
Compositional Analysis for Concurrent Constraint Programming*

Moreno Falaschit Maurizio Gabbrielli; Kim Marriott§ Catuscia Palamidessi1

Abstract

We propose a framework for the analysis of con­

current constraint programming (ccp). Our ap­

proach is based on simple denotational semantics

which approximate the usual semantics in the sense

that they give a superset of the input-output relation

of a ccp program. Analyses based on these seman­

tics can be easily and efficiently implemented using

standard techniques from the analysis of logic pro­

grams.

1 Introduction

Concurrent constraint programming (ccp) [12,

13, 14] is a new programming paradigm which el­

egantly combines logical concepts and concurrency

mechanisms. The computational model of ccp is

based on the notion of constraint system, which con­

sists of a set of constraints and an entailment (impli­

cation) relation. Processes interact through a com­

mon store. Communication is achieved by telling

(adding) a given constraint to the store, and by

*This work has been partially supported by ESPRIT BRA

6707, ParForce.
fDipartimento di Elettronica e Informatica, Universita di

Padova, Via Gradenigo 6/ A, Padova, Italy.

e.mail: falaschi@di.unipi.it.
lCWI, P.O. Box 4079, 1009 AB Amsterdam, The Nether­

lands. e.mail: gabbriOcwi.nl.
SDepartment of Computer Science, Monash University,

Clayton 3168, Victoria, Australia.

e.mail: marriott@bruce.cs.monash.oz.au
fDipartimento di lnformaticae Scienze dell'lnformazione,

Via Benedetto XV, 3, Genova, Italy.

e.mail: catuscia@di.unipi.it.

1043-6871/93 $03.00 © 1993 IEEE
210

asking (checking whether the store entails) a given

constraint.

There is a growing interest in both the theoreti­

cal aspects and the practical applications of ccp lan­

guages. However, before their full potential can be

realized there is a need for a framework in which to

express and develop sophisticated dataflow analy­

sis which can be used in compilers to produce more

efficient target code and to help programmers to

write error free code. The importance of dataflow

analysis is amplified because of concurrency - both

programmers and compilers find concurrent pro­

grams notoriously difficult to understand and rea­

son about. However it is also hard for dataflow ana­

lyzers to understand concurrent programs and so it

has proven difficult to develop simple, efficient and

precise dataflow analyses for concurrent languages.

The main contribution of this paper is to give a sim­

ple denotational semantics for ccp languages which

we believe is a good basis for efficient yet precise

analysis.

Existing denotational semantics for ccp are not

a very suitable basis for analysis as they deal with

complicated structures such as reactive sequences

([6]) or trace operators ([14]). These structures are

known to be necessary in order to model the observ­

ables exactly, but their complexity makes it difficult

to formalize analyses and prove their correctness.

As a matter of fact, for the purpose of analysis,

this complexity is often unnecessary. In fact analy­

ses necessarily approximate the observables, in the

sense that they lose information. This suggests that

we can use simpler semantics which need not be cor­

rect in the classical sense, but only in the sense that

they are correct approximations.

The underlying idea is to build the denotation

of a ccp process as a combination of the input­

output constraint relation of the component pro­

cesses. The resulting denotation is a set of input­

output pairs. Such a semantics is a good basis for

efficient dataflow analysis because it is similar to

the standard structures used in the analysis of logic

programming languages ((11]). Thus, the same im­

plementation techniques such as memoization ta­

bles [7] and analysis domains and functions can be

used with only slight modification.

Our denotational model approximates the stan­

dard operational semantics in the sense that it con­

tains the input-output information of every possible

computation. This means that it is a suitable ba­

sis for universal analysis in which we wish to verify

that a certain property is satisfied by all computa­

tions. The converse does not hold, i.e. there may

be pairs in the denotation of a process which do

not correspond to any computation. This impreci­

sion is not surprising as it is well known that pairs

of constraints do not contain enough information to

define a semantics which is both compositional and

correct (in the classical sense).

From this denotational semantics we develop a

generic dataflow analysis framework consisting of

semantic equations which are parametric in the

choice of constraints descriptions and the operations

on these descriptions. A particular analysis is ob­

tained by simply choosing a description domain and

defining operations on the domain. Correctness of

the resulting analysis is guaranteed by our construc­

tion and by results from abstract interpretation [5].

