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Abstract-In Hon::!ijk and Koole !1,2J, a new type of a.n:i:val pro<:el!l6, the Markov Decision Arrival 
Process (MDAP), w1111 introduced, which can be used to model certain dependencies between ILll'ival 
streams and the system at. whlcli the arrivals occur. This arrival process was llaed to solve control 
problems with seveni.I controlko having a oommoo obj.ectlve, where the output from oo.e rolltro!led 
node is fed into a second one, as in tandems of muhi-server queues. In the cue that objectives 
of the controllers a.re different, one ID3Y choooe a. min.-max (wont case) approach where typically 
a controller tries to obtain the best performance under the worst possil>Ae (unknown) strategies of 
the other controllers. We use the MDAP to model sucll situa.tiom, or llitu&tionB of control in an 
unknown environment. We apply this approach to sewral scheduling problems, including scheduling 
of customeni and scheduling of servers. We consider different infurma.tion patterns including dela.yed 
information. Fb.- all these models, we obtain seveni.1 structural results of the optima.I policies. 

1. INTRODUCTION 
Recently Hordijk and Koole ll,2J introduced the Markov Decision Arrival Proce.ss (MDAP), a 
Markovia.n arrival process by which not only independent arrlva.ls can be modeled, but also 
arrival processes which depend in a certain way on the system into which the customers arrive. 
An MDAP is a generalization of the well-known Markov Arrival Process (MAP), which is a 
Markov process where arrivals can occur at the transitions. The MDAP generalizes the MAP 
by allowing the transition rates and arrival probabilities to be controlled dynamically, i.e., the 
transition rates and arrival probabilities are functions of actions that a.re sequentially chosen by 
a controller. The transition rates of the MDAP a.re independent of the system the customers 
arrive a.t; the actions, however, can depend on it. Thus, through the actions, the dependence is 
model ed. 

A typical example of the use of an MDAP concerns the following tandem model. Customers 
arrive according to a Poisson process at m parallel MIMI! queues. Dynamleally, the customers 
have to be assigned to one of the queues. After being served, the customers arrive at a second 
station, where we have a.gain m parallel queues to choose from. The question is how to assign the 
customers a.t the second center {for example, in the case that an service parameters are equal), 
88Buming that the first center is operated optimally. In general, the optima.I action in the first 
center will not only depend on the state of the first center, but also on the state of the second 
center. Thus, the arrival process a.t the second c-enter depends, through the actions in the first 
center, on the state of the second center. Therefore, we cannot use the standard results on the 
optimality of shortest queue routing for independent arrivals. Hordijk and Koole [1 J show that 
the arrivals from the first center can be modeled as an MDAP, and tha.t for this type of arrivals 

This reaearch is supported by the European Gr.ant BRA-QMIPS of CEC DG XIII. 

141 



14'2 E ALTMAN AND c Koou; 

(in the case of equal service times), shortest queue at the ~ond center ls again optimal, 
fur various functions. This result is proven dynamic programming, where the 
action consists of two components, the a.ction in the MDAP and the assignment to one of 
the parallel queues the second This ca.n a.loo be seen as two one at the 
MDAP and one at the queues, who a.re ,.,...,,,..,,,,.,.:rmu 

In this pa.per, we consider the situation where the controllers do not cooperate and might have 
different objectives" If the seoond controller does not know the objective of the controller of the 
MDAP, then he may still try to use a min-max to a control strategy that 
guarantees the best performance under the -worst p06Sible strategy of the MDAP controller. This 
naturally leads to a zero-sum stochastic game, where the MDAP controller plays against the 
seoond controller. 

Another possible motivation for this model is when there is only one controller of a queueing 
system; the arrival process to that system is characterized by some parameters that may change in 
time in a way unpredictable the controller. The controller may wish to design a control strategy 
that gua:rantees the best pe.rforma.nce under the v.rorst possible (time dependent) parameters of 
the a.rriva.1. process. Here again, we end up with a r.ero-sum game between the MDAP (player 1), 
that models the arrival proooss, and the controller (player 2). 

The use of the MDAP in the setting of a zero-sum game allows us to obtain structural results 
for the optimal strategy of player 2. We illustrate this by two examples where the optimal. 
min-max strategies of player 2 are in fact explicitly obtained. In the next section, we will show 
the optimality result for the asymmetric model of for scheduling of customers, of which the 
optimality of shortest queue routing (known as SQP) is a special case. We use a model known 
as a "stochastic game with complete information," for which deterministic policies exist fur both 
players (:see, e.g., the survey by R.agha.van and Fila.I' [3j). 

