure 11.9 Minimal and Levy graphs of I(I(I(x)))

THEOREM 11.4.5 [Lev78, Lev80} The above definition is equivalent to: s ~L s' if and
only if s/s' and s'/s are both the empty sequence.

THEOREM 11.4.6 Levy-equivalent sequences determine the same partial morphism.

PROOF. It is sufficient to verify this for the cases where the two sequences are related
by one of the conditions of definition 11.4.4, which is immediate from the preceding
lemmas. D

Note that the converse does not hold. By the above theorem, Levy-equivalent se
quences do the same thing to each node and hyperedge of their common initial graph,
but in addition, they also do the same thing to each node or hyperedge they create.
Sequences determining the same partial morphism need not do the latter.

Here is a simple example where the Levy reduction graph of a term graph differs
from its minimal reduction graph. Take the rule I(x) ____. x and the term I(I(I(x))).
The minimal and Levy reduction graphs of this term are illustrated in figure 11.9. The
numbers on the edges of the minimal graph indicate their multiplicity.

11.5 EVENT STRUCTURES

We now define event structures. These were invented by Winskel [NPW81, Win80] to
give a semantics for Petri-nets.

There are several types of event structure. We will only require the simplest of them.

DEFINITION 11.5.1 An elementary event structure is a finite or countable set E and
a partial ordering :::; of E. :::; is called the causality relation.

A left closed subset of E is a subset X such that e:::; e' /\ e' E X ::::} e E X .
.C(E) denotes the set of left closed subsets of E, ordered by inclusion.

THEOREM 11.5.2 {Win80} .C(E) is a prime algebraic complete lattice.

The intuition behind these definitions is that E is the set of events that can happen
in the course of a computation. The partial ordering is a relation of dependency or
causality: when e < e', then e' cannot happen unless e has already happened. The
members of .C(E) thus represent possible computational states: a state is the set of
events which have happened so far.

KENNAWAY ET AL

11.6 EVENT STRUCTURES FOR ORTHOGONAL TERM
GRAPH REWRITING

11.6.1 Pre-events

149

The intuition underlying the following construction is that given a redex r of a graph

G, and a reduction sequence s : G -+ G', if r / s is nonempty then it is in some sense
the same piece of work as r, deferred to a later time.

DEFINITION 11.6.1 A pre-event of a term graph G is a pair (s, r), where s: G-+ H

is a reduction sequence and r is a red ex of H. Pre(G) is the set of all pre-events of

G. For any reduction sequence s, the pre-events of s, denoted Pre(s), are the events

(s', r) such that s' · r is an initial segment of s.

DEFINITION 11.6.2 Two pre-events are equivalent if they can be proved so by the

following axioms:

a. (s, r) ~ (s', r) ifs ~ L s'.
b. (s, r) ~ (s · s', r/s') if r/s' exists.

We now arrive at a theorem which is fundamental to the interpretation of term

graphs as event structures. The rest of this section is devoted to its proof.

THEOREM 11.6.3 No two distinct pre-events of a reduction sequence are equivalent.

PROOF. We proceed by establishing properties of pre-events which are of minimal

length in their equivalence class. Equivalent minimal pre-events are found to satisfy a

much stronger equivalence relation. From this the theorem will follow.

DEFINITION 11.6.4 A pre-event (s, r) is minimal if there is no (s', r') ~ (s, r) with

Js' J < JsJ. A pre-event (s, r) is irredundant if every pre-event of s contributes to a

later pre-event of s · r. (Equivalently, if every pre-event of s is needed for the pre-event

(s, r).)

LEMMA 11.6.5 Every minimal pre-event is irredundant.

PROOF. Let (s, r) be a counterexample of minimal length. Let r 0 and r 1 be the first

two steps of s · r. By minimality of the counterexample, r0 does not contribute to any

later step. Therefore r0 does not create r1. Let r1 = r2/ro. If ro = s and r1 = r, then

((), r2) ~ (r 0 , r 1), contradicting minimality. Otherwise, s = ro · r1 · s' ~ L r2 · (ro/ r1) · s'.

If r 0 /r1 is empty, then (r2 · s', r) ~ (s, r) and r2 · s' is shorter than s, contradicting

minimality. Finally, if r0 /r1 is nonempty, it does not contribute to any step of s' · r,

and so ((r0 /r1) · s', r) is a shorter counterexample. 0

We can elaborate the above proof into an algorithm for transforming any pre-event

(s, r) into an equivalent irredundant pre-event.

ALGORITHM 11.6.6 Firstly, note that ifs is empty, (s, r) is irredundant.

