A PROBLEM RELATED TO THE APPROXIMATION OF π BY ARCHIMEDES/HUYGENS

JUAN ARIAS DE REYNA AND JAN VAN DE LUNE

Dedicated to Herman J. J. te Riele on the occasion of his retirement from the CWI in January 2012

1. The problem and its origin.

It is well known that Archimedes approximated $2 \pi(:=$ the length of the circumference of a circle having radius $r=1$) by the lengths of inscribed and circumscribed regular n-gons.

Denoting the length of such an inscribed n-gon by ℓ_{n} and that of a circumscribed one by L_{n} we have

$$
\begin{equation*}
\ell_{n}=2 n \sin \frac{2 \pi}{2 n} \quad \text { and } \quad L_{n}=2 n \tan \frac{2 \pi}{2 n} \tag{1}
\end{equation*}
$$

Huygens considered the question: Which of ℓ_{n} and L_{n} is the best approximation of 2π and to what extent?

It should be clear that $\ell_{n}<2 \pi<L_{n}$. So, for a suitable $\lambda \in(0,1)$ one should take $2 \pi=\lambda \ell_{n}+(1-\lambda) L_{n}$.

From this it is easily seen that the best λ would be $\lambda=\frac{1}{\left(1+\frac{2 \pi-\ell_{n}}{L_{n}-2 \pi}\right)}$.
So, one should consider the ratio $\frac{2 \pi-\ell_{n}}{L_{n}-2 \pi}$, or as we actually did

$$
\frac{L_{n}-2 \pi}{2 \pi-\ell_{n}}=\frac{\tan \frac{\pi}{n}-\frac{\pi}{n}}{\frac{\pi}{n}-\sin \frac{\pi}{n}}
$$

Writing $x:=\frac{\pi}{n}$ we are thus led to consider the (even) function $Q(x):=\frac{\tan x-x}{x-\sin x}$ for x close to 0 .

It was known to Huygens that $Q(x)>2$, and using l'Hôpital's rule it is easily seen that $\lim _{x \rightarrow 0} Q(x)=2$.

Consequently one should (in this context) approximate 2π by $\frac{2}{3} \ell_{n}+\frac{1}{3} L_{n}$. Also note that $\frac{2}{3} \ell_{n}+\frac{1}{3} L_{n}>2 \pi$.
(A similar analysis holds for the areas a_{n} and A_{n} of the n-gons.)
For us it was just a matter of curiosity to have a closer look at the coefficients in the power series of the function $\frac{\tan x-x}{x-\sin x}$ for x close to 0 .

Invoking Mathematica we found (for various values of nMax) for example:

```
nMax = 30; (* For example *)
Normal[Series [\frac{Tan[x]-x}{x-Sin[x]},{x,0, nMax}]]
2+\frac{9 \mp@subsup{x}{}{2}}{10}+\frac{513\mp@subsup{x}{}{4}}{1400}+\frac{297\mp@subsup{x}{}{6}}{2000}+\frac{2595081\mp@subsup{x}{}{8}}{43120000}+\frac{136726449\mp@subsup{x}{}{10}}{5605600000}+\frac{7757835963 \mp@subsup{x}{}{12}}{784784000000}+
    4810522436537 \mp@subsup{x}{}{14}}+\frac{228184846967215909 \mp@subsup{x}{}{16}}{140}+\frac{924798350722118597 \mp@subsup{x}{}{18}}{18
    1200719520000000}+\frac{140532212620800000000}{140,}+\frac{1405322126208000000000}{14}
    423613976567459270644897 x 20 1716842780515524728374151 x 22
    1588323173482805760000000000 }+\frac{15883231734828057600000000000}{1}
    126064430908322638705746667 x
    2877667867251201024000000000000}+\frac{892881980908641884160000000000000}{8,
    6162379696360573178218943175357313 x 28}+\frac{324677394542156500969976683473676127 x 30}{0
    856398823168714776773222400000000000000}+\frac{111331847011932920980518912000000000000000}{120
```

and (observing that all coefficients turned out to be positive) arrived at the conjecture that all coefficients c_{n} in the power series expansion

$$
\frac{\tan x-x}{x-\sin x}=\sum_{n=0}^{\infty} c_{n} x^{2 n}
$$

are strictly positive indeed.
We thus ran into the problem: If true, how can this be proved?