Previous related research includes the works of

Codognet et al. [4] and Codish et al. (2, 3],

who have investigated the analysis of concurrent

logic languages, a particular subclass of the ccp

languages. Our work primarily differs from these

in the semantic basis of the abstract interpreta-

211

tion. Codognet et al. base their analysis on a

complex and operational AND-OR tree semantics,

while Codish et al. base their analysis on a transi­

tion system operational semantics. In [3] Codish et

al. define a new operational semantics, which ap­

proximates the standard one, and which is conflu­

ent in the sense that different scheduling strategies

give isomorphic results, thus simplifying the analy­

sis. The loss of precision introduced by confluence is

orthogonal to the loss of precision in our approach.

Another denotational semantics for the analysis of

a particular concurrent logic language was devel­

oped in [9]. This semantics is based on sequences­

like structures and is therefore more complex than

our semantics. Furthermore, our approach has the

advantage that it can be easily implemented using

standard techniques from logic programming.

The rest of this paper is organized as follows.

In the next two sections we recall the definitions

of a constraint system and of the ccp paradigm.

In Section 4 we give the denotational semantics for

the input-output relation associated to the standard

operational model. In Section 5 we consider a vari­

ation of the notion of observables and the corre­

sponding semantics. Finally in Section 6 we give

the equations for the abstract denotational seman­

tics. Section 7 concludes.

2 Constraint systems

In [13] constraint systems are defined following

Scott's treatment of information systems [15]. The

starting point is a set of simple constraints on which

a compact entailment relation I- is defined. Then a

constraint system is constructed by considering sets

of simple constraints and by extending the entail­

ment relation on it. This construction is made in

such a way that the resulting structure is a complete

algebraic lattice, which ensures the effectiveness of

the extended entailment relation. Here we abstract

from this construction, and only consider the result­

ing structure.

Definition 2.1 A constraint system is a complete

(algebraic) lattice (C, $,/\,true, false) where /\ is

the lub operation, and true, false are the least and

the greatest elements of C, respectively1.

In order to treat the hiding operator of the lan­

guage it will be helpful to introduce a sort of exis­

tential quantifier. In this framework it is convenient

to formalize this notion by means of the theory of

cylindric algebras, due to Henkin, Monk and Tarski

[8]. This leads to the concept of cylindric constraint

system. In the following, we assume given a (denu­

merable) set of variables Var with typical elements

x,y,z,

Definition 2.2 Let (C, $,A., true,false) be a con­

straint system. Assume that for each x E Var a

function 3:i: : C -+- C is defined such that for any

c,d EC:

(i) 3:i:(c) $ c,

(ii) if d $ c then 3:i:(d) $ 3:i:(c),

(iii} 3:i:(c /\ 3a:(d)) = 3z(c) /\ 3a:(d),

(iv) 3z(3y(c)) = 3y(3z(c)).

Then C = (C, ~'/\,true, false, Var, 3} is a cylindric

constraint system.

In the following 3:c(c) is denoted by 3:i:c with the

convention that, in case of ambiguity, the scope of

3z is limited to the first constraint subexpression.

(So, for instance, 3zc /\ d stands for 3:i:(c) /\d.) Fur­

thermore, for i = :i:1, ••• , Xn the notation 3:(A)

stands for 3z1 (••• 3a:,. (A) . ..).
In order to model parameter passing, it will be

useful to consider the so-called diagonal formulas

1The entailment relation 1-, which is commonly used in

the literature, is the reverse of$. Formally: Vc,d EC. c I­

d <:} d $c.

212

[8]. We assume that, for x, y ranging in Var, A
contains the diagonal elements da:y which satisfy the

following properties.

(ii) if z # x,y then d:cy = 3 .. (dzz /\dzy},

(iii) if x # y then c $ da:y /\ 3z(c /\ d:i:y)·

Note that if C models the equality theory, then

the elements d:cy can be thought of as the formulas

x = y. In the following, given i = xi, ... , Xn and

ii= YI, ... , Yn, we use the notation d,;rg to represent

dz1y1 A ... A dz,.y,.·

3 The language ccp

In this section we give the definition of ccp, fol­

lowing [14]. We refer to that paper for more details.

We assume given a cylindric constraint system C on

a set of variables Var with typical elements x, y,

The description of the language is parametric with

respect to it, and so is the semantical construction

we develop in this paper. In the following, the nota­

tion x indicates a sequence of the form X1, ... , Xn.

