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1. THE PROBLEM AND ITS ORIGIN.

It is well known that Archimedes approximated 27 ( := the length
of the circumference of a circle having radius » = 1) by the lengths of
inscribed and circumscribed regular n-gons.

Denoting the length of such an inscribed n-gon by ¢,, and that of a
circumscribed one by L, we have

.27 2
(1) {, = 2nsin 5 and L, = 2ntan o

Huygens considered the question: Which of £, and L, is the best
approximation of 27 and to what extent ?

It should be clear that ¢, < 2w < L,. So, for a suitable A € (0,1)
one should take 2m = M, + (1 — \)L,.

From this it is easily seen that the best A would be A = m

Lp—27

So, one should consider the ratio 2::?7; , or as we actually did
L,—2r tany —=
27 — 4, T —sin”
Writing 2 := T we are thus led to consider the ( even ) function
Q(x) := 222 for z close to 0.

It was known to Huygens that Q(x) > 2, and using ’'Hopital’s rule
it is easily seen that lim,_,o Q(x) = 2.

Consequently one should ( in this context ) approximate 27 by
%En + %Ln. Also note that %Zn + %Ln > 2.

( A similar analysis holds for the areas a,, and A,, of the n-gons. )

For us it was just a matter of curiosity to have a closer look at the
coefficients in the power series of the function % for x close to 0.

Invoking Mathematica we found ( for various values of nMax ) for
example:
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nMax = 30; For exa

Tan[x] - x
a0 O nMax)]]

Normal [Sezias [

9 x? , 513 x* , 297 x5 , 2595081 x® , 136726449 x10 , 1757835963 x'? N

10 1400 2000 43120000 5605600000 784784000 000

4810522436537 x** , 228184846 967215909 x'6 , 924798350722118597 x'® .

1200719520000000 140532212620800000000 1405322126208000000000

423613976 567 459 270 644 897 x*° . 1716842780515 524 728 374 151 x?? .
1588323173482805760000000000 15883231 734828057600 000000000

126 064 430 908 322 638 705 746 667 x> . 15852 808 185558 085074 420 916 349 x*° .

2877 667867251201024000000000000 892881980908641884160000000000000

6162379 696360573178 218943175357 313 x*° . 324 677394542156 500 969 976 683473 676 127 x°°
856398823168 714776 773222400000 000000000 ~ 111331847 011932 920980518912000 000000000000

2+

and ( observing that all coefficients turned out to be positive ) arrived
at the conjecture that all coefficients ¢, in the power series expansion

oo
tanz — on
—_— = Cn T
T —sinx

3
Il
=)

are strictly positive indeed.
We thus ran into the problem: If true, how can this be proved ?

2. A PROOF OF THE CONJECTURE.

Q(z) is a meromorphic function on the complex plane. Its poles are
those of tanz at the points © = (2n + 1)7/2 with n an integer and at
the zeros of x —sin z, except x = 0, which is a removable singularity of
Q(z).

We consider the square R = [—2m,27]%. Inside this square there
are only four poles of Q(x): at the points £+ 7 and £ 37” To see this it
suffices to show that = —sin z has only one ( triple ) zero inside R. This
can be proved formally by computing the variation of the argument of
x — sinz when moving along the rim of the rectangle with vertices at
+ 27 4+ T with T a big real number.

We compute the residues

2 2
JRes Qz) =5 Res Q) =—5—
Res Q(x) ’ Res Qo) = —
€S r)=—-—— €S Xr) = —.
2=37/2 2431 2=—31/2 2+ 3w

Hence, we may write

8 1 8 !
(2) Q)= m(m —2) 1 — 422 /72 - 3m(2 +3m) 1 — 42 /9

where h is analytic on R.
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We thus find the following value for ¢,

() en= ﬁ(%)% + m(%)% + dn,

1 h
with d, = — (2) z.
2mi g 227

For = € OR we have |Q(z) — h(z)| < 1.