For nonempty s, we will deal with each step of s, from the last backwards. At each

stage, we will have transformed (s, r) into an equivalent pre-event (so ·ro ·s1, r1), where

(s1, r1) is minimal. Initially, s0 · r 0 =sand s1 is empty (making (s1, r1) irredundant).

If((}, r0) contributes to some later step of ro · s1 · r1, then (ro · s1, ri) is irredundant.

Otherwise, we need the following lemma, proved below.

150 EVENT STRUCTURES

LEMMA 11.6. 7 If ((), r) does not contribute to any later pre-event of a sequence r · s,
then there is a sequence s' such that s = s' /r and lsl = ls'I·

Applying this lemma to the situation where ((), r 0) does not contribute to any later
step of ro · S1 • ri, we find that there is an s2 · r 2 such that s1 · ri == (s2 · r2)/ro and
ls2 · r2 I = ls1 · r1 I· This implies that projection over r0 does not erase any step of s2 · r2,
and that in particular r1 = r2/(r0 / s2). Therefore (ro ·s1 , r1) S:: (s2, r2). Since (s1, r1) is
irredundant, by Theorem 11.6.5 (s2 , r2) is also. Furthermore (so·ro·s1, r1) S:: (sa·s2, r2).

By continuing in this way, we process each member of s, obtaining in the end an
equivalent irredundant pre-event (s', r').

PROOF OF LEMMA. Ifs is empty this is trivial. Otherwise s = r' · s', where r does
not create r'. Then r' = r" /r for some r", and in the sequence (r/r") · s', if r/r" is
nonempty, it does not contribute to any later pre-event of the sequence. s' is shorter
than s, so by induction we may assume that there is an s" such that s' = s" /(r/r")
and ls'I = ls"I. Then s = (r" /r) · (s" /(r/r")) = (r" · s")/r and isl = ir" · s"i D

As a corollary, the above construction also provides us with a reduction sequence
s" such that s' · r' · s" / s · r is empty. s" consists, roughly speaking, of the parts of s
that were not needed for (s, r).

DEFINITION 11.6.8 The number of steps of s which are needed for (s, r) is the needed
length of (s, r).

LEMMA 11.6.9 If the minimization algorithm transforms (s,r) into (s',r'), then ls'I
is the needed length of (s, r).

PROOF. Clear from the construction. D

DEFINITION 11.6.10 Two pre-events (s, r) and (s', r') are strongly equivalent ifs S::L
s' and r = r'.

LEMMA 11.6.11 If(s,r) S:: (s',r') then the needed lengths of the two pre-events are
equal. Furthermore, the respective results of applying the minimization algorithm to
both are strongly equivalent.

PROOF. It is sufficient to prove this when (s, r) and (s', r') are related by either of the
axioms of Definition 11.4.4. Since the second part of the lemma implies the first, it is
sufficient to prove only the second part.

For the second axiom, it is clear that the minimization algorithm will produce
identical results given either (s,r) or (s · s',r/s').

For the first axiom, it is sufficient to take the case where r = r' and s = so · ro ·
(ri/ro) · s 1 s=:L s0 · r 1 · (ro/r1) · s1 = s'. Fors to be distinct from s', at least one of
ri/ro and r 0 /r1 must be nonempty. Assume ri/ro is nonempty.

Applying the minimization algorithm, we may assume without loss of generality that
(s 1 , r) is minimal. We must show that the results of applying the algorithm on the
one hand to r 1/r0 and then ro, and on the other hand to ro/r1 (if nonempty) and r1,
have the same length, and that this equality of length is preserved when we apply the
algorithm to s0 • This may be shown by induction on lsil. When s1 is nonempty, there

KENNAWAY ET AL 151

Figure 11.10

is a routine analysis of cases, according to which, if either, of r0 and rifr0 contributes
to the first step of s 1 . We omit the details. D

LEMMA 11.6.12 a. An irredundant pre-event is minimal.
b. Distinct redexes of the same term, considered as pre-events with empty history, are

not equivalent.

PROOF. (i) If (s, r) ~ (s', r') and (s, r) is irredundant, then from Lemmas 11.6.9
and 11.6.11, Is· rl ~ Is' · r'I, i.e. (s, r) is minimal.

(ii) Distinct redexes are minimal pre-events, yet not strongly equivalent. Hence (ii)
follows from Lemma 11.6.11. D

LEMMA 11.6.13 If(so,ro) ~ (s1,r1) and both (so,ro)/s and (s1,r1)/s exist, then
they are equivalent.

PROOF. It is sufficient to show this for the two cases of the definition of equivalence
of pre-events. Each of these in turn follows from the Cube Lemma; see figure 11.10. D

Finally, we complete the proof of Theorem 11.6.3.