The processes are described by the following gram­

mar

Processes P ::= D.A

Declarations D ::= i I p(i) :- A ID, D

Agents A::= Stop I tell(c) I
E~=I ask(c;) -4 A; I
A II A I 3xA I p(i)

The agent Stop represents successful termina­

tion. The basic actions are given by ask(c) and

tell(c) constructs, where c is a finite constraint, i.e.

an algebraic element of C. These actions work on

a common store which ranges over C. ask(c) is a

test on the current store and its execution does not

modify the store. We say that ask(c) is a guard

and that is enabled in d iff c ::; d. If d is the current

store, then the execution oftell(c) sets the store to

c /\ d. The guarded choice agent 2:7=1 g; --t A; se­
lects nondeterministically one g; which is enabled,

and then behaves like A;. If no guards are enabled,

then it suspends, waiting for other (parallel) agents

to add information to the store. Parallel composi­

tion is represented by II· The situation in which all

components of a system of parallel agents suspend

is called global suspension or deadlock. The agent

3.,A behaves like A, with x considered local to A.

Finally, the agent p(i) is a procedure call, where p

is the name of the procedure and i is the list of the

actual parameters. The meaning of p(i) is given

by a procedure declaration of the form p('fi) :- A,

where y is the list of the formal parameters. We

assume that in a process D .A there is one and only

one procedure declaration for every procedure name

occurring in A; this is not a restriction with respect

to concurrent logic languages, as the presence of

alternative clauses can be simulated by the choice

construct. In the following, we omit the declaration

part when it is empty(<).

3.1 The operational model and the ob­
servables 0

The operational model of ccp, informally intro­

duced above, is described by a transition system

T = (Conf, --+). The configurations (in) Conf are

pairs consisting of a process, and a constraint rep­

resenting the store. Table 1 describes the rules of T

with respect to a given set of declarations D.

The guarded choice operator models global non­

determinism (R2), in the sense that it depends on

the current store whether or not a guard is enabled,

and the current store is subject to modifications by

the external environment (Rl). R3 describes par­

allelism as interleaving. To describe locality (R4)

the syntax has been extended by an agent 3~A in

which x is local to A and d is the store that has

been produced locally on x. Initially the local store

is empty, i.e. 3.,A = 3~rue A. The execution of

213

a procedure call is modeled by R5. Ai stands for

3~''"'3~.sg and it is used to establish the link between

the formal parameters 'ii and the actual parameters

i. The variables ii are introduced in order to avoid

problems related to names clash between i and fi.
They are assumed to occur neither in the procedure

declaration nor in the procedure call.

We describe now what we intend to observe

about a process. Intuitively, for every possible ini­

tial store (input) we want to collect the results (out­

puts) of all possible computations: in the finite

case the final store and the termination mode (suc­

cess, failure or deadlock); in the infinite case the

limit of the intermediate stores. Note that we do

not have explicit termination modes in the transi­

tion system since we can extract this information

from the final configuration. In fact, the compu­

tation is successful iff the final configuration is of

the form (Stop II · · · II Stop, c) with c # false,

it fails iff the final store is false and it deadlocks

otherwise. Actually, in ccp successful termination

can be detected and represented in the final store

(see [16], the short-circuit algorithm). In conclu­

sion, for finite computations we can restrict our­

selves to observe the final store without loss of gen­

erality. Since ask does not modify the store, and

tell increases it, the evolution of the store during

the computation is monotonic. Hence we can re­

strict to consider as possible input-output pairs the

set P = {(c,d) I c,d EC and c ~ d}. In the follow­

ing we assume the set of declarations to be fixed.

Given a set X, P(X) denotes the set of all the sub­

sets of X.

Definition 3.1 The mapping 0 : Agents -t P(P)

which gives the observables of an agent, is defined

by O(A) = Ofo(A) U01nr(A), with

OFin(A) = {(c,d) I there exists B s.t.

(A, c) --+* (B, d) f-+ }

Rl (tell(c), d)-+ (Stop, c /\ d)

R2 (I':7=1 g;-+ A;,d)-+ (Aj, d) j E (1, n] and 9i = ask(c) and c :S d

R3

R4

(A, c) -+ (A', c')

(A II B, c) -+ (A' II B, c')

(B II A, c)-+ (B II A', c')

(A, d /\ 3.,c) -+ (B, d')
d) d1 I (3.,A, c -+ (3., B, c /\ 3.,d)

R5 (p(i), c)-+ (~~A, c) p(Y'J : -A is the declaration for

p(i) in D

Table 1: The transition system T.

