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Abstract 

We propose a framework for the analysis of con­

current constraint programming (ccp). Our ap­

proach is based on simple denotational semantics 

which approximate the usual semantics in the sense 

that they give a superset of the input-output relation 

of a ccp program. Analyses based on these seman­

tics can be easily and efficiently implemented using 

standard techniques from the analysis of logic pro­

grams. 

1 Introduction 

Concurrent constraint programming (ccp) [12, 

13, 14] is a new programming paradigm which el­

egantly combines logical concepts and concurrency 

mechanisms. The computational model of ccp is 

based on the notion of constraint system, which con­

sists of a set of constraints and an entailment (impli­

cation) relation. Processes interact through a com­

mon store. Communication is achieved by telling 

(adding) a given constraint to the store, and by 
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asking (checking whether the store entails) a given 

constraint. 

There is a growing interest in both the theoreti­

cal aspects and the practical applications of ccp lan­

guages. However, before their full potential can be 

realized there is a need for a framework in which to 

express and develop sophisticated dataflow analy­

sis which can be used in compilers to produce more 

efficient target code and to help programmers to 

write error free code. The importance of dataflow 

analysis is amplified because of concurrency - both 

programmers and compilers find concurrent pro­

grams notoriously difficult to understand and rea­

son about. However it is also hard for dataflow ana­

lyzers to understand concurrent programs and so it 

has proven difficult to develop simple, efficient and 

precise dataflow analyses for concurrent languages. 

The main contribution of this paper is to give a sim­

ple denotational semantics for ccp languages which 

we believe is a good basis for efficient yet precise 

analysis. 

Existing denotational semantics for ccp are not 

a very suitable basis for analysis as they deal with 

complicated structures such as reactive sequences 

([6]) or trace operators ([14]). These structures are 

known to be necessary in order to model the observ­

ables exactly, but their complexity makes it difficult 

to formalize analyses and prove their correctness. 

As a matter of fact, for the purpose of analysis, 

this complexity is often unnecessary. In fact analy­

ses necessarily approximate the observables, in the 

sense that they lose information. This suggests that 

we can use simpler semantics which need not be cor­

rect in the classical sense, but only in the sense that 



they are correct approximations. 

The underlying idea is to build the denotation 

of a ccp process as a combination of the input­

output constraint relation of the component pro­

cesses. The resulting denotation is a set of input­

output pairs. Such a semantics is a good basis for 

efficient dataflow analysis because it is similar to 

the standard structures used in the analysis of logic 

programming languages ((11]). Thus, the same im­

plementation techniques such as memoization ta­

bles [7] and analysis domains and functions can be 

used with only slight modification. 

Our denotational model approximates the stan­

dard operational semantics in the sense that it con­

tains the input-output information of every possible 

computation. This means that it is a suitable ba­

sis for universal analysis in which we wish to verify 

that a certain property is satisfied by all computa­

tions. The converse does not hold, i.e. there may 

be pairs in the denotation of a process which do 

not correspond to any computation. This impreci­

sion is not surprising as it is well known that pairs 

of constraints do not contain enough information to 

define a semantics which is both compositional and 

correct (in the classical sense). 

From this denotational semantics we develop a 

generic dataflow analysis framework consisting of 

semantic equations which are parametric in the 

choice of constraints descriptions and the operations 

on these descriptions. A particular analysis is ob­

tained by simply choosing a description domain and 

defining operations on the domain. Correctness of 

the resulting analysis is guaranteed by our construc­

tion and by results from abstract interpretation [5]. 

Previous related research includes the works of 

Codognet et al. [4] and Codish et al. (2, 3], 

who have investigated the analysis of concurrent 

logic languages, a particular subclass of the ccp 

languages. Our work primarily differs from these 

in the semantic basis of the abstract interpreta-
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tion. Codognet et al. base their analysis on a 

complex and operational AND-OR tree semantics, 

while Codish et al. base their analysis on a transi­

tion system operational semantics. In [3] Codish et 

al. define a new operational semantics, which ap­

proximates the standard one, and which is conflu­

ent in the sense that different scheduling strategies 

give isomorphic results, thus simplifying the analy­

sis. The loss of precision introduced by confluence is 

orthogonal to the loss of precision in our approach. 