< 8 1 . 8 1
“a(r—2)16—1 37(2+437)16/9 -1
Also, for x € OR we will show that |Q(z)| < 2. Since @ is even, we only

have to bound Q(27 + iy) and Q(x + 27i) for |y| < 27 and |z| < 27.
First for y real and |y| < 27 we have

, —271 + i(tanhy — y)
2 = .
Q@m +iy) 27 +i(y — sinh y)
Then |Q(27 + iy)| < 2 is equivalent to
47% 4 (tanhy — y)? < 1672 + 4(sinhy — y)?

In fact for |z| > 27 we have

=0.244234 . ..

or
tanh?y — 2y tanhy < 127% 4 3y* + 4sinh® yy — 8y sinh y.
So |Q(2m + iy)| < 2 follows from the two elementary inequalities:
tanh?y < 1 and 8y sinhy < 2 + 3y + 4sinh® y.
On the other side of the rectangle, for —27 < x < 27 we have
tan(x + 2mi) — o — 2mi < coth 27 + |z + 2mi|
x + 2w — sin(z 4 2mi) | — sinh 27 — |z + 271
< coth 2 + 2v/27
~ sinh 27 — 2v/27

It follows that on OR we have |h(z)| < |Q(z) — h(x)| + |Q(z)| < 3,
so that

|Q(z + 2mi)| =

= (0.0381898. ..

1 3
do| < — | ———1dz| < 24(2m)" 2 L.
0] < 5 | sl < 240m)

Hence with |0] <1
8 2\ 8 2 \2n
) o, =—o (2 _° (= 0. 24(2m) 21,
S 7T(7T—2)<7T) Jr37?(2+37r)(37r) + (2m)
Since 8/(m(m — 2)) is about 2.23064 ... we have

2\ 2n 1 2n+1

cn>2<—) —24(—) >0  foralln>1
T 2

completing our proof.
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3. FURTHER OBSERVATIONS.

In the previous Section we proved that in the power series expansion

oo
tanr —x on
—_— = Cn T
T —sinw

i
o

all ¢, are positive.

Writing tanz = > °7 ¢, 2?1 and sinz = > 7 | s, ?"! we defined

n=1 n=1
N N
T:= E tyz? ! and S := g s, w2t
n=1 n=1

and observed ( using Mathematica ) the following:
The coefficients ¢,, in the power series expansion

tanx.—T _ anl‘Qn

(1) are all positive if N =1 (mod 2)
(2) are all negative if N =0 (mod 2).
We have no proof for this and leave a proof ( or refutation ) as a
challenge to the interested reader. One may want to try things out by
means of the following program.

n = 3; Also tr C other 1 € N
T = Normal[Series[Tan[x], {x, 0, 2n-1}]];
S = Normal[Series[Sin[x], {x, 0, 2n-1}]];
Tan[x] - T
Print["f =", £f= —,];
S - Sin[x]
nTerms = 24; X ole
Normal [Series[f, {x, 0, nTerms}]]
£ - -X - "3—3 - 21—’: + Tan [x]
x- %+ X _sin[x]
6101x‘ 890149 x° , 26000961209 x® , 64491289 360457 x'°
132 47520 3424861440 20960152012 800
30254970559 608 601 x'* 208883539 141611618143 x' 7710587 768733558650 509 987 x'°
24262182114508800 413311124757 080 309 760 37644377242874874612940800
28124851 654 909 083 303 025 556 651 x'° , 1995115035944 689 724814 158 752 505 297 x?°
338799395 185873871516 467200000 59300 735738173 875479 270 286 950 400 000
59091732921225317488043 271690096506 747 x*? , 3507664213 216293552099 055375 264 386 853121 x4
4333697767 745746820 025072 570335232000000 634730927 560495 429 381430471959 353753 600 000

w272 + 114 %% +

A similar analysis of the inner and outer areas a, and A, leads to
“similar” observations.
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