01nr(A) =

{ (c, lubnew(cn)) I c =co and

there exist B1, ... , Bn, ... s.t.

(A,co)-+ (B1,c1)-+ ... -+ (Bn,cn)-+ ... }

where f-+ denotes the absence of outgoing transi­

tions and -+* denotes the reflexive and transitive

closure of-+.

4 An approximating Denotational

Semantics

In this section we discuss a compositional se­

mantics which approximates the observables and

is based on input-output pairs, hence it is simple

enough to provide a suitable basis for efficient com­

positional analysis. The semantics will be a proper

approximation, because in general modeling exactly

the observables of a concurrent language (composi­

tionally) requires structures more complicate than

input-output pairs. It is easy to show that the

semantics CJ previously described is not composi­

tional. The following is a counter-example (we use

214

'+'as a syntactic abbreviation for E).

Example 4.1 Let a, b, c E C be constraints ordered

by the relation a :S b :S c and let us consider the

agents A1 and A2

A1 = (ask(true)-+ tell(a))

+
(ask(b)-+ tell(c))

A2 = (ask(true)-+ tell(a))

+
(ask(b)-+ tell(c))

+
{ask(true)-+ (tell(a) II ask(b)-+ tell(c)))

It is easy to check that O(Ai) = CJ(A2). However,

given the agent

B =ask(a)-+ tell(b)

we have CJ{A1 11 B) -:f. O(A2 II B) since (true, c) E

O(A2 II B) \ CJ(A1 II B).

The problem here is that, when considering the

abstract input-output behaviour, the (agent corre­

sponding to the) third branch of the process A2 is

equivalent to the union of the first two branches. In­

deed, the control structure disappears and the third

branch is represented by the two pairs (true, a} and

(b, c).

In the following we present two denotational se­

mantics D and Dfa which approximate 0 and OFin

respectively. We introduce DF;• because it is more

accurate than D, hence it is preferable when one is

not interested in the analysis of infinite computa­

tions.

We require both semantics to satisfy the equa­

tions of Table 2, which reflect the transition system

in Table 1. In the equation for II, the symbol o repre­

sents the composition of relations, which is defined

as Rt o R2 = { (r1, r2) I there exists r s.t. (ri, r) E

Ri and (r, r2} E R2}· The transitive closure is

extended to the infinite case, i.e. if the pairs

(ro, ri), (ri, r2), ... ,(rn, rn+i), ... are in R, then the

pair (ro, lubnewrn) is in the transitive closure of R.

In order to describe infinite computations, we fol­

low the TCSP approach. In TCSP a process which

diverges is regarded as a source of nondeterminism.

The extreme case is represented by a process which

loops without performing any visible action. The

denotation of such a process will be the maximal

set of pairs P = {(c,d) I c,d E C and c :S d},

representing a totally unpredictable behavior. This

leads to a least fixpoint approach, w.r.t. the ordering

'D1 :Sn V2 iff, for all agents A, Di[A] 2 'D2[A].

Definition 4.2 The denotational semantics V

Agents --+ P(P) is the least (wrt :Sn) function

which satisfies the equations in Table 2.

Proposition 4.3 For any agent A, O(A) ~ V[A].

The crucial point in this proposition is the deno­

tation of II· The proof that O(A II B) ~ V[A 11 B] is

based on showing that every interleaving of A and

B can be mimicked by an alternation of maximal

transition sequences starting from A and from B.

215

This involves also the proof of commutativity and

associativity of the denotation of II·
In general, 0 is properly included in V for three

reasons. One reason is the treatment of II in D,

which allows the parallel components to restart

their computation from the beginning, at each step.

For instance, consider again the agents Ai, A2 and

B of Example 4.1. In the denotational semantics of

Ai II B it is possible that Ai chooses the first branch

and produce a; then waits for b, starts again from

the choice point, chooses the second branch and pro­

duces c. Thus Ai II B and A2 11 B are equated by

the denotational model. The second reason is the

treatment of E, which is modeled as local choice.

Formally this is expressed by the fact that the sus­

pension of one guard in the store c is sufficient to

generate the pair (c, c}. Representing global choice

would require the information about the interleav­

ing points. In a semantics based on pairs, this would

imply to associate a pair to every transition step,

which would cause a worse loss of accuracy. The

third reason is inherent to the way infinite compu­

tations are modeled. Consider the definition

p :-p.