(so, ro)

=?(so, ro)/so

=> ((), ro)

(so·ro·s1,r1)

(so · ro · s1, ri) /so

(ro · s1, ri)

(Lemma 11.6.13)

Apply the minimization algorithm to (r 0 · s1, r 1). This must yield a pre-event of the
form ((),r2), such that r 1 = r2/(ro · s1). But ((),ro) and ((),r2) must be strongly
equivalent, hence r0 = r 2 , and r2/(r0 · s1) cannot exist. D

Informally, this theorem means that it is not possible for a reduction sequence to do
the same piece of work twice. This theorem also shows the distinction between term
graph rewriting and term rewriting. Mutatis mutandis, it is false for the latter, because
of the possibility that reduction of one redex can make multiple copies of another,
which may all be later reduced. By the definitions we have given, the reductions of
each of these copies, considered as pre-events, would be equivalent. Reducing more
than one of them would give a reduction sequence containing two or more equivalent
pre-events, defeating the construction of an event structure, in which an event is
something which can only happen once.

152 EVENT STRUCTURES

11.6.2 Events

DEFINITION 11.6.14 An event of G is an equivalence class of pre-events of G. Ev(G)
is the set of events of G. Ev(s) is the set of events which are represented by the members
of Pre(s).

The pre-events of a graph have an immediate computational interpretation as the
possible steps which may be executed by a reduction machine evaluating the graph.
Theorem 11.6.3 implies that the more abstract events may be interpreted in the same
way. Furthermore, if we consider a machine capable of executing distinct redexes
concurrently, without necessarily any definite total ordering of its reductions beyond
that implied by causality, then events precisely correspond to the steps which may be
made by such a machine.

Ev(s) does not quite describe the work done bys, since it is possible for some steps
of s to erase parts of the graph in which some previous steps were performed, making
those steps unnecessary.

DEFINITION 11.6.15 An event e of a graph G is needed if e E Ev(s) for every re
duction s of G to normal form. Ev 0 (G) is the set of needed events of G. A needed
reduction sequence is one, all of whose events are needed. LG0 (G) is the subgraph of
LG (G) obtained by restricting to needed reduction steps.

Ev 0 (s) is the description we seek, as shown by the next theorem.

THEOREM 11.6.16 s !:::Ls' if and only if Ev 0 (s) = Ev 0 (s').

PROOF. The forwards implication is immediate from the definition of Ev 0 .

For the converse, suppose s1 ';/!. s2. Choose sequences s 1 and s2 Levy-equivalent
to s1 and s2 respectively and of minimal length. At least one of sif s2 and s2/ s1
must be nonempty. Supposing it is the first, consider the sequence s 2 · (s1 /s2). By
Theorem 11.6.3, no step in the second segment can be equivalent to any step of s2 .

But every step of the second segment is equivalent to a step of s1 . Therefore Ev(si) #
Ev(s2). But Ev 0 (s 1) = Ev 0(s1) = Ev(s1), and similarly for s 2 , hence the theorem. D

11.6.3 The event structure of needed events

We now show that the notion of one redex creating another gives rise to a partial
ordering of Ev(t).

DEFINITION 11.6.17 Fore and e' in Ev(G), define e S e' if for every reduction
sequence s starting from G, if e' E Ev(s) then e E Ev(s). {It is immediate that this is
indeed a partial order.)

The partial order has a concrete meaning.

DEFINITION 11.6.18 In a sequences· r · s' · r', the pre-event (s, r) contributes to the
pre-event (s · r · s', r') if there is a node n which is either the root of the contractum of
r or is created by r, which is preserved bys', and such that n/s' is matched by r1•

(s, r) is needed for (s · r · s', r') if it contributes to (s · r · s1 , r') or if it contributes
to a later step of s · r · s' which is needed for (s · r · s', r').

KENNAWAY ET AL 153

THEOREM 11.6.19 ea< ei if and only if there is a sequence of the form s0 ·ro ·s1 ·r1
such that (so, ro) is needed for (so · ro · s1, r 1), and these two pre-events represent e0

and ei respectively.

PROOF. Let ea < ei. By the definition of the ordering, there must be a sequence
s0 · ro · s1 · ri where (so, ro) and (so · ro · s1, r 1) represent e0 and e1 respectively. If
(so, ro) were not needed for (so · ro · s1, r1), then applying the minimization algorithm
to (so· ro · s1, ri) would begin by transforming it to a form (s0 · r 0 · s 1, r 1) with (s 1, r 1) a
minimal pre-event, and then eliminate ro. The final result would be a pre-event (s2 , r2)

equivalent to (so· ro · s1,r1), and in which Ev(s2) is a subset of Ev(so · r 0 · s 1) not
containing eo (since by Theorem 6.3, no other pre-event of s0 · r0 · s 1 can be equivalent
to (s0 , ro)). But this contradicts eo < e1 .

