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Abstract. In this note we show how to derive, by a mechanistic argument, an 
expression for the saturating contact rate of individual contacts in a population 
that mixes randomly. The main assumption is that the individual interaction 
times are typically short as compared to the time-scale of changes in, for 
example, individual-type, but that the interactions yet make up a considerable 
fraction of the time-budget of an individual. In special cases an explicit formula 
for the contact rate is obtained. The result is applied to mathematical epidemiol­
ogy and marriage models. 
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1 Introduction 

A problem that has been around for a long time in mathematical epidemiology, 
is that of giving a mechanistic description of the saturation in the number of 
(re) new( ed) contacts that an individual can make per unit of time, given that the 
time an individual has available for these contacts is limited. Of epidemiological 
importance is of course the number of contacts between infected and susceptible 
individuals, which determines the possible number of new infections per unit of 
time [ l]. The same problem occurs in marriage models, where one needs to 
model the number of 'steady relationships' that are established per unit of time. 
The idea here is that individuals have a number of short lasting contacts per unit 
of time within a limited time available, and the steady relationship ('marriages') 
may result from these brief encounters. Frequently a Holling-type argument, 
borrowed from predator-prey systems, is thought to be the solution to the 
problem. However, as we explain below, on closer examination the application 
of the usual Holling argument to epidemic- and marriage models cannot be 
justified. In this note we give a mechanistically based answer to the 'contact-rate 
problem' in Sects. 3 (epidemic models) and 4 (marriage models). 

Suppose we have a well-mixed closed population, divided into n different 
types of individuals (think e.g. of infected or non-infected males and females), of 
total density N(t) at time t. Suppose furthermore that two individuals can 
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together establish a temporary complex, and that these complexes are formed 
according to law-of-mass-action kinetics. The rate constants of complex forma­
tion and dissociation are allowed to depend on the types of the individuals 
involved. Our key assumption is that the complexes are of short duration, as 
compared to the time-scale on which the individuals change their type (where the 
latter also comprises the formation of more permanent relationships), or the 
various type-densities change by births or deaths. 

Instead of 'saturating contact rate' one could also speak of 'the functional 
response' in the number of individual contacts, but this formulation is tradition­
ally reserved for predator-prey systems. There we can distinguish, for example, 
two types (prey individuals, and predators that are searching for prey) and one 
complex (predators that are busy handling prey). The Holling argument then 
gives an expression for the number of prey caught by a predator, taking into 
account that a proportion of the pedators' available time is spent handling the 
already caught prey. A prerequisite for the Holling argument is that on the 
time-scale on which the predator changes from 'searching' to 'busy with prey', 
the environment of the predators (in this case the density of the prey population) 
stays constant. This is not the case if interactions also occur between individuals 
of comparable type (think for example of predators fighting with predators). For 
those types of individuals the differential equations are no longer linear in the 
type density itself, but contain quadratic interaction terms. This then makes it 
impossible to study the problem by following one individual and describing the 
possible type-changes by a continuous time (semi)-Markov chain (which is one 
fruitful way of looking at the Holling-type problems). In the case of self 
interaction, the time-scale on which the density of individuals of a particular type 
changes is the same as that on which their environment changes. Therefore, the 
usual Holling-type arguments are not applicable to the description of social 
interactions such as marriages and contacts between infected and susceptible 
individuals, where interactions between comparable types are important. Our 
argument in Sect. 2 serves as a replacement. In Sect. 5 we discuss a slightly more 
involved Holling argument that does work in our situation. However, we could 
only deduce this argument from the results of the mathematically correct 
calculations in the intervening sections. 

2 Main result 

Let X;(t) denote the density of free individuals of type i, i E {l, ... , n }, at time 
t. In this paper we assume that complexes are formed between two individuals 
and we therefore disregard larger groups. Let K;;(t) denote the density of 
complexes at time t involving two i-type individuals; 2Kr(t) denotes the density 
of complexes a~ time t involving one i- and one j-typ~ individual (Ku = Kj;). 
There are then 2n(n + l) different complexes. 