Another denotational semantics for the analysis of 

a particular concurrent logic language was devel­

oped in [9]. This semantics is based on sequences­

like structures and is therefore more complex than 

our semantics. Furthermore, our approach has the 

advantage that it can be easily implemented using 

standard techniques from logic programming. 

The rest of this paper is organized as follows. 

In the next two sections we recall the definitions 

of a constraint system and of the ccp paradigm. 

In Section 4 we give the denotational semantics for 

the input-output relation associated to the standard 

operational model. In Section 5 we consider a vari­

ation of the notion of observables and the corre­

sponding semantics. Finally in Section 6 we give 

the equations for the abstract denotational seman­

tics. Section 7 concludes. 

2 Constraint systems 

In [13] constraint systems are defined following 

Scott's treatment of information systems [15]. The 

starting point is a set of simple constraints on which 

a compact entailment relation I- is defined. Then a 

constraint system is constructed by considering sets 

of simple constraints and by extending the entail­

ment relation on it. This construction is made in 

such a way that the resulting structure is a complete 

algebraic lattice, which ensures the effectiveness of 

the extended entailment relation. Here we abstract 



from this construction, and only consider the result­

ing structure. 

Definition 2.1 A constraint system is a complete 

(algebraic) lattice (C, $,/\,true, false) where /\ is 

the lub operation, and true, false are the least and 

the greatest elements of C, respectively1. 

In order to treat the hiding operator of the lan­

guage it will be helpful to introduce a sort of exis­

tential quantifier. In this framework it is convenient 

to formalize this notion by means of the theory of 

cylindric algebras, due to Henkin, Monk and Tarski 

[8]. This leads to the concept of cylindric constraint 

system. In the following, we assume given a ( denu­

merable) set of variables Var with typical elements 

x,y,z, .. .. 

Definition 2.2 Let (C, $,A., true,false) be a con­

straint system. Assume that for each x E Var a 

function 3:i: : C -+- C is defined such that for any 

c,d EC: 

(i) 3:i:(c) $ c, 

(ii) if d $ c then 3:i:(d) $ 3:i:(c), 

(iii} 3:i:(c /\ 3a:(d)) = 3z(c) /\ 3a:(d), 

(iv) 3z(3y(c)) = 3y(3z(c)). 

Then C = (C, ~'/\,true, false, Var, 3} is a cylindric 

constraint system. 

In the following 3:c(c) is denoted by 3:i:c with the 

convention that, in case of ambiguity, the scope of 

3z is limited to the first constraint subexpression. 

(So, for instance, 3zc /\ d stands for 3:i:(c) /\d.) Fur­

thermore, for i = :i:1, ••• , Xn the notation 3:(A) 

stands for 3z1 ( ••• 3a:,. (A) . .. ). 
In order to model parameter passing, it will be 

useful to consider the so-called diagonal formulas 

1The entailment relation 1-, which is commonly used in 

the literature, is the reverse of$. Formally: Vc,d EC. c I­

d <:} d $c. 
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[8]. We assume that, for x, y ranging in Var, A 
contains the diagonal elements da:y which satisfy the 

following properties. 

(ii) if z # x,y then d:cy = 3 .. (dzz /\dzy}, 

(iii) if x # y then c $ da:y /\ 3z(c /\ d:i:y)· 

Note that if C models the equality theory, then 

the elements d:cy can be thought of as the formulas 

x = y. In the following, given i = xi, ... , Xn and 

ii= YI, ... , Yn, we use the notation d,;rg to represent 

dz1y1 A ... A dz,.y,.· 

3 The language ccp 

In this section we give the definition of ccp, fol­

lowing [14]. We refer to that paper for more details. 