2. A proof of the conjecture.

$Q(x)$ is a meromorphic function on the complex plane. Its poles are those of $\tan x$ at the points $x=(2 n+1) \pi / 2$ with n an integer and at the zeros of $x-\sin x$, except $x=0$, which is a removable singularity of $Q(x)$.

We consider the square $R=[-2 \pi, 2 \pi]^{2}$. Inside this square there are only four poles of $Q(x)$: at the points $\pm \frac{\pi}{2}$ and $\pm \frac{3 \pi}{2}$. To see this it suffices to show that $x-\sin x$ has only one (triple) zero inside R. This can be proved formally by computing the variation of the argument of $x-\sin x$ when moving along the rim of the rectangle with vertices at $\pm 2 \pi \pm i T$ with T a big real number.

We compute the residues

$$
\begin{aligned}
\operatorname{Res}_{x=\pi / 2} Q(x)=\frac{2}{2-\pi}, & \underset{x=-\pi / 2}{\operatorname{Res}} Q(x)=-\frac{2}{2-\pi}, \\
& \underset{x=3 \pi / 2}{\operatorname{Res}} Q(x)=-\frac{2}{2+3 \pi}, \quad \underset{x=-3 \pi / 2}{\operatorname{Res}} Q(x)=\frac{2}{2+3 \pi} .
\end{aligned}
$$

Hence, we may write

$$
\begin{equation*}
Q(x)=\frac{8}{\pi(\pi-2)} \frac{1}{1-4 x^{2} / \pi^{2}}+\frac{8}{3 \pi(2+3 \pi)} \frac{1}{1-4 x^{2} / 9 \pi^{2}}+h(x) . \tag{2}
\end{equation*}
$$

where h is analytic on R.

ARCHIMEDES/HUYGENS APPROXIMATION TO π

We thus find the following value for c_{n}

$$
\begin{align*}
c_{n}=\frac{8}{\pi(\pi-2)}\left(\frac{2}{\pi}\right)^{2 n}+\frac{8}{3 \pi(2+3 \pi)} & \left(\frac{2}{3 \pi}\right)^{2 n} \tag{3}
\end{align*}+d_{n}, \quad \text { with } \quad d_{n}=\frac{1}{2 \pi i} \int_{\partial R} \frac{h(z)}{z^{2 n+1}} d z . ~ \$
$$

For $x \in \partial R$ we have $|Q(x)-h(x)| \leq \frac{1}{4}$. In fact for $|x|>2 \pi$ we have
$|Q(x)-h(x)| \leq \frac{8}{\pi(\pi-2)} \frac{1}{16-1}+\frac{8}{3 \pi(2+3 \pi)} \frac{1}{16 / 9-1}=0.244234 \ldots$
Also, for $x \in \partial R$ we will show that $|Q(x)| \leq 2$. Since Q is even, we only have to bound $Q(2 \pi+i y)$ and $Q(x+2 \pi i)$ for $|y|<2 \pi$ and $|x|<2 \pi$.

First for y real and $|y|<2 \pi$ we have

$$
Q(2 \pi+i y)=\frac{-2 \pi+i(\tanh y-y)}{2 \pi+i(y-\sinh y)}
$$

Then $|Q(2 \pi+i y)| \leq 2$ is equivalent to

$$
4 \pi^{2}+(\tanh y-y)^{2}<16 \pi^{2}+4(\sinh y-y)^{2}
$$

or

$$
\tanh ^{2} y-2 y \tanh y<12 \pi^{2}+3 y^{2}+4 \sinh ^{2} y-8 y \sinh y .
$$

So $|Q(2 \pi+i y)| \leq 2$ follows from the two elementary inequalities: $\tanh ^{2} y<1$ and $8 y \sinh y<2+3 y^{2}+4 \sinh ^{2} y$.