In Section 3, we extend this result to the casE of control with delayed. information. More 
specifically, we first consider the problem where the state of the MDAP reaches the controller 
(player 2) after some delay. This, too, results in a "stocha.."itic game with complete information." 
We then study the case where the information on both the state and the action of the MDAP is 
delayed. This results in a standard stochastic game for which the optimal policy for both players 
may need randomization. 

In Section 4, we consider the model of [2] where one or more servers a.re to be a.ssi.g:ned to 
customers of different classes. Here the results for player 2 are different than in the case of 
cooperation between the players, but in the same spirit. 

We finally mention other references where stochastic games were applied in queueing models 
and the structure of optimal policies was obtained. Altman and Shimkin considered in [4] a 
non.zero-sum game with an infinite number of players to solve the problem of choosing between the 
use of an individual personal computer and a central computer, whose capacity is simultaneously 
shared between different users. Using coupling and sample-path methods, all Nash optimal 
policies were shown to be of threshold type. This then enabled the computation of an optimal 
threshold. Hsiao and Lazar l5J obtained threshold equilibrium p<>licies for a decentralized flow 
control into a network using the product form of the network as well as Norton's equivalent. 
The threshold policy is then obtained through a Linear Program. Other results on flow control 
problems under worst case service conditions have recently been obtained by Altman !6, 7] using 
tools from zero-sum stochastic games. Ki.ienle !8] used dynamic programming, and especially 
value iteration, to solve an inventory control problem under worst case demand conditions. He 
mode.led the problem as a stochastic zero-sum game with full information and identified the 
structure of an optimal policy of the controller, known as the (s,S) policy. For a recent survey 
on stochastic games, see Raghava.n and Fila.r 13]. 



143 

2. RESULTS ON THE CUSTOMER ASSIGNMENT MODEL 
We start by formulating the model of the stochabi;ic game for the uniformized model. 
We consider a state space by a product of t'WO :space.s: the sts.te of the MDAP X, usumed 

to be finite, times the state of the queueing system L = 0~1 L,, where L.l = {O, l, ... , Lj }, and 
Li > 0 is the sme of queue j (which may be either finite or infinite). Let L = (Li,... be 
the vector of queue lengths. A typical element of the sta.te space is deooted (x, i), with x E X 
and i = ( i 1 , ... , E L the number of customers in the m queues incl:uding the ones in service. 
Let e" denote an m-dimensional vector with all entries 100r0 except for the ith entry, which is one. 

The probability of a sucressful service in queue j is µ.1 . Without loss of generality, we 88Sume 
that JJ1 2: · · · 2: µ,.,.. 

The finite space of actions of the MDAP (player 1) is A (different actions may be available in 
different states). A..,.11,. is the probability that the MDAP moves from x toy if action a was chosen, 
and q30 .. si is the probability that a cu."!tomer arrives if the arrival process moves from x to y using 
action a. We a."lSwne, without loss of generality, tha.t for any (x, i) and a, I:,,\.,,.,,+ L:;':.1 µj = l. 

The finite space of actions available to the second player (controller) is B = { 1, ... , m}. An 
action b E B has the meaning of assigning a customer to queue b. HO'IVe\"er, we assume that if a 
queue is full, then a. customer cannot be 3SSigned to it. If all queues are full, then the customer is 
lost. We assume in this section that player 2 takes a.n action immediately after an arrival occurs 
(hence, after a. transition in the MDAP occurs), already knowing the new state of the MDAP. 

A precise description of the decision process (transition probabilities and the state space) is 
given in [9, Section 5.lj. (The state should in fact include a mark of whether an arrival just 
occurred. Only at such states can player 2 take actions, whereas player 1 can take actions in the 
remaining states. The resulting game is then seen to be in fact a "complete information" game. It 
is known that fur these games there exist optimal polides which do not require randomizations.) 
In our model, it will, however, suffice to construct the dynamic programming equation. 

Let Ube the set of policies for player 1 and W the set of policies for player 2. Let (X(s),l(s)), 
A(s), B(s), s = 0, ... , n, denote the state and action processes. 

The cost for a. horizon of length n, for 8J1 initial state (x, i) and policies u, w is denoted by 
v(.,,,,:,u,w)' We assume that there is a. terminal cost vf.,,,,) = v?.,,,, .. ,,.,) that satisfies the following 
equations (where n = 0): 

••"' < ,,n 
"(z,i} - "(:r,i") 

if :5 ij,, J1 :5 h i + e3, + e32 :5 L 

if i + e1 :5 L 

if { ~ax(i~1 ,i,~) :5 ~ax(L3.,L32), 
ij, > iJ2• 11 :5 J2 

if j "'Ji,]2, 

(1) 

(2) 

if j = ji, (3) 

ifj=fJ. 