We assume given a cylindric constraint system C on 

a set of variables Var with typical elements x, y, . ... 

The description of the language is parametric with 

respect to it, and so is the semantical construction 

we develop in this paper. In the following, the nota­

tion x indicates a sequence of the form X1, ... , Xn. 

The processes are described by the following gram­

mar 

Processes P ::= D.A 

Declarations D ::= i I p(i) :- A ID, D 

Agents A::= Stop I tell(c) I 
E~=I ask(c;) -4 A; I 
A II A I 3xA I p(i) 

The agent Stop represents successful termina­

tion. The basic actions are given by ask(c) and 

tell(c) constructs, where c is a finite constraint, i.e. 

an algebraic element of C. These actions work on 

a common store which ranges over C. ask(c) is a 

test on the current store and its execution does not 

modify the store. We say that ask( c) is a guard 

and that is enabled in d iff c ::; d. If d is the current 

store, then the execution oftell(c) sets the store to 



c /\ d. The guarded choice agent 2:7=1 g; --t A; se­
lects nondeterministically one g; which is enabled, 

and then behaves like A;. If no guards are enabled, 

then it suspends, waiting for other (parallel) agents 

to add information to the store. Parallel composi­

tion is represented by II· The situation in which all 

components of a system of parallel agents suspend 

is called global suspension or deadlock. The agent 

3.,A behaves like A, with x considered local to A. 

Finally, the agent p(i) is a procedure call, where p 

is the name of the procedure and i is the list of the 

actual parameters. The meaning of p(i) is given 

by a procedure declaration of the form p('fi) :- A, 

where y is the list of the formal parameters. We 

assume that in a process D .A there is one and only 

one procedure declaration for every procedure name 

occurring in A; this is not a restriction with respect 

to concurrent logic languages, as the presence of 

alternative clauses can be simulated by the choice 

construct. In the following, we omit the declaration 

part when it is empty(<). 

3.1 The operational model and the ob­
servables 0 

The operational model of ccp, informally intro­

duced above, is described by a transition system 

T = ( Conf, --+). The configurations (in) Conf are 

pairs consisting of a process, and a constraint rep­

resenting the store. Table 1 describes the rules of T 

with respect to a given set of declarations D. 

The guarded choice operator models global non­

determinism (R2), in the sense that it depends on 

the current store whether or not a guard is enabled, 

and the current store is subject to modifications by 

the external environment (Rl). R3 describes par­

allelism as interleaving. To describe locality (R4) 

the syntax has been extended by an agent 3~A in 

which x is local to A and d is the store that has 

been produced locally on x. Initially the local store 

is empty, i.e. 3.,A = 3~rue A. The execution of 

213 

a procedure call is modeled by R5. Ai stands for 

3~''"'3~.sg and it is used to establish the link between 

the formal parameters 'ii and the actual parameters 

i. The variables ii are introduced in order to avoid 

problems related to names clash between i and fi. 
They are assumed to occur neither in the procedure 

declaration nor in the procedure call. 

We describe now what we intend to observe 

about a process. Intuitively, for every possible ini­

tial store (input) we want to collect the results (out­

puts) of all possible computations: in the finite 

case the final store and the termination mode (suc­

cess, failure or deadlock); in the infinite case the 

limit of the intermediate stores. Note that we do 

not have explicit termination modes in the transi­

tion system since we can extract this information 

from the final configuration. In fact, the compu­

tation is successful iff the final configuration is of 

the form (Stop II · · · II Stop, c) with c # false, 

it fails iff the final store is false and it deadlocks 

otherwise. Actually, in ccp successful termination 

can be detected and represented in the final store 

(see [16], the short-circuit algorithm). In conclu­

sion, for finite computations we can restrict our­

selves to observe the final store without loss of gen­

erality. Since ask does not modify the store, and 

tell increases it, the evolution of the store during 

the computation is monotonic. Hence we can re­

strict to consider as possible input-output pairs the 

set P = {(c,d) I c,d EC and c ~ d}. In the follow­

ing we assume the set of declarations to be fixed. 