The rate constant for the formation of an (i,j)-complex is denoted by r .. the 
dissociation rate constant by s,,, (we assume r .. = r .. and s .. = S··) Type-ch~~ges 

• • • :I lJ }1' lJ Jl • 
?f '.r~e md1v1duals of type i are described by a function F;, type-changes by 
md1v1~u.als that are par~ of .a complex ff are described by a function Gu 
( descnbmg, for example, mfect10ns or marriages). Birth and death of individuals 
are included in these functions as well. The F and G .. will in general be 

• l l) ' ' 

func~1ons o~ (X,, ... ~ Xn; K~ 1 , ••• , Knn) and we assume that they are Lipschitz 
contmuous m all variables (m many applications they are actually linear). Our 
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main assumption is that the time-scale of type-change is much longer than that 
of complex formation and dissociation. 

We can write down differential equations for the changes in X; and Ku. For 
I::::;; i, j ~ n we have 

(SI) 

(S2) 

In order to correctly apply a time-scale argument, we rewrite (S) as a singular 
perturbation problem. If the processes of type-change occur with rate constants 
expressed per unit of t-time, then the processes of complex formation and 
dissociation occur, by assumption, with rate constants (ru and su) expressed per 
unit of et-time, fore~ 1. If we re-scale by writing ru = eu/e and su = au/e, then 
all processes involved in our system are on the same time-scale, and (S) turns 
into 

dX. n n 

e-;Jf = -X; L f2u~ + 2 L auKu + eF;, 
j= l . j= 1 

(Se l) 

dK 1 
e d/ = 2euX;~ - rJuKu + eGu. 

Define ()u==eu/au =rulsu and, for ie{l, ... ,n}, let 
n 

~;(t) == X;(t) + 2 L Kij(t), 
J=l 

be the total density of i-type individuals in the population at time t. Then 
Li= I ~i (t) = N(t). 

Theorem l For the solution X,;(t), K,u(t) of system (S,), we have 

lim X,;(t) = X1 
dO 

(2.1) 

lim Keij(t) =Ku, ( 2.2) 
eiO 

where the convergence is uniform on bounded intervals bounded away from zero. 
Here (Xf, ... , X!) is the unique positive solution of the system 

n 

X; + X; L eijxi = ~i =constant 
j= l 

i E { 1, ... , n} with ~; ;;::: 0 a constant for each i, 

Ku =!8uX1XJ 

and ~; is the solution of 

(2.3) 

(2.4) 

Proof We use a standard singular perturbation argument (see, e.g. [8]) for 
system (S,). We start by regarding system (S,) on the 'fast time-scale' by the first 
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substituting r := t /e, and then taking the limit s 1 0. The substitution leads to 

(2.6) 

(2.7) 

and we obtain the following system of equations for the quasi-steady state 
n n 

0 = -X; I eijX} + 2 I <JijKij, (Sol) 
}=I }=I 

o = ~eijxixj - aijKij (So2) 

1 ~ i, j ~ n. Write Kii = ~8iiX;X1 , then both (S0 1) and (S0 2) are satisfied. On the 
fast time-scale we have an additional relation between Kii, X; and Xj. On that 
time-scale N and the Cs do not change 

d~; n 
-=sF;+2s I Gii 
dt j= I 

and therefore we have d~;fd-r; = 0, which implies that we have to solve (S0 ) within 
the manifolds ~; = constant. This leads to the conservation equation 
X; + 2lJ= 1Kii =~;=constant or 

iE{l, ... ,n}. 

n 

X; + X; I eijxj = ~;=constant 
j=l 

(2.8) 

In the appendix we show that there is a unique positive solution 
(Xf, ... , x:) to system (2.8), and that the corresponding positive solution 
(Xi, ... , x:, Kt1 , •• • , K!n) of (S0 ) is an asymptotically stable steady state of 
(2.6)-(2.7) at s = 0. 