For the converse, suppose we have a sequence s0 · r0 · s 1 · r 1 of the stated form.
To establish the ordering of the events, we must show that for any pre-event (s 2 , r 2)

equivalent to (so · ro · s 1 , r 1), s2 must contain a pre-event equivalent to (s 0 , r 0). It is
sufficient to do this for the cases where (s2, r 2) is related to (so· r0 · s1, r 1) by one of
the axioms for equivalence.

Axiom (i): s2 :::!.L so · ro · s1. We may assume that s2 and so · ro · s1 are related by
an application of part (1) of Definition 2.2.l to a part of so· ro · s 1 . If this part does
not include r 0 , then s2 will have a pre-event (s~, r0 equivalent to (s0 , r0). Otherwise,
there are two cases.

(a) There exist s3 and r3 f. ro such that s2 =so· r3 · (ro/r3) · s3, s1 = (ro/r3) · s3, and
r2 = r 1. If ro/r3 is nonempty, then (so · r3, (ro/ r3)) ::::!. (so, ro). Otherwise, r3 erases ro.
But this implies that r3 /r0 erases every node which r0 changes or creates. Therefore
r0 cannot contribute to any step of s 1 · r 1 later than r3/ro. It cannot contribute to
r3 /r0 either, since this is a residual of a redex existing before r0 . This contradicts the
hypothesis that (so, ro) is needed for (so · ro · s1, r1).

(b) There exist s3, r3 and r4 such that so = s3 · r3, ro = r4/r3, and s2 = s3 · r4 ·
(r3/r4) · s1. Then (s3, r4) ::::!. (so, ro).

Axiom (ii): There are three subcases.
(a) There exists r3 such that s2 =so· ro · s1 · r3 and r2 = rifr3. Then s2 contains

the pre-event (so, ro.
(b) There exist s3 and r3 such that s1 = s3 · r3, r1 = r2/r3, and s2 = so · ro · S3.

Again, s2 contains the pre-event (so, ro).
(c) s1 is empty, s2 = s0 , and there exists r2 such that r 1 = r2/ro. But this implies

that (so, ro) ::::!. (so· r0 · s1, ri), contradicting Theorem 6.3. D

Finally, we have the required event structure and its associated configuration do
mam.

THEOREM 11.6.20 Ev 0 (G) with the partial ordering inherited from Ev(G) (of which
it is a lower section) is an elementary event structure. Its associated domain of configu
rations is isomorphic to L G0 (G). The resulting partial ordering of L G0 (G) is identical
to the ordering defined by Hu et and Levy [HL91}: s ~ s' if and only if sf s' is empty.

PROOF. It is immediate that Ev 0 (G) is a lower section of Ev(G). Nodes of LG0 (G) are
in 1-1 correspondence with Levy-equivalence classes of needed reduction sequences,
which by Theorem 6.6 are in 1-1 correspondence with Ev 0 (G).

154 EVENT STRUCTURES

The configuration domain of Ev 0 (G) is the set of lower sections, ordered by the
subset relation. Let s and s1 be needed reduction sequences. If s/ s' is empty, then
s' ~Ls· (s' /s), therefore Ev0(s) ~ Ev0(s'). Conversely, suppose Ev 0(s) ~ Ev0(s'). In
the sequence s' · (s / s'), every step in the s / s' segment is equivalent to some step of
s, hence by hypothesis to some step of s'. But by Theorem 6.3 there can be no such
step. Therefore s/ s' is empty, and s :::; s'. D

Thus a Levy-equivalence class of needed reductions starting from G is equivalent to
a lower section of the set of needed events of G.

11. 7 RELATED WORK AND FURTHER DEVELOPMENTS

In [Sta89], Stark defines a notion of "concurrent transition system". This takes as
basic a notion of an abstract residual operation on abstract transitions. However,
his primary concern is the study of process networks. His paper only mentions in
passing the possibility of constructing event structures from concurrent transition sys
tems, and that orthogonal term rewriting and Lambda calculus reduction can give
rise to examples of such structures. However, finding such structures in these contexts
requires taking the basic transitions to be not ordinary reductions, but complete de
velopments, which amounts to considering term graph reduction without the name.
The construction-which is the purpose of this chapter-is still non-trivial.