Given a set X, P(X) denotes the set of all the sub­

sets of X. 

Definition 3.1 The mapping 0 : Agents -t P(P) 

which gives the observables of an agent, is defined 

by O(A) = Ofo(A) U01nr(A), with 

OFin(A) = {(c,d) I there exists B s.t. 

(A, c) --+* (B, d) f-+ } 



Rl (tell(c), d)-+ (Stop, c /\ d) 

R2 (I':7=1 g;-+ A;,d)-+ (Aj, d) j E (1, n] and 9i = ask(c) and c :S d 

R3 

R4 

(A, c) -+ (A', c') 

(A II B, c) -+ (A' II B, c') 

(B II A, c)-+ (B II A', c') 

(A, d /\ 3.,c) -+ (B, d') 
d ) d1 I (3.,A, c -+ (3., B, c /\ 3.,d) 

R5 (p(i), c)-+ (~~A, c) p(Y'J : -A is the declaration for 

p(i) in D 

Table 1: The transition system T. 

01nr(A) = 

{ (c, lubnew(cn)) I c =co and 

there exist B1, ... , Bn, ... s.t. 

(A,co)-+ (B1,c1)-+ ... -+ (Bn,cn)-+ ... } 

where f-+ denotes the absence of outgoing transi­

tions and -+* denotes the reflexive and transitive 

closure of-+. 

4 An approximating Denotational 

Semantics 

In this section we discuss a compositional se­

mantics which approximates the observables and 

is based on input-output pairs, hence it is simple 

enough to provide a suitable basis for efficient com­

positional analysis. The semantics will be a proper 

approximation, because in general modeling exactly 

the observables of a concurrent language ( composi­

tionally) requires structures more complicate than 

input-output pairs. It is easy to show that the 

semantics CJ previously described is not composi­

tional. The following is a counter-example (we use 
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'+'as a syntactic abbreviation for E). 

Example 4.1 Let a, b, c E C be constraints ordered 

by the relation a :S b :S c and let us consider the 

agents A1 and A2 

A1 = (ask(true)-+ tell(a)) 

+ 
(ask(b)-+ tell(c)) 

A2 = (ask(true)-+ tell(a)) 

+ 
(ask(b)-+ tell(c)) 

+ 
{ask(true)-+ (tell(a) II ask(b)-+ tell(c))) 

It is easy to check that O(Ai) = CJ(A2 ). However, 

given the agent 

B =ask( a)-+ tell(b) 

we have CJ{A1 11 B) -:f. O(A2 II B) since (true, c) E 

O(A2 II B) \ CJ(A1 II B). 

The problem here is that, when considering the 

abstract input-output behaviour, the (agent corre­

sponding to the) third branch of the process A2 is 



equivalent to the union of the first two branches. In­

deed, the control structure disappears and the third 

branch is represented by the two pairs (true, a} and 

(b, c). 

In the following we present two denotational se­

mantics D and Dfa which approximate 0 and OFin 

respectively. We introduce DF;• because it is more 

accurate than D, hence it is preferable when one is 

not interested in the analysis of infinite computa­

tions. 

We require both semantics to satisfy the equa­

tions of Table 2, which reflect the transition system 

in Table 1. In the equation for II, the symbol o repre­

sents the composition of relations, which is defined 

as Rt o R2 = { (r1, r2) I there exists r s.t. (ri, r) E 

Ri and (r, r2} E R2}· The transitive closure is 

extended to the infinite case, i.e. if the pairs 

(ro, ri), (ri, r2), ... ,(rn, rn+i), ... are in R, then the 

pair (ro, lubnewrn) is in the transitive closure of R. 