Application of the singular perturbation theorem from [8] now gives that, for 
e 10, the solution to system (S.) converges to (Xi, ... , x:, Kf1 , ••• , K!n) 
uniformly on intervals bounded away from zero and infinity. Remember that the 
Xt 's and the Kt 's are functions of time. They change on the 'slow time-scale' 
because on that time-scale N and the ('s change. We have that e;, ( 1 ~ i ~ n), is 
the solution of 

d~ n 
-di= F;(X(, ... , X!, Kj,,. . ., K!n) + 2 L Gij(Xf,. .. , X!, K(,, ... , K!n), 

f ·-I 
J- (2.9) 

which describes the changes in the density of i-type individuals on the slow 
time-scale. D 

In some special cases one can explicitly solve (2.3) in terms of the ~;· 

Corollary 2 Let eii = 8 for all 1 ~ i, j ~ n. Then 

X*= -1+JI+48N ;_ 
' 28N2 "' 

K*. =I +WN-Jl +48N :c . . 
u 48N2 .,,e1 

where ~; is the solution of (2.5), I ~ i, j ~ n. 

(2.10) 

(2.11) 
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Proof Let X==:D=1X;, and K==l:uKu. Then system (2.3) can be written as 

x +ex2 =N. 

Its unique positive solution is 

X* = -1 +JI + 48N 
28 

From the relation K* = !8X*2 we then obtain 

K* = 1 + WN -Jl + 48N 
48 

(2.12) 

We express Kt in terms of K*. If we substitute (2.4) in the definition of.;;, 

then we can write xr as 

X"' = .;; Sx· 
' 1 +ex* N 

where, in the last equality, we have used Eq. (2.12). Then 

K*. = .;i.;j K* 
I} N2 . D 

The following special case was suggested by sexual activity models in the 

AIDS-literature. 

Corollary 3 Let eij = Cl./f.j and define A== D= I Cl.jXj*. Then 

X'.i'= .;; 
' 1 +e1.;A 

* - Cl.;Cl.j j; 

Ku - ( 1 + a;A)(l + ajA) .;i'>j 

where A is the unique positive solution of 

A= f a;.;; 
i=I l+a;A 

and where .;; is the solution of (2.5). 

Proof From (2.3) we obtain X; + a;X;A = .;; which gives 

X* = ~; 
' 1 +a;A 

(2.13) 

for which the result follows by using (2.4). Substituting Xi in the defining 

relation for A gives (2.13), which can easily be seen to have a unique positive 

solution. D 

3 Application to mathematical epidemiology 

In non-pair formation models for sexually transmitted diseases it has been 

argued (see e.g. [7]) that the number of new cases of the infection arising per unit 
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of time, should be written as 
I 

{JC(N)SN 

where f3 is the probability per unit of time of tr~nsmitting the i~fection ~~tween 
two individuals taking part in a contact; C(N) is the 'unknown pr~b.ab1hty for 
an individual to take part in a contact; S and I are the dens1t1es of the 
non-infected and infected populations, respectively. Some reasonable demands 
on C(N) are that it should be a non-decreasing function of N and that C(N)/N 
should be a non-increasing function of N. Furthermore, the function should 
behave linearly in N, for small N, and it should be independent of N, for N large. 
Of cource, many functional forms can, and have been, suggested that have these 
properties, but a mechanistically derived form was lacking. 

Let X1 and X2 denote the densities of susceptible and infected sfngles, 
respectively. The infection process constitutes a change from K12 ~ K22 , which we 
assume to happen with some probability per unit of time /J. If we now write 
S:=X1 +2K11 +2K12 and f:=N -S for ~ 1 and ~2 , respectively, then the number 
of new cases of the disease appearing per unit of time is 

2{JK* = {J 1+28N -JI+ 48N SI 
12 WN2 ' 

if we regard the simplest case where the disease has no influence on the 
propensity to form complexes and the time spent in a complex. We find therefore 
the following expression for C(N) in the simplest case 

I + 28N - jl + 48N 
C(N) = 28N . 