In pa.rticufa.r, we may choose v?,,,.i = v?,,,., ... ,,,,) = L:;':.1 ij· vr.,,., .. ,t11) is given by v{:,i,u,v) = 
E""'' 0 (;,<) v(X (n},J(n))' 

The objective of the controller (player 2) is (PO): find a policy w• that achieves 

supv"'{x,i,u,w) :2: supv11 (x,i,u,w*) =: v(z,i)> 
u€U uEU 

VwE W. 

It is well-known that vc"- •> = sup inf v~,,. "')'and moreover, there is a pair of policies (u•, w'") 
.... , uEU wE.W " , ' ' 

for the two players such that 

m. f ··"' -v"' -v" wEW "(:,i,u•,w) - (z,l,u•,w•) - (:,.;)• 

A policy for player 2 is called Shorter Queue Faster Server Policy (SQFSP) if it satisfies the 
following property: if i;1 < i.;, and j1 < i2 (and i + e;1 + e12 ~ L), then an arriving customer 
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will not be assigned to queue h· In particular, if the fastest queue has the smallest number of 
customers, then w• sends an arriving customer to it. This gives the optimality of the SQP in the 
symmetric case. 

THEOREM 1. There is an optimal policy w* for player 2 which is SQFSP. 
PROOF. We formulate the dynamic programming equation. If the system is not full, then 

When the system is full, then we have: 

We show by induction on n that vn satisfies (1), (2), and (3). The optimality of SQFSP follows 
from (1) and is seen to be independent of the action in the MDAP. 

The terms in (4) corresponding to the departures I:;:1 µiv(x,(i-ej)+) satisfy the properties 
following the same arguments as in the proof of Theorem 3.1 in [l]. We show how the proof for 
the other term, corresponding to the arrivals, deviates from the proof of Theorem 3.1 in [1]. We 
begin with (1). Introduce the following notation: 

f(i,a) = LAxay ( qxaymjn{v(y,i+e;)} + (1 - Qxay)v(y,i)) -
y 

It is shown in [1] that f(i+ej"a) ~ f(i + eh,a) for all a and suitable j 1 and j 2 (i.e., as specified 
in equation (1)). If a* is the minimizing action for the MDAP in state (x, i +eh) (note that in [l] 
both the MDAP and the controller minimize), then the proof in (1] proceeds as follows: 

This can easily be adapted to the current setting. Let a* be maximizing action of the MDAP 
{player 1) in (x, i + ei1 ). Then 

which establishes (1). The remaining proofs of (2) and (3) are similar. I 
REMARK 1. Note that there can be more than one optimal policy. This happens, for example, in 
the case of a symmetric model (i.e., µi = · - · = µm) if there is more than one shortest queue. It 
is also possible that there is an optimal policy which is not a SQFSP. This happens, for example, 
in the trivial case that v~x,i) = 0 for all x a.nd i. However, there is always at least one optimal 
policy which is SQFSP. This explains the formulation of Theorem 1. 

3. CUSTOMER ASSIGNMENT MODEL 
WITH DELAYED INFORMATION 

We consider the same model as in the previous section with one exception. Player 2 takes an 
action immediately after an arrival occurs; however, due to information delay, it does not have 
the knowledge of the new state of the MDAP. As a result, we may consider this action to have 
been taken already prior to the arrival (since no new information is obtained by player 2 in the 
arrival epoch). 



We shall thus MBume that the decision !nstants for the players a.re the sazne; each time a 
tr&DSition occurs or a tra.nsltion in the MDAP), both players take a. decision. The 
decision of player 2 should be oov.-ever' as the action to be taken when there will be 
a. future arrival. 

We further consider two versions of that g11.me, depending on whether or not the information 
oo the action of player l is too. 

(Pl) When a. customer a.rrivt:,>S, then player '.2 already has the information on the last action 
of pla.)~r L Hence, at each decision epoch, 1 takes a decision first, and only then 
player 2 takes a decision, knowing the decision of player 1. 

( P2) When a customer arrives, then player 2 does not yet have the information on the last act.ion 
of player l. Hence, at ea.eh decision epoch, the players truce their actions independently. 