In order to describe infinite computations, we fol­

low the TCSP approach. In TCSP a process which 

diverges is regarded as a source of nondeterminism. 

The extreme case is represented by a process which 

loops without performing any visible action. The 

denotation of such a process will be the maximal 

set of pairs P = {(c,d) I c,d E C and c :S d}, 

representing a totally unpredictable behavior. This 

leads to a least fixpoint approach, w.r.t. the ordering 

'D1 :Sn V2 iff, for all agents A, Di[A] 2 'D2[A]. 

Definition 4.2 The denotational semantics V 

Agents --+ P(P) is the least (wrt :Sn) function 

which satisfies the equations in Table 2. 

Proposition 4.3 For any agent A, O(A) ~ V[A]. 

The crucial point in this proposition is the deno­

tation of II· The proof that O(A II B) ~ V[A 11 B] is 

based on showing that every interleaving of A and 

B can be mimicked by an alternation of maximal 

transition sequences starting from A and from B. 
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This involves also the proof of commutativity and 

associativity of the denotation of II· 
In general, 0 is properly included in V for three 

reasons. One reason is the treatment of II in D, 

which allows the parallel components to restart 

their computation from the beginning, at each step. 

For instance, consider again the agents Ai, A2 and 

B of Example 4.1. In the denotational semantics of 

Ai II B it is possible that Ai chooses the first branch 

and produce a; then waits for b, starts again from 

the choice point, chooses the second branch and pro­

duces c. Thus Ai II B and A2 11 B are equated by 

the denotational model. The second reason is the 

treatment of E, which is modeled as local choice. 

Formally this is expressed by the fact that the sus­

pension of one guard in the store c is sufficient to 

generate the pair (c, c}. Representing global choice 

would require the information about the interleav­

ing points. In a semantics based on pairs, this would 

imply to associate a pair to every transition step, 

which would cause a worse loss of accuracy. The 

third reason is inherent to the way infinite compu­

tations are modeled. Consider the definition 

p :-p. 

The denotation of p is the maximal set of input­

output pairs P: V[p] = P. On the other hand, the 

operational semantics of p is O(p) = {(d, d) I d E 

C}. 

This 'lack of precision' in modeling the infinite 

computations seems to be unavoidable in the input­

output semantics. An exact characterization of infi­

nite processes would require more complicate struc­

tures, such as metric spaces and sequences of con­

straints. The third problem does not occur if we 

restrict to finite computations. This can be done 

by considering the greatest fixpoint instead of the 

least one. 

Definition 4.4 'DFia : Agents ~ P(P) is the 

greatest function which satisfies the equations in 



Dl D[Stop] = { (c, c) I c EC} 

D2 D[tell( c)] = {(d, d /\ c) I d EC} 

D3 D[2:?:1 ask(c;) -+Ai]= U7:;{(c, d) I c; $ c and (c, d) E V[A;]} 

u 
LJ~=;{ (c, c) I c EC and c; 1: c} 

D4 D[A II B] = { (c, d) I (c, d) is in the transitive closure of D[A] o D[B] 

and (d, d) E D[A] n 1J[B] } 

D5 1J[3.,A] = { (c, d) I there exists d' EC s.t. (3xc, d'} E V[A] and d = c /\ 3.,d'} 

D6 D[p(x)] = {(c,d) I (c,d) E D[~iA], where p(YJ: -A 

is the declaration for p( x) in D } 

Table 2: The denotational semantics 

Table 2 (with the difference that here we can re­

strict to the finite transitive closure). 

Note that for the previous definitions of p and q 

we have 1JF;n[p] = O(p) = 0. 

Proposition 4.5 For any agent A, OFin(A) ~ 

1Jp;,,[A]. 