This expression has the four properties mentioned above. If we multiply both the 
numerator and the denominator by I + 28N + J1 + 48N to obtain 

C(N) = WN , 
1+28N+jl+48N 

then we see that, for N small, C(N) ~ WN, whereas for N large, C(N) ~ 1. 
Furthermore, C(N) is non-decreasing and C(N)/N is non-increasing. 

Remark. If we equate 'time-scale of the infection process' with the length of the 
infectious period, and 'time-scale of the complex' with the inverse of the 
dissociation rate constant, then for most infectious diseases in many different 
populations our assumption that the infection processes and the formation of 
complexes are on two different time-scales, is reasonable. This not only applies 
to sexually transmitted diseases. For example, regard influenza or measles where 
contacts are often on the scale of minutes or hours, whereas the infectious period 
is on the scale of days. The problem with the present approach for these 
non-sexually transmitted diseases however, is that complexes in these cases may 
sometimes consist of more than two individuals. In order to describe the contact 
process for these cases more realistically, the approach in Theorem I should then 
in theory be generalised to allow for larger complexes. The problem is that such 
a generalisation immediately leads to an almost limitless proliferation of rate 
constants. Moreover, one should be very careful about what one considers to be 
complexes in this generalisation, and which variability in contacts one could 
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better take care of by extending the number of individual types. For example, 
classmates in school, fellow passengers on a commuter train, and colleagues at 
work are not met randomly, but over and over again. This means that, if these 
contacts would be important transmission risks, your schoolclass, the commuter 
train you take, and the place where you work, all should be made part of your 
individual type. In a certain sense (to be discussed more fully in Sect. 5) our 
present model is the simplest mechanistical model that can account for the fact 
that individuals have limited time-budgets for their social interactions, as well as 
variability among types. 

4 Application to marriage models 

The calculations in this paper can also be applied to marriage models. In that case, 
one would let X 1 and X2 be single females and males, respectively. The complexes 
would signify the brief encounters between singles, for example in a bar, in a theatre, 
on the street, etc. 'Brief' should be interpreted as short relative to the time-scale 
of 'steady partnerships' between two individuals (for convenience called: mar­
riages). One introduces a new group within the population, the married couples. 
The saturating contact rate then determines, in randomly mixing populations (a 
well-stirred society), the possible number of new marriages formed per unit of time. 

To illustrate the use of the approach in Sect. 2, we will now derive a 
well-known simple marriage model based on our mechanistic principles. Let the 
index 'l' refer to female individuals, and '2' to male individuals. The longer 
lasting relationships are the married couples (p), that are assumed to be 
exclusively heterosexual; the shorter lasting encounters are the complexes K11 , 

K12 ( = K21 ), and K22 . The idea is that a considerable fraction of the time that an 
individual has available to find 'the one-and-only', is wasted by brief encounters 
with both sexes. We want to determine Kf2 . 

Let µ denote the per capita death rate, b the constant birth rate, y the 
probability per unit of time for a complex consisting of a male and a female to 
get married, and a the divorce rate for married couples. The other parameters are 
as in Sect. 2. 

System (S) now reads 

dXi = -r11 Xf - r 12X1X2 + 2s11 K11 +2s12K12 
dt 

+ b - µX1 + 2µK11 + µK12 + (µ + a)p 

d:i2 = -r12X2X1 - r22X~ + 2s22 K12 + 2s12K12 

+ b - µX2 + 2µK22 + µK12 + (µ + a)p 

dK11 t " 2 K -- = 2r11 X1- S11K11 - µ 11 
dt 

dK12 I 2 K K --=,-r12X1X2-S12K12- µ 12-Y 12 
dt -

dK22 i z 2 K dt = 2r22X2 - S22K22 - µ 22 

dp = rK12 - (2µ + a)p. 
dt 
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If we carry through our time-scale argument f~om Se~t. 2, we ~an collaps~ ~he 
above system into a standard system of three ~1fferential equations descnbm.g 
heterosexual pair formation in a two-sex population (see_ for exampl~ [3]). In this 
process we get a specific form of the marnage function. Define 
x ::::: X1 + 2K11 + 2Kio, and y == X2 + 2K22 + 2K12 as the total density of females 
and males that are -not members of a married couple, respectively. Then we 
arrive at 

Here 

dx = b - µx + (µ + r:x )p - Y Kf2 
dt 

dy = b - µy + (µ + r:x)p - yKf2 
dt 

dp 
dt = yKf2 - (2µ + r:x)p. 