To summarize, the information available to ea.eh player at a. given decision epod1 consists of all 
previous states and actions of both players, as well as the current state of the system. Moreover, 
in (Pl), at any time n, player 2 has the information on the decision of player 1 at time n. 
Problem (Pl) is known as a stochastic game with complete information. It is knawn that for 
these games there exist optimal policies which do not require randomizations (for both players), 
whereas in (P2), randomized policies a.--e usually needed to obtain optimality. Since the action of 
playe.r :2 is interpreted as the decision to be ta.ken when a future arrival occurs, the knowledge of 
the current state indeed grasps the fact that information is delayed, and thus, when that arrival 
will occur and the MDAP will change its state, the new state will not be available to player 2. 

Since the amount of information that player 2 possesses in (Pl) when making a decision is less 
than in (P2), and that is less of the information he has in (PO) (of the previous section), the 
value tl' will satisfy 

v(PO) :S v(P1i :S v(p2l. 

The transition probabilities (for all three scenarios) a.re given by: 

'P. A.:i:.ay{l - qza.y) + I:;:,1 µ:i l{iJ = 0, y = x} if k = i, { 

Azay<l:i:ay if k = i +et,, 

\z,i),a,b,(y,k) = "f k · ·. 0 µ3 i y == x, == i - e;, i 1 > , 
0 otherwise. 

(As in the previous section, we 11.SSume that the rates are already normalized so for any (x, i), a, 
and b, we have 'L:Pcx.•),c.,b,(y,k) = 1.) If all queues are full, then 

y,k 

{ 
A.:i:,.11 if k = i, 

'P(x,<), .. ,b,(y,lc:J = µ3 if y = x, k = i - e,, 
0 otherwise. 

For a set II, let M(Il) be the set of probability measure over IT. For a. function (matrix) 
f: Ax B _.Rand a E M{A), {3 E M(B), l•1e denote 

f(o:,b) := L f(a,b)o:(da), 

f(a,{3) := L f(a,b)P(db}, 

f(o:,fj) :=Li f(a,b)cx(da)P(db). 

Let val f denote the value of the matrix game/, which is given by 

va.J.f"" sup inf /(o,/3}. 
0rEM(A) 6EM(B) 
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val f is known to satisfy 
val/ = inf sup f(a,/3). 

/3EM(B) aEM(A) 

Moreover, there exists a pair {a*, /3*), a* E M (A), /3* E M (B), such that 

val/ = inf f(a*,(3) = sup f(a,{3*) = f(a*,[3•). 
J3EM{B) aEM(A) 

( o:* , /3*) are said to be optimal for the matrix game f. 

THEOREM 2. Consider problems (Pl) and (P2). For each one of these problems, there is an 
optimal policy w* for player 2 which is SQFSP. 

PROOF. We formulate the dynamic programming equation for the two problems. If the system 
is not full, then 

(Pl): v(x;il = m:xintn {L.: A:i:ay ( qxayv(y,i+eb) + (1 - qxay)v(y,i))} + f µjv(x,(i-e;)+)> 
y 3=1 

(P2): v(x;,) = val {L \i:ay ( qxayv(y,i+eb) + (1 - qxay)v(y,i))} + f: µivfr,(i-e1 )+) • 
y J=l 

When the system is full, then we have for both problems: 

v(x;i\ = m:x { L Axa11V(y,i)} + f µbv(x,(i-eb)) · 
y b=l 

We show by induction on n that vn satisfies (1), (2), and (3). Property (1) will then enable us 
to obtain the optimality of SQFSP. 

The terms for (Pl) and (P2) corresponding to the departures, L:;1 µjvfx,(i-e1 )+)• satisfy the 
properties following the same arguments as in the proof of Theorem 3.1 in [l]. 

We show that the arrival terms in the expression for vn+l of (Pl) satisfy (1). Let 

f (i, a) = nvn { ~ Axay ( qxayv(y,i+eb) + (1 - qxav)v(y,i))}. 

Let b* be the minimizing action for f(i + e12 1 a). We show that f(i +ej1 ,a) :5 f(i + e12 1 a) for 
all a and suitable ji and j2 (as specified by equation (1)). First consider the case b* = j 1 . Then 

f(i + ej, 'a) :5 L >-xay ( qxayV(y,i+e;i +e;2l + (1 - q;i;ay)v(y,i+e;,)) s f(i + e,,, a), 
y 

the last inequality following by (1). If b* =f. j1,J2 then 

f(i + ej,, a) :$ L Axay ( qxayvfii,i+eti +eb•) + (1 - qxay)v{y,i+e;,)) :5 f(i + e32, a), 
y 

the last inequality following again by (1). By (1) we can choose b* -f:. h· This establishes that 
f(i+eii,a) :5 f(i +eh, a) for all a and suitable Ji andj2. Using the same arguments as in the 
proof of Theorem 1, we conclude that (1) holds for the arrival term in the expression for vn+l. 

