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1. The problem and its origin.

It is well known that Archimedes approximated 2π ( := the length
of the circumference of a circle having radius r = 1 ) by the lengths of
inscribed and circumscribed regular n-gons.

Denoting the length of such an inscribed n-gon by `n and that of a
circumscribed one by Ln we have

(1) `n = 2n sin
2π

2n
and Ln = 2n tan

2π

2n
.

Huygens considered the question: Which of `n and Ln is the best
approximation of 2π and to what extent ?

It should be clear that `n < 2π < Ln. So, for a suitable λ ∈ (0, 1)
one should take 2π = λ`n + (1− λ)Ln.

From this it is easily seen that the best λ would be λ = 1

(1+ 2π−`n
Ln−2π )

.

So, one should consider the ratio 2π−`n
Ln−2π , or as we actually did

Ln − 2π

2π − `n
=

tan π
n
− π

n
π
n
− sin π

n

.

Writing x := π
n

we are thus led to consider the ( even ) function
Q(x) := tanx−x

x−sinx for x close to 0.
It was known to Huygens that Q(x) > 2, and using l’Hôpital’s rule

it is easily seen that limx→0Q(x) = 2.
Consequently one should ( in this context ) approximate 2π by

2
3
`n + 1

3
Ln. Also note that 2

3
`n + 1

3
Ln > 2π.

( A similar analysis holds for the areas an and An of the n-gons. )
For us it was just a matter of curiosity to have a closer look at the

coefficients in the power series of the function tanx−x
x−sinx for x close to 0.

Invoking Mathematica we found ( for various values of nMax ) for
example:
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and ( observing that all coefficients turned out to be positive ) arrived
at the conjecture that all coefficients cn in the power series expansion

tanx− x
x− sinx

=
∞∑
n=0

cn x
2n

are strictly positive indeed.
We thus ran into the problem: If true, how can this be proved ?

2. A proof of the conjecture.

Q(x) is a meromorphic function on the complex plane. Its poles are
those of tanx at the points x = (2n + 1)π/2 with n an integer and at
the zeros of x− sinx, except x = 0, which is a removable singularity of
Q(x).

We consider the square R = [−2π, 2π]2. Inside this square there
are only four poles of Q(x) : at the points ± π

2
and ± 3π

2
. To see this it

suffices to show that x−sinx has only one ( triple ) zero inside R. This
can be proved formally by computing the variation of the argument of
x − sinx when moving along the rim of the rectangle with vertices at
± 2π ± iT with T a big real number.

We compute the residues

Res
x=π/2

Q(x) =
2

2− π
, Res

x=−π/2
Q(x) = − 2

2− π
,

Res
x=3π/2

Q(x) = − 2

2 + 3π
, Res

x=−3π/2
Q(x) =

2

2 + 3π
.

Hence, we may write

(2) Q(x) =
8

π(π − 2)

1

1− 4x2/π2
+

8

3π(2 + 3π)

1

1− 4x2/9π2
+ h(x).

where h is analytic on R.
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We thus find the following value for cn

(3) cn =
8

π(π − 2)

( 2

π

)2n
+

8

3π(2 + 3π)

( 2

3π

)2n
+ dn,

with dn =
1

2πi

∫
∂R

h(z)

z2n+1
dz.

For x ∈ ∂R we have |Q(x)− h(x)| ≤ 1
4
. In fact for |x| > 2π we have

|Q(x)− h(x)| ≤ 8

π(π − 2)

1

16− 1
+

8

3π(2 + 3π)

1

16/9− 1
= 0.244234 . . .

Also, for x ∈ ∂R we will show that |Q(x)| ≤ 2. Since Q is even, we only
have to bound Q(2π + iy) and Q(x+ 2πi) for |y| < 2π and |x| < 2π.

First for y real and |y| < 2π we have

Q(2π + iy) =
−2π + i(tanh y − y)

2π + i(y − sinh y)
.

Then |Q(2π + iy)| ≤ 2 is equivalent to

4π2 + (tanh y − y)2 < 16π2 + 4(sinh y − y)2

or
tanh2 y − 2y tanh y < 12π2 + 3y2 + 4 sinh2 y − 8y sinh y.

So |Q(2π + iy)| ≤ 2 follows from the two elementary inequalities :
tanh2 y < 1 and 8y sinh y < 2 + 3y2 + 4 sinh2 y.

On the other side of the rectangle, for −2π < x < 2π we have

|Q(x+ 2πi)| =
∣∣∣tan(x+ 2πi)− x− 2πi

x+ 2πi− sin(x+ 2πi)

∣∣∣ ≤ coth 2π + |x+ 2πi|
sinh 2π − |x+ 2πi|

≤ coth 2π + 2
√

2π

sinh 2π − 2
√

2π
= 0.0381898 . . .

It follows that on ∂R we have |h(x)| ≤ |Q(x) − h(x)| + |Q(x)| ≤ 3,
so that

|dn| ≤
1

2π

∫
∂R

3

(2π)2n+1
|dz| ≤ 24(2π)−2n−1.

Hence with |θ| ≤ 1

(4) cn =
8

π(π − 2)

( 2

π

)2n
+

8

3π(2 + 3π)

( 2

3π

)2n
+ θ · 24(2π)−2n−1.

Since 8/(π(π − 2)) is about 2.23064 . . . we have

cn > 2
( 2

π

)2n
− 24

( 1

2π

)2n+1

> 0 for all n ≥ 1

completing our proof.
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3. Further observations.

In the previous Section we proved that in the power series expansion

tanx− x
x− sinx

=
∞∑
n=0

cn x
2n

all cn are positive.
Writing tanx =

∑∞
n=1 tn x

2n−1 and sinx =
∑∞

n=1 sn x
2n−1 we defined

T :=
N∑
n=1

tn x
2n−1 and S :=

N∑
n=1

sn x
2n−1

and observed ( using Mathematica ) the following :
The coefficients qn in the power series expansion

tanx− T
S − sinx

=
∞∑
n=0

qn x
2n

(1) are all positive if N ≡ 1 (mod 2)
(2) are all negative if N ≡ 0 (mod 2).

We have no proof for this and leave a proof ( or refutation ) as a
challenge to the interested reader. One may want to try things out by
means of the following program.

A similar analysis of the inner and outer areas an and An leads to
“similar” observations.
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