K* - ~ '12 X*X* 12 - 2 1 2 
S12 

and (Xf, Xf) is the unique positive solution, in terms of x and y, of the system 

X 1 +8 11 X 2 + 812 X1X2 = x 

X2 + B22X~ + B12X1X2 = y. 

This system reduces to an equation in one unknown of degree 4, and can 
therefore be solved explicitly. In the not unreasonable special case that x = y ==z 
(equal sex-ratio in the population) and 811 = 822 == 8, we easily obtain the unique 
positive solution 

5 Encore: Holling squared 

In the introduction we argued that the usual Holling argument could not be 
applied to the 'contact rate problem' because both individuals that are involved 
in a contact are time-limited. However, we can adapt the Holling argument to 
this situation, and we christen this adaptation 'Holling squared'. 

For convenience only, we regard the easiest case with only one type of single 
individual. This is not a restriction on the method, it is similar for the general 
setting of Theorem I. Let Z denote the number of (re)new(ed) contacts in time 
interval T by a given individual. Let Y = Z /T. With ' = s - 1 we denote the mean 
contact duration, with r we denote the complex formation rate constant among 
singles. We let N be the density of individuals, and K and X the density of 
complexes and singles, respectively. We have K = !NYc, and X + 2K = N. The 
usual Holling argument would be 

rX Z = rX(T-Zr) => Y= rX(l - Ye)=> Y=--
1 +ex 
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with (} = n:. In our case however, the singles are time limited, and the available 
singles are given by 

X = N (T-;,Z-r) => X = n(l - Y.r). 

Inserting this in the equation for Y above, we find 

Y = rN(l - Y-r) 2 

which leads, with K =~NY-r, to 

K =!ex2 

and this is exactly the condition found in Theorem 1, for this particular special 
case. This shows that Holling squared leads to the same saturating contact rate 
expression as Theorem 1. Analogously one shows that the general case of 
Holling squared leads to the conditions (2.3)-(2.4). 

The fact that the equilibrium conditions are the same for both the heuristic 
Holling squared and the rigorous mechanistic Theorem 1, raises an important 
point. In the Holling argument one does not use the fact that -r comes from any 
particular probability distribution. This suggests that, in the general approach, 
we can replace the exponential distribution by an arbitrary distribution and take 
for our parameter s, the inverse of the mean duration of the complex time 
period. 

Appendix 

In this appendix we prove that the system 
dX. n n 

-d '= -X; L eii.ll + 2 L: uiiKii, 
1: j= I j= I 

dK. I 
drlj = 2eiiX;J0 - uiiKii, (A2) 

together with the conservation equations 
n 

X; + 2 L Kij = e;, 1 ~ i ~ n, (A3) 
j=I 

has a unique asymptotically stable positive equilibrium. 
We first prove existence of positive solutions (XT, . .. , X!) to system (2.3). 

Solutions to (2.3) correspond to equilibria of (Al-A3) by letting 
Kt = i(}iiXf Xj. For given e1 , ••• , en > 0 and (}ii~ 0, (i,j E {l, ... , n}) define 
the map A : !Rn-+ !Rn acting on a vector X = (X1 , ••• , Xn) by 

) ( e1 en ) 
(Xi,. .. ,Xn r-+ 1+a1(X)' ... , l+an(X)' 

where a1 (X) •= L.J = 1 (}ii.lJ· Note that positive fixed points of A correspond to 
positive solutions to system (2.3). The operator A is continuous and maps the 
bounded convex and closed set A•= { X E !Rn: 0 :s:;; X1 ~ ~1 } into itself. Therefore, 
there exists at least one X* e A with AX*= X*, by the Brouwer fixed point 
theorem (see, e.g. [2]). 
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Lemma Al The solutions to system (2.3) are isolated. 