5 Upward closed semantics 

If we look at the parallel operator as conjunc­

tion, at the choice operator as disjunction, and at 

the guarded statement as implication, then we can 

regard a program as a logical theory. This is the so­

called declarative interpretation of cc programming, 

and concurrent logic programming. From this point 

of view, it makes sense to define a notion of observ­

ables which can be interpreted as the set of "logical 

consequences" of the program. Formally, we can 
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obtain this set by collecting all the logical conse­

quences of the final results for a given initial con­

straint. This is equivalent to close 0 upward w.r.t. 

the second component, and we denote these observ­

ables by ou. Given a program D and an agent A, 

(c, d) E ou(A) will be read as "if c and D and A 

then d". 

It will turn out that ou can be approximated 

more precisely than 0 (note however that ou is less 

informative than 0). In fact, one of the reasons 

of difference between 1) and 0 is that D[A] may 

contain a pair (c, d) which is not in O(A) because it 

is obtained by "restarting a parallel component of A 

from the beginning". In this case, however, O(A) 

will contain a pair (c,d') with d' $ d. Now, the 

point is that, in the upward closed semantics, this 

pair induces also the presence of (c, d). Therefore 

this difference disappears. 

For a poset (X, $),we denote by pu(X) the set 

of the upward-dosed subsets of X, i.e. Y E pu (X) 



iff Y ~ X and for each x, y E X, if y E Y and y ::; x 

then x E Y. 

Definition 5.1 The mapping ou : Agents -t 

(Pu(C) -t pu(C)) is defined by ou(A)C = 
0~1 .. (A)C U O~,(A)C, where 

0~1.(A)C = { d I there exist c,d',B. s.t. 

(A, c) -+• (B, d') f-t and d'::; d} 

O~,(A)C = 
{di there exist co,B1,c1,. .. 1 Bn,Cn 1 ••• s.t. 

(A, co)-+ (B1,c1)-+ ... --+ (Bn,cn)-+ ... 

and for each n E w, en $ d} 

The denotational model corresponding to previ­

ous operational semantics is defined as follows. 

Definition 5.2 vu, V~1 .. : Agents -t (Pu(C) -t 

pu ( C)) are the least and the greatest functions 

which satisfy the equations in Table 3. The order­

ing is the standard one: V 1 $ V2 iff for each A E 

Agents, for each C E pu(C), V2[A]C ~ V1[A]C 

holds. 

The following theorem states the adequacy of the 

upward closed semantics for analysis. 

Theorem 5.3 For any agent A, ou(A) ~ vu[A] 

and 0~1 .. (A) ~ V~1JA]. 

5.1 Denotations as closure operators 

In this section we show that the upward closed 

denotational semantics of an agent is a closure 

operato-?. This allows us to follow the approach 

of [14], where a process is represented by a set of 

constraints, namely the fixpoints of the associated 

closure operator. The advantage is that the seman­

tic operators can be defined in a simple way; in par­

ticular, II is given by set intersection. In our case, 

the resulting construction looks very similar to the 

semantics of Angelic ccp as defined in [10). 

2 Given a poset (X, $),a function f: X-+- X is a closure 

operator iff f is extensive (V'x E X. x $ f(x)) monotonic 

(Vx,y E X. x $ y => J(x) $ /(y)) and idempotent (Vx E 

X. f(f(x)) = f(x)). 
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Proposition 5.4 For every agent A, vu[A] is a 

continuous closure operator on (Pu(C), 2)-

Since vu[A] is a closure operator, we can re­

define the equations of Definition 5.2 using fix­

points. In fact it is well-known that a closure op­

erator on a complete lattice can be represented by 

the set of its fixpoints: for F = {x I /(x) = x} 
we have f(x) = glb(z n F) = min(z n F), where 

it = {y E X I x $ y}. Furthermore, we show 

that we can restrict to consider only the singleton 

fixpoints, namely objects of the form c. Such a re­

formulation is simpler, hence more convenient for 

abstract interpretation. 