The denotation of p is the maximal set of input­

output pairs P: V[p] = P. On the other hand, the

operational semantics of p is O(p) = {(d, d) I d E

C}.

This 'lack of precision' in modeling the infinite

computations seems to be unavoidable in the input­

output semantics. An exact characterization of infi­

nite processes would require more complicate struc­

tures, such as metric spaces and sequences of con­

straints. The third problem does not occur if we

restrict to finite computations. This can be done

by considering the greatest fixpoint instead of the

least one.

Definition 4.4 'DFia : Agents ~ P(P) is the

greatest function which satisfies the equations in

Dl D[Stop] = { (c, c) I c EC}

D2 D[tell(c)] = {(d, d /\ c) I d EC}

D3 D[2:?:1 ask(c;) -+Ai]= U7:;{(c, d) I c; $ c and (c, d) E V[A;]}

u
LJ~=;{ (c, c) I c EC and c; 1: c}

D4 D[A II B] = { (c, d) I (c, d) is in the transitive closure of D[A] o D[B]

and (d, d) E D[A] n 1J[B] }

D5 1J[3.,A] = { (c, d) I there exists d' EC s.t. (3xc, d'} E V[A] and d = c /\ 3.,d'}

D6 D[p(x)] = {(c,d) I (c,d) E D[~iA], where p(YJ: -A

is the declaration for p(x) in D }

Table 2: The denotational semantics

Table 2 (with the difference that here we can re­

strict to the finite transitive closure).

Note that for the previous definitions of p and q

we have 1JF;n[p] = O(p) = 0.

Proposition 4.5 For any agent A, OFin(A) ~

1Jp;,,[A].

5 Upward closed semantics

If we look at the parallel operator as conjunc­

tion, at the choice operator as disjunction, and at

the guarded statement as implication, then we can

regard a program as a logical theory. This is the so­

called declarative interpretation of cc programming,

and concurrent logic programming. From this point

of view, it makes sense to define a notion of observ­

ables which can be interpreted as the set of "logical

consequences" of the program. Formally, we can

216

obtain this set by collecting all the logical conse­

quences of the final results for a given initial con­

straint. This is equivalent to close 0 upward w.r.t.

the second component, and we denote these observ­

ables by ou. Given a program D and an agent A,

(c, d) E ou(A) will be read as "if c and D and A

then d".

It will turn out that ou can be approximated

more precisely than 0 (note however that ou is less

informative than 0). In fact, one of the reasons

of difference between 1) and 0 is that D[A] may

contain a pair (c, d) which is not in O(A) because it

is obtained by "restarting a parallel component of A

from the beginning". In this case, however, O(A)

will contain a pair (c,d') with d' $ d. Now, the

point is that, in the upward closed semantics, this

pair induces also the presence of (c, d). Therefore

this difference disappears.

For a poset (X, $),we denote by pu(X) the set

of the upward-dosed subsets of X, i.e. Y E pu (X)

iff Y ~ X and for each x, y E X, if y E Y and y ::; x

then x E Y.

Definition 5.1 The mapping ou : Agents -t

(Pu(C) -t pu(C)) is defined by ou(A)C =
0~1 .. (A)C U O~,(A)C, where

0~1.(A)C = { d I there exist c,d',B. s.t.

(A, c) -+• (B, d') f-t and d'::; d}

O~,(A)C =
{di there exist co,B1,c1,. .. 1 Bn,Cn 1 ••• s.t.

(A, co)-+ (B1,c1)-+ ... --+ (Bn,cn)-+ ...

and for each n E w, en $ d}

The denotational model corresponding to previ­

ous operational semantics is defined as follows.

Definition 5.2 vu, V~1 .. : Agents -t (Pu(C) -t

pu (C)) are the least and the greatest functions

which satisfy the equations in Table 3. The order­

ing is the standard one: V 1 $ V2 iff for each A E

Agents, for each C E pu(C), V2[A]C ~ V1[A]C

holds.

The following theorem states the adequacy of the

upward closed semantics for analysis.

Theorem 5.3 For any agent A, ou(A) ~ vu[A]

and 0~1 .. (A) ~ V~1JA].