Proof Define a map F: !Rn~ !Rn acting on a vector X = (X,, . · · , Xn) T by 

(X1 •... 'Xn) H (X1(l + a,(X)) - ~,, ... 'Xn(l + an(X)) - ~n), 

with a;(X) := lJ= I eij~· Then Fis differentiable and a solution to (2.3) _co~e­
sponds to a zero of F. Let X ~ O satisfy F(X) = 0, and regard the denvative 
D •= DF(X) of the map F at the point X in !Rn: 

Regard the transpose Dr of D. Note that for Dr we have 

du> L du. (A4) 
j .. i 

It is elementary that such a matrix is non-singular by the following well-known 
argument. Suppose to the contrary that there exists a non-trivial solution z of 
Drz = 0. Let k be one of the indices with maximal lzk I and consider the kth 
equation of D Tz = 0. Rearranging this equation and taking absolute values leads 
to the estimate 

which is a contradiction to (A4). 
We can apply the inverse function theorem to F at X. This asserts that Fis 

a homeomorphism in some neighbourhood of X. The zeros of F are therefore 
isolated. D 

We now consider system (Al-A3). Let m =!n(n + 1), and write 
c = (c1 , ••• , cm) for (X1, •• • , Xn, K 11 , • •• , Knn) (where we order the components 
of the latter lexicographically, starting with the X;'s). We are only concerned 
with c's in the positive cone of !Rm. Let c* = (cf, ... , c!,) be a given positive 
equilibrium of (Al-A3) and define He•: !Rm~ IR as 

Hc.(c) = f (c; In c: - C; +er). 
i=l C; 

In [6], it is shown that Hc0 is a Lyapunov function for closed mass-action 
chemical reaction systems, of which (Al-A3) is an example. Specifically, the 
following holds: I) Hc.(c) ~ 0 for all positive c e !Rm, and Hc.(c) = 0 <:> c = c*; 2) 
(dHc./dt)(c) ~ 0 for all positive c e !Rm, and (dHc•/dt)(c) = O <::> dc/dt = O; 3) 
(8Hc./8c;) = ln (c;/ct). The Lyapunov function H". assures that in the case of a 
unique positive equilibrium c*, this equilibrium is asymptotically stable. What 
remains to be shown is that we indeed have a unique positive equilibrium c* of 
(Al-A3). 

Lemma A2 There exists only one positive equilibrium c* to (Al-A3). 

Proof By Lemma Al, the equilibria are isolated. So assume without loss of 
generality, that there are two, r, s e !Rm, with r =fas. Constru~t the Lyapunov 
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function H, based on the equilibrium r. Then H,(s) =•hs > 0. The graph of the 
function H,( c1 , ••• , cm) in !Rm+ 1 has a single zero for c = r, and in every 
coordinate direction i, H, strictly decreases when C; < r; and strictly increases for 
C; > r;. This implies that levelsets of fixed values of H, have dimension m - l. 
Regard the levelset { c E !Rm: H,(c) = hs }. Because this set is of dimension less 
than m, it follows that in every neighbourhood of s there is a point z E !Rm such 
that H,(z) < hs. But H, decreases along the trajectories of system (Al-A3), so 
the equilibrium s cannot be stable. Now construct the Lyapunov function Hs 
based on the equilibrium s. By the theorem of Lyapunov it follows that s is 
stable, and we have found a contradiction. D 

Remark. For completeness we mention that the claim in [6] that the function He• 
is also a Lyapunov function for open mass-action chemical reaction systems, was 
proved false in [ 4]. Furthermore, there is an alternative way to show asymptotic 
stability of the equilibrium of (Al-A3). In [5], a general theory for mass-action 
kinetics is developed. One can show that our system (Al-A3) is, in the 
terminology of [5], so-called complex-balanced, and therefore quasi-thermo­
dynamic. According to Lemma 4c in [5], this is sufficient to assure asymptotic 
stability of the unique equilibrium. 
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