Let puc ( C) be the set of upward closed subsets 

of C which have a finite set of minimal elements, 

namely the Scott-compact elements of pu(C). The 

lattice (puc(C), 2) is a sub-lattice of (Pu(C), 2) 

with lub operator given by set intersection and glb 

operator given by set union. Moreover (puc(C), 2) 

is a CPO isomorphic to the Smyth power-domain 

over (C, $). Note that ('Puc(c), 2) is not a com­

plete sublattice because union and intersection of 

infinite compact sets might not be compact. 

Proposition 5.5 puc(C) is closed wrt the deno­

tations of agents, i.e. for any agent A, for each 

C E puc(C), vu[A]C E puc(C). 

As a consequence, non-compact sets are never 

introduced during the computation and we can re­

duce to the domain puc(C), i.e. we can define 

vu : Agents -t ('Puc(C) -+- puc(C)). 

Proposition 5.6 For any agent A, vu[A] is lin­

ear, i.e. VG, C' E puc(C), vu[A]( CU C') = 
vu[A] CU vu[A] C'. 

As a consequence, for all agents A, vu[A] can 

be represented by the subset of its fixpoints which 

are of the form c with c EC. 



DUl vu[Stop]C = C 

DU2 vu[tell(c)]C = {d Id E c and c $ d} 

DU3 vu n::~=l ask( ci) -+Ai] c = u~=l { d I there exists e E c s.t. c; $ c and d E vu[A;]{ c}} 

u 
LJ?=i{d I there exists e E C s.t. e; f: c and c $ d} 

DU4 vu[3.,A] c = {d I there exists c E c s.t. d' E vu[A]{3.,c} and c /I. 3.,d' 5 d} 

DU6 vu[p(i)]C = {d Id E vu[~~A]C where p(Y): -A is the declaration for p(X) in D} 

Table 3: The upward closed denotational semantics vu. 

Definition 5. 7 S, SFin : Agents --+ 'P( C) are the 

least and the greatest function which satisfies the 

equations in Table 4, respectively. 

Proposition 5.8 For each agents A and for each 

C E pu0 (C) we have 

vv[A]C = {d I there exists c EC, there 

exists d' E S[A] n c s.t. d' 5 d} 

6 Analyses 

In this section we show how the semantics pre­

sented in the previous sections can be used for pro­

gram analyses. Abstract interpretation [5] formal­

izes the idea of "approximate computation", where 

descriptions of data replace the data itself. The 

idea is that an analysis is a computation in which 

the program is evaluated using a non-standard in­

terpretation of data and operators in the program. 

According to this view the semantics which we have 

presented are mimicked by the abstract semantic 

equations. Constraints are replaced by descriptions 
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of constraints and the operators are replaced by op­

erators which approximate the concrete ones. 

Definition 6.1 A description (A, ex:, C) consists 

of an abstract domain A, a concrete domain C, and 

an approximation relation ex:~ A x C. 

The approximation relation is lifted to functions 

and relations as follows: 

• Let (A1, a1, C1) and (A2, a2, C2) be descrip­

tions, F : .A1 -+ .A2 and F' : C1 -+ C2 be func­

tions. Then F ex F' iff Va E .A1. Ve E C1. a ex1 

e => F(a) oc2 F'(e). 

• Let (A1, ai, C1) and (A2, a2, C2) be descrip­

tions, R ~ .A1 x .A2 and R' ~ C1 x C2 be rela­

tions. Then Rex R' iff'v'a E .A1. Ve E C1. a oc1 c 

and (e, c') ER'=> 3(a, a') ER and a' cx:2 c'. 

For cc languages, we are interested in descrip­

tions of constraint systems. We give the following 

definition, which allows us to develop a composi­

tional analysis based on V. 



Sl S[Stop] = C 

S2 S[tell(c)] = c 

S3 S[E~1 ask(c;)-+ A;]= U7= 1 S[Ai]n 
checkc; 

u 
U?:dc I c EC and c; 1:. c} 

S4 S[A II B] = S[A] n S[B] 

S5 S[3zA] = {c I c EC and there exists d E S[A] s.t. 3zc = 3zd} 

86 S[p{z)] = S[A.~A], where p(Y) : -A is the declaration of p(i) m A 

Table 4: The singleton semantics S. 