5.1 Denotations as closure operators

In this section we show that the upward closed

denotational semantics of an agent is a closure

operato-?. This allows us to follow the approach

of [14], where a process is represented by a set of

constraints, namely the fixpoints of the associated

closure operator. The advantage is that the seman­

tic operators can be defined in a simple way; in par­

ticular, II is given by set intersection. In our case,

the resulting construction looks very similar to the

semantics of Angelic ccp as defined in [10).

2 Given a poset (X, $),a function f: X-+- X is a closure

operator iff f is extensive (V'x E X. x $ f(x)) monotonic

(Vx,y E X. x $ y => J(x) $ /(y)) and idempotent (Vx E

X. f(f(x)) = f(x)).

217

Proposition 5.4 For every agent A, vu[A] is a

continuous closure operator on (Pu(C), 2)-

Since vu[A] is a closure operator, we can re­

define the equations of Definition 5.2 using fix­

points. In fact it is well-known that a closure op­

erator on a complete lattice can be represented by

the set of its fixpoints: for F = {x I /(x) = x}
we have f(x) = glb(z n F) = min(z n F), where

it = {y E X I x $ y}. Furthermore, we show

that we can restrict to consider only the singleton

fixpoints, namely objects of the form c. Such a re­

formulation is simpler, hence more convenient for

abstract interpretation.

Let puc (C) be the set of upward closed subsets

of C which have a finite set of minimal elements,

namely the Scott-compact elements of pu(C). The

lattice (puc(C), 2) is a sub-lattice of (Pu(C), 2)

with lub operator given by set intersection and glb

operator given by set union. Moreover (puc(C), 2)

is a CPO isomorphic to the Smyth power-domain

over (C, $). Note that ('Puc(c), 2) is not a com­

plete sublattice because union and intersection of

infinite compact sets might not be compact.

Proposition 5.5 puc(C) is closed wrt the deno­

tations of agents, i.e. for any agent A, for each

C E puc(C), vu[A]C E puc(C).

As a consequence, non-compact sets are never

introduced during the computation and we can re­

duce to the domain puc(C), i.e. we can define

vu : Agents -t ('Puc(C) -+- puc(C)).

Proposition 5.6 For any agent A, vu[A] is lin­

ear, i.e. VG, C' E puc(C), vu[A](CU C') =
vu[A] CU vu[A] C'.

As a consequence, for all agents A, vu[A] can

be represented by the subset of its fixpoints which

are of the form c with c EC.

DUl vu[Stop]C = C

DU2 vu[tell(c)]C = {d Id E c and c $ d}

DU3 vu n::~=l ask(ci) -+Ai] c = u~=l { d I there exists e E c s.t. c; $ c and d E vu[A;]{ c}}

u
LJ?=i{d I there exists e E C s.t. e; f: c and c $ d}

DU4 vu[3.,A] c = {d I there exists c E c s.t. d' E vu[A]{3.,c} and c /I. 3.,d' 5 d}

DU6 vu[p(i)]C = {d Id E vu[~~A]C where p(Y): -A is the declaration for p(X) in D}

Table 3: The upward closed denotational semantics vu.

Definition 5. 7 S, SFin : Agents --+ 'P(C) are the

least and the greatest function which satisfies the

equations in Table 4, respectively.

Proposition 5.8 For each agents A and for each

C E pu0 (C) we have

vv[A]C = {d I there exists c EC, there

exists d' E S[A] n c s.t. d' 5 d}

6 Analyses

In this section we show how the semantics pre­

sented in the previous sections can be used for pro­

gram analyses. Abstract interpretation [5] formal­

izes the idea of "approximate computation", where

descriptions of data replace the data itself. The

idea is that an analysis is a computation in which

the program is evaluated using a non-standard in­

terpretation of data and operators in the program.

According to this view the semantics which we have

presented are mimicked by the abstract semantic

equations. Constraints are replaced by descriptions

218

of constraints and the operators are replaced by op­

erators which approximate the concrete ones.

Definition 6.1 A description (A, ex:, C) consists

of an abstract domain A, a concrete domain C, and

an approximation relation ex:~ A x C.

The approximation relation is lifted to functions

and relations as follows:

• Let (A1, a1, C1) and (A2, a2, C2) be descrip­

tions, F : .A1 -+ .A2 and F' : C1 -+ C2 be func­

tions. Then F ex F' iff Va E .A1. Ve E C1. a ex1

e => F(a) oc2 F'(e).