We expect that the construction of event structures can also be applied in the
presence of infinite graphs and transfinite rewriting, as set out in [KKSdV90]. The
set Ev 0 (t) is generalized to the set of Bohm-needed redexes oft-those redexes which
must be reduced in any reduction oft which obtains every part of its Bohm tree (a
concept borrowed from Lambda calculus).

To extend this work to non-orthogonal systems, we would have to deal with the
possibility of conflicts among events. While event structures with a notion of conflict
are well known, all such structures in the literature depend on a conflict relation which
is symmetric: if event e1 conflicts with e2, then e2 conflicts with e1. This is in general
not the case for conflicts among redexes. Consider the rules F(A)-+ B, A-+ C. There
is a conflict between these rules. The graph F(A) may be reduced either to B or to
F(C). In this case, the conflict between the two redexes is symmetric. If one reduces
either redex, the other no longer exists. However, consider the graph D(x: F(y: A), y).
This again contains two conflicting redexes. Reducing the redex at y breaks the redex
at x. But reducing the redex at x gives the graph D(x: B, y: A), in which the red ex at
y is still present. A type of event structure based on an asymmetric conflict relation
is therefore required.

11.8 CONCLUSION

For any normalizable term graph t in an orthogonal term graph rewrite system, the
essentially different pieces of work which are required in the evaluation oft to normal
form form an elementary event structure. The partial ordering embodies the relation
of one redex contributing to another. Redexes can be reduced in any order compatible
with the dependency relation.

KENNAWAY ET AL 155

The associated state domain is the set of Levy-equivalence classes of needed reduc
tion sequences starting from t. The top element corresponds to the reduction oft to
normal form. The height of the partial ordering of Ev0 (t) implies a lower bound on
the time required to reach the normal form by reduction, and the width implies an
upper bound on the amount of useful parallelism that can be employed.

REFERENCES

[BvEG+87]

[HL79]

[HL91]

[HP88]

[Ken91]

[KKSdV90]

[Lev78]

[Lev80)

[LP91]

[NPW81]

[Sta80]

[Sta89]

[Win80]

H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R. Kennaway,
M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In J. W. de Bakker,
A. J. Nijman, and P. C. Treleaven (editors), Proc. PARLE'81 Conference, vol.11,
Springer-Verlag, Lecture Notes in Computer Science 259, pp. 141-158, Eind
hoven, The Netherlands, 1987.
G. Huet and J.-J. Levy. Call-by-Need ComptJtations in Non-ambigtJotJs Linear
Term Rewriting systems. Technical report, INRIA, 1979.
G. Huet and J.-J. Levy. Computations in orthogonal rewrite systems I and II.
In Lassez and Plotkin [LP91], pp. 394-443. (Originally appeared as [HL79].).
B. Hoffmann and D. Plump. Jungle evaluation for efficient term rewriting. In
J. Grabowski, P. Lescanne, and W. Weckler (editors), Proc. lnt. Workshop on
Algebraic and Logic Programming, vol. 49 of Mathematical Research, pp. 191-
203. Akademie-Verlag, 1988.
J. R. Kenna.way. Graph rewriting in some categories of partial morphisms.
In H. Ehrig, H.-J. Kreowski, and G. Rozenberg (editors), Proc. 4th Interna
tional Workshop on Graph Grammars and their Application to ComptJter Sci
ence, Springer-Verlag, Lecture Notes in Computer Science 532, pp. 490-504,
Bremen, Germany, 1991.
J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Transfinite
Reductions in Orthogonal Term Rewriting Systems. Technical Report CS-R9041,
CWI, Amsterdam, 1990.
J.-J. Levy. Reductions Correctes et Optimales dans le Lambda-Ca/cul. These de
doctorat d'etat, Universite Paris VII, 1978.
J .-J. Levy. Optimal reductions in the lambda-calculus. In J. P. Seldin and
J. R. Hindley (editors), To H.B. Curry: Essays in Combinatory Logic, Lambda
CalctJltJs and Formalism. Academic Press, 1980.
J.-L. Lassez and G. D. Plotkin (editors). Computational Logic: Essays in Honor
of Alan Robinson. MIT Press, 1991.
M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures, and
domains, part 1. Theoretical Computer Science, 13, 1981.
J. Staples. Computation on graph-like expressions. Theoretical Computer Sci
ence, 10, pp. 171-185, 1980.
E. W. Stark. Concurrent transition systems. Theoretical Computer Science, 64,
pp. 221-270, 1989.
G. Winskel. Events in Computation. PhD thesis, Dept. of Computer Science,
University of Edinburgh, 1980.