Now consider problem (P2). Define, for o: E M(A), 

](i, a) ="}in {2: /3(b) L a(a) L Axay ( qxayVCv,i+eb} + (1 - q.,ay)v{y,i))} 
b a y 

= m£n { ~ a(a) ~ Axa11 ( q.,a11V{11 ,i+eb) + (1 - qxay}v(11,i))}. 
(5) 



Similarly t-0 the prt::vious case, we c1.1.n show that 
holds for the arrival term il1 t.be expression for 

It cs.n be shown that v"+ 1 satisfies 
we e:,."tablisbed induction that v" satisfies 
and (P2). 

147 

and (3) for both models (Pl} &nd (P2). Hence, 
and for all n, for both models (Pl) 

For problem (Pl), the optimality of SQFSP follows immediately from (1) and is seen to be 
independent ofthe oction in the MDAP. Consider {P2) and cbOOSl!l /3 E M(B). Sup~ P(j2) > O, 
while there is a ]1 such that )1 (Uld )2 satisfy the conditions of equation Then the term in 
the first curly brocJret in equation does not increase, for each policy a of player 1 by using {3, with = {3(j) if j ~ j 1,f:;i, ) = + and = 0. Hence, we obtain the 
optimality of a SQFSP for player 2. I 
REMARK 2. In genera.I, in (P2), both players need to r!'l.Ildomiz.e, but player 2 can restrict to 
actions which OOO.."lg to a SQFSP policy. However, in some states (in some mode.ls like the 
symmetric, in all states), player 2 uses one action with probability 1. In these states, player l 
does not randomize either. 
REMARK 3. In [lj, model (PO) was analyzed in an MDP framework, Le., both players cooperate in 
order to minimize the (common) co..."i:. (Pl) axid (P2) could also be con.<>idered in such a framework 
and would yield the optimality of the SQFSP policy by the same technique as we used in this 
section. Note, however, that in the MDP case, (Pl) and (P2} have the same optimal values and 
optimal (deterministic) policies. Indeed, since in the MDP case an optimal deterministic policy 
is known to exist, the controllers need not be told the informa.tion on the actions of each other 
in order to know them a.ccura.tely, since these actions can be deduced directly from the state of 
tbe system. 

4. RESULTS ON THE SERVER ASSIGNMENT MODEL 
In !2J, both multiple and single server systems a.re studied. We start with the single server 

model. Customers arrive according to an MDAP (again with transition probabilities >..,,.11 ) in m 
queues, where qi,,.!I is the probability of a.n arrival in queue j. Customers in queue j have an 
exponential service time distribution with parameter J.1.r In this model, there is a. single server, 
and player 2 has to decide to which queue the server will be assigned. 

We shall use the same notation as in Sections 2 and 3; the only difference is that this time 
the meaning of an action b E B of player 2 is to assign the server to queue b. Each player takes 
decisions based on the history of previous states and actions as well as the current state. Denote 
µ = ma.x µ.i. We get the following dynamic programming equation: J 

v(x~;J == m:x { L A:ray (f tfxa11 vii,,.+e,) + (1 -f q;,ay) v(y,t)) } 
11 J=l J=l 

+ mln {µi.v~.i-eb) + (µ - µ.,,)v(:r,•l}. 
Note that the dynamic programming equation resembles the one for (Pl) or (P2) in the previous 

section rather than (PO). This is rela.t.ed to the fact that in (PO) in Section 2, player 2 could 
take an action only immediat.ely after an arrival occurred (and a transition in the state of the 
MDAP). 

For independent arrivals and linear costs, i.e., v~:r,i) = Ei c;i,, the µc-.rule [2] is known to be 
optimal. Reorder the queues such that µ 1c1 ~ • • · ?!: JJ.mCm· For arrivals ac.cording to an MDAP, 
the extra. condition µ 1 :S ... µ.,. was needed in [2J. In the present setting, where maximizing 
actions are chosen in the MDAP, we have to assume µ1 ~ · · · ~ J.im instead. Indeed, under this 
assumption, we can rewrite the following basic inequality for the proof of optimality: 

for i1 < h 
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for Ji< 

(t. 
and if a"' is the maximizing action in 

proving the optimality of the µc-rule if µ 1 ?: · · · ?: µ..,.,.. For the multiple server case, µ. 1 ::::; • ·. '$ ~ 
is a.loo required for proving the inequality for the terms concerning service of customers. Thus, 
in this case, the µc-rule is only optimal if µ 1 = · · · = J.Lm· 
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