• Let (A1, ai, C1) and (A2, a2, C2) be descrip­

tions, R ~ .A1 x .A2 and R' ~ C1 x C2 be rela­

tions. Then Rex R' iff'v'a E .A1. Ve E C1. a oc1 c

and (e, c') ER'=> 3(a, a') ER and a' cx:2 c'.

For cc languages, we are interested in descrip­

tions of constraint systems. We give the following

definition, which allows us to develop a composi­

tional analysis based on V.

Sl S[Stop] = C

S2 S[tell(c)] = c

S3 S[E~1 ask(c;)-+ A;]= U7= 1 S[Ai]n
checkc;

u
U?:dc I c EC and c; 1:. c}

S4 S[A II B] = S[A] n S[B]

S5 S[3zA] = {c I c EC and there exists d E S[A] s.t. 3zc = 3zd}

86 S[p{z)] = S[A.~A], where p(Y) : -A is the declaration of p(i) m A

Table 4: The singleton semantics S.

Definition 6.2 A constraint system description

for a cylindric constraint system C = (C, $

, /\,true, false, Var, 3) is a tuple (A, ex, /\.A, ~.A, .,i...A

, t.A , 3.A) such that

l. (A, ex, C) is a description,

2 . .A is a complete lattice with ordering $.A,

3. /\.A : A x A -+ .A is extensive in both the argu­

ments and approximates /\,

4. ~.A : C -+ A -+ A and for all constraints

c, >..a' .c~.Aa' is extensive and approximates

>..c'.c /\ c',

5. t.A: C -+ A -+ A and for all constraints c,

>..a' .c t.A a' is extensive and c t.A a' approxi­

mates all constraints c' such that c $ c' and

a' <X c',

6 . .,i.. .A: C -+ A -+ A and for all constraints c,

>..a' .c .,i..A a' is extensive and c .,i...A a' approxi-

219

mates all constraints c' such that c 1:. c' and

a' ex c',

7. for each x E Var, 3-: approximates 3:i:.

In Table 5 we show the semantic equations which

abstract the denotational semantics defined by Ta­

ble 2. This definition also makes use of the possible

entailment relation 1-:0 , s; A x C defined by

a 1-:0 , c <:=> there exists c' s.t. a oc: c' and c $ c',

and the definite entailment relation 1-te/ ~ A x C

defined by

a 1-;tef c <:=> for each c', if a <X c' then c $ c'.

Analogously to the concrete case, abstract deno­

tations of programs are sets of input-output pairs

and we can obtain from the equations two semantics

corresponding to the greatest and the least fixpoint

approach.

Definition 6.3 Let p.A = {(a, b) a, b E

A and a <A b }. The semantics V.A, V~.

Agents --+ P(P.A) are the greatest and the least

functions which satisfy the equations in Table 5, re­

spectively.

Theorem 6.4 For all agents A, V.A[A] ex 'V[AJ

and V~.[A] oc: V";.[A].

Similarly we can obtain the abstract seman­

tics corresponding to the upward closed semantics.

However because of space limitations we leave these

out.

7 Conclusions and future work

We have proposed a framework for denotational

semantics of concurrent constraint languages which

can be used as a basis for compositional analysis.

The main advantage of our construction is the

simplicity of the semantic domains: input-output

relations or functions. This makes it suitable for cc

program analysis, at the price of correctness in the

classical sense.

From well known results we know that the loss

of classical correctness is unavoidable, for such a se­

mantic domain. Hence the only parameter to com­

pare denotational input-output semantics would be

the accuracy of the resulting analysis. In order

to obtain an approximating semantics we have re­

nounced to model faithfully global choice and con­

tinuation point. It would be interesting to investi­

gate alternative approximations based on the same

domain. One possibility is, for instance, to adopt

the idea of [3], where all the alternatives in a choice

are enabled as soon as one of the guards is enabled.

The framework we have proposed can be ex­

tended smoothly to ccp languages with atomic tell

([13]). The only problem is the adaptation of the

finite semantics, in case we want to model the ar­

rest of the computation when the store is incon­

sistent. Consider for instance two processes p(x)

and q(x) which generate the constraint x = a and

220

x = b respectively, and then loop. Their denota­

tions would be empty, whereas their parallel com­

position would stop and generate a failure. One

obvious solution is to introduce an "artificial" ter­

mination mode, which would lead to model partial

computations. However, this extension complicates

the analysis and makes it much less accurate; we

are currently investigating alternative approaches.