On the other side of the rectangle, for $-2 \pi<x<2 \pi$ we have

$$
\begin{array}{r}
|Q(x+2 \pi i)|=\left|\frac{\tan (x+2 \pi i)-x-2 \pi i}{x+2 \pi i-\sin (x+2 \pi i)}\right| \leq \frac{\operatorname{coth} 2 \pi+|x+2 \pi i|}{\sinh 2 \pi-|x+2 \pi i|} \\
\leq \frac{\operatorname{coth} 2 \pi+2 \sqrt{2} \pi}{\sinh 2 \pi-2 \sqrt{2} \pi}=0.0381898 \ldots
\end{array}
$$

It follows that on ∂R we have $|h(x)| \leq|Q(x)-h(x)|+|Q(x)| \leq 3$, so that

$$
\left|d_{n}\right| \leq \frac{1}{2 \pi} \int_{\partial R} \frac{3}{(2 \pi)^{2 n+1}}|d z| \leq 24(2 \pi)^{-2 n-1} .
$$

Hence with $|\theta| \leq 1$

$$
\begin{equation*}
c_{n}=\frac{8}{\pi(\pi-2)}\left(\frac{2}{\pi}\right)^{2 n}+\frac{8}{3 \pi(2+3 \pi)}\left(\frac{2}{3 \pi}\right)^{2 n}+\theta \cdot 24(2 \pi)^{-2 n-1} . \tag{4}
\end{equation*}
$$

Since $8 /(\pi(\pi-2))$ is about $2.23064 \ldots$ we have

$$
c_{n}>2\left(\frac{2}{\pi}\right)^{2 n}-24\left(\frac{1}{2 \pi}\right)^{2 n+1}>0 \quad \text { for all } n \geq 1
$$

completing our proof.

ARCHIMEDES/HUYGENS APPROXIMATION TO π

3. Further observations.

In the previous Section we proved that in the power series expansion

$$
\frac{\tan x-x}{x-\sin x}=\sum_{n=0}^{\infty} c_{n} x^{2 n}
$$

all c_{n} are positive.
Writing $\tan x=\sum_{n=1}^{\infty} t_{n} x^{2 n-1}$ and $\sin x=\sum_{n=1}^{\infty} s_{n} x^{2 n-1}$ we defined

$$
T:=\sum_{n=1}^{N} t_{n} x^{2 n-1} \quad \text { and } \quad S:=\sum_{n=1}^{N} s_{n} x^{2 n-1}
$$

and observed (using Mathematica) the following:
The coefficients q_{n} in the power series expansion

$$
\frac{\tan x-T}{S-\sin x}=\sum_{n=0}^{\infty} q_{n} x^{2 n}
$$

(1) are all positive if $N \equiv 1(\bmod 2)$
(2) are all negative if $N \equiv 0(\bmod 2)$.

We have no proof for this and leave a proof (or refutation) as a challenge to the interested reader. One may want to try things out by means of the following program.

```
    n = 3;(* Also try some other n \in N *)
    T = Normal[Series[Tan[x], {x, 0, 2n-1}]];
    S = Normal[Series[Sin[x], {x, 0, 2n-1}]];
    Print["f=",f=\frac{Tan[x]-T}{S-Sin[x]}];
    nTerms = 24; (* For example *)
    Normal[Series[f, {x, 0, nTerms}]]
    f}=\frac{-\mathbf{x}-\frac{\mp@subsup{x}{}{3}}{3}-\frac{2\mp@subsup{x}{}{5}}{15}+\operatorname{Tan}[x]}{x-\frac{\mp@subsup{x}{}{3}}{6}+\frac{\mp@subsup{x}{}{5}}{120}-\operatorname{Sin}[x]
Oa4l)= 272+114 \mp@subsup{x}{}{2}+\frac{6101 \mp@subsup{x}{}{4}}{132}+\frac{890149\mp@subsup{x}{}{6}}{47520}+\frac{26000961209 \mp@subsup{x}{}{8}}{3424861440}+\frac{64491289360457 \mp@subsup{x}{}{10}}{20960152012800}+
    30254970559608601 \mp@subsup{x}{}{12}}+208883539141611618143\mp@subsup{x}{}{14}+7710587768733558650509987 \mp@subsup{x}{}{16}
    24262182114508800}+\frac{413311124757080309760}{4N+
    28124851654909083303025556651 x '8}+\frac{1995115035944689724814158752505297 x 20}{20
    338799395185873871516467200000 + 59300735738173875479270286950400000
    59091732921225317488043271690096506747 x 22}+3507664213216293552099055375264386853121 x 24,
    4333697767745746820025072570335232000000}+\frac{634730927560495429381430471959353753600000}{0
```

A similar analysis of the inner and outer areas a_{n} and A_{n} leads to "similar" observations.

Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080-Sevilla, Spain

E-mail address: arias@us.es
Langebuorren 49, 9074 CH Hallum, The Neterlands
(Formerly at CWI, Amsterdam)
E-mail address: j .vandelune@hccnet.nl