Definition 6.2 A constraint system description 

for a cylindric constraint system C = (C, $ 

, /\,true, false, Var, 3) is a tuple (A, ex, /\.A, ~.A, .,i...A 

, t.A , 3.A) such that 

l. (A, ex, C) is a description, 

2 . .A is a complete lattice with ordering $.A, 

3. /\.A : A x A -+ .A is extensive in both the argu­

ments and approximates /\, 

4. ~.A : C -+ A -+ A and for all constraints 

c, >..a' .c~.Aa' is extensive and approximates 

>..c'.c /\ c', 

5. t.A: C -+ A -+ A and for all constraints c, 

>..a' .c t.A a' is extensive and c t.A a' approxi­

mates all constraints c' such that c $ c' and 

a' <X c', 

6 . .,i.. .A: C -+ A -+ A and for all constraints c, 

>..a' .c .,i..A a' is extensive and c .,i...A a' approxi-
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mates all constraints c' such that c 1:. c' and 

a' ex c', 

7. for each x E Var, 3-: approximates 3:i:. 

In Table 5 we show the semantic equations which 

abstract the denotational semantics defined by Ta­

ble 2. This definition also makes use of the possible 

entailment relation 1-:0 , s; A x C defined by 

a 1-:0 , c <:=> there exists c' s.t. a oc: c' and c $ c', 

and the definite entailment relation 1-te/ ~ A x C 

defined by 

a 1-;tef c <:=> for each c', if a <X c' then c $ c'. 

Analogously to the concrete case, abstract deno­

tations of programs are sets of input-output pairs 

and we can obtain from the equations two semantics 

corresponding to the greatest and the least fixpoint 

approach. 

Definition 6.3 Let p.A = {(a, b) a, b E 

A and a <A b }. The semantics V.A, V~. 



Agents --+ P(P.A) are the greatest and the least 

functions which satisfy the equations in Table 5, re­

spectively. 

Theorem 6.4 For all agents A, V.A[A] ex 'V[AJ 

and V~.[A] oc: V";.[A]. 

Similarly we can obtain the abstract seman­

tics corresponding to the upward closed semantics. 

However because of space limitations we leave these 

out. 

7 Conclusions and future work 

We have proposed a framework for denotational 

semantics of concurrent constraint languages which 

can be used as a basis for compositional analysis. 

The main advantage of our construction is the 

simplicity of the semantic domains: input-output 

relations or functions. This makes it suitable for cc 

program analysis, at the price of correctness in the 

classical sense. 

From well known results we know that the loss 

of classical correctness is unavoidable, for such a se­

mantic domain. Hence the only parameter to com­

pare denotational input-output semantics would be 

the accuracy of the resulting analysis. In order 

to obtain an approximating semantics we have re­

nounced to model faithfully global choice and con­

tinuation point. It would be interesting to investi­

gate alternative approximations based on the same 

domain. One possibility is, for instance, to adopt 

the idea of [3], where all the alternatives in a choice 

are enabled as soon as one of the guards is enabled. 

The framework we have proposed can be ex­

tended smoothly to ccp languages with atomic tell 

([13]). The only problem is the adaptation of the 

finite semantics, in case we want to model the ar­

rest of the computation when the store is incon­

sistent. Consider for instance two processes p(x) 

and q(x) which generate the constraint x = a and 
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x = b respectively, and then loop. Their denota­

tions would be empty, whereas their parallel com­

position would stop and generate a failure. One 

obvious solution is to introduce an "artificial" ter­

mination mode, which would lead to model partial 

computations. However, this extension complicates 

the analysis and makes it much less accurate; we 

are currently investigating alternative approaches. 
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