Acknowledgements We would like to thank

Enea Zaffanella for his helpful comments on a pre­

vious version of this paper.

References

[1] M. Alpuente, M. Falaschi, and N. Manzo. Anal­

yses of Unsatisfiability for Incremental Logic Pro­

gramming. In M. Bruynooghe and M. Wirsing,

editors, Proc. of PLILP'92, LNCS 631, pages 443-

457. Springer-Verlag, 1992.

[2] M. Codish, M. Falaschi, and K. Marriott. Suspen­

sion Analysis for Concurrent Logic Programs. In

K. Furukawa, editor, Proc. of the Eight Int. Con/.

on Logic Programming, pages 331- 345. The MIT

Press, 1991.

[3] M. Codish, M. Falaschi, K. Marriott, and

W. Winsborough. Efficient Analysis of Concurrent

Constraint Logic Programs. In A. Lingas, editor,

Proc. of /CALP,LNCS 1993.

[4] C. Codognet, P. Codognet, and M. Corsini. Ab­

stract Interpretation for Concurrent Logic Lan­

guages. In S. Debray and M. Hermenegildo, ed­

itors, Proc. North American Conf. on Logic Pro­

gramming, pages 215-232. The MIT Press, 1990.

[5] P. Cousot and R. Cousot. Abstract Interpreta­

tion: A Unified Lattice Model for Static Analysis

of Programs by Construction or Approximation of

Fixpoints. In Proc. of POPL, pages 238-252, 1977.

[6] F.S. de Boer and C. Palamidessi. A Fully Abstract

Model for Concurrent Constraint Programming. In

Al vA[stop] = {(a,a) I a EA}

A2 vA[tell(c)]I = {(a,c6Aa) I a EA}

A3 7JA[E~=l ask(c;)-+ A;]= u~=i{(a,b) I a f-:o. c; and (c; tA a,b) E vA[A;]}
u
u~=i{(a,b) I b = c; +A a and not a r-tef ci}

A4 vA[A II B] = {(a,b) I (a,b) is in the transitive closure of1JA[A]o7J.A[B]

and (b, b) E 7JA[A] n 7JA[B] }

A5 vA [3,,A] = {(a, b) I there exists a' E A s.t. (3:a, a') E 7JA [A] and b = a /'..A :i;;ta'}

A6 vA[p(x)] = {(a, b) I (a, b) E V[~:A] where p(Y) : -A

is the declaration for p(x) in D }

Table 5: The abstract denotational semantics 1JA.

S. Abramsky and T.S.E. Maibaum, editors, Proc.

of TAPSOFT/CAAP, LNCS 493, pages 296-319.

Springer-Verlag, 1991.

(7] S. Debray and D.S. Warren. Functional Computa­

tions in Logic Programs. Proc. of TOP LAS, pages

451-481, 1989.

(8] L. Henkin, J.D. Monk, and A. Tarski. Cylindric

Algebras (Part/). North-Holland, 1971.

(9] K. Horiuchi. Less abstract semantics for abstract

interpretation of FGHC programs. In Proc. of the

lnt. Conf. on Fifth Generation Computer Systems,

pages 897-906, Tokyo, Japan, 1992.

[10] R. Jagadeesan, V.A. Saraswat, and

V. Shanbhogue. Angelic non-determinism in con­

current constraint programming. Technical report,

Xerox Park, 1991.

(11] K. Marriott and H. S~ndergaard. Abstract Inter­

pretation of Logic Programs: the Denotational Ap-

221

proach. In A. Bossi, editor, Proc. of the Italian

Conf. on Logic Programming, pages 399-425, 1990.

(12) V.A. Saraswat. Concurrent Constraint Program­

ming Languages. PhD thesis, Carnegie-Mellon

University, January 1989. Published by The MIT

Press, U.S.A., 1991.

(13] V.A. Saraswat and M. Rinard. Concurrent con­

straint programming. In Proc. of POPL, pages

232-245, 1990.

[14] V.A. Saraswat, M. Rinard, and P. Panangaden. Se­

mantics foundations of Concurrent Constraint Pro­

gramming. In Proc. of POPL, 1991.

[15] D. Scott. Domains for denotational semantics. In

Proc. of /GALP, 1982.

(16] E.Y. Shapiro. The family of concurrent logic pro­

gramming languages. A CM Computing Surveys,

21(3):412-510, 1989.

