A NOTE ON almost flat NUMBERS

JUAN ARIAS DE REYNA AND JAN VAN DE LUNE

Dedicated to Herman J. J. te Riele on the occasion of his retirement from the CWI in January 2012

In this note we present a solution of the following
Problem. For $n \in \mathbb{N}$ let $\beta(n)$ be the product of all prime divisors of n (not counting multiplicities).

So, in the notation of Hardy \mathcal{F} Wright, if $n=\prod p^{e}$ then $\beta(n)=\prod p$ with $\beta(1)=1$.

A positive integer n is called flat iff $n=\beta(n)$ (or, equivalently, iff $|\mu(n)|=1$, where $\mu(n)$ is the Möbius function).

A positive integer is called almost flat iff $n / \beta(n)$ is prime.
(A) Show that the sequence of almost flat numbers has a positive natural density (denoted by d_{1}), and indicate how this density can be computed to any degree of accuracy. (This is the case $k=1$ in the next, more general problem (B).)
(B) Let $\omega(n)$ denote the number of different prime divisors of $n \in \mathbb{N}$ (not counting multiplicities), and let k be any (fixed) positive integer.

Show that the sequence of all $n \in \mathbb{N}$ such that $q:=q(n):=n / \beta(n)$ is flat with $\omega(q)=k$, has positive natural density (denoted by d_{k}), and indicate how this density can be computed to any degree of accuracy.
(B1) Solve this problem for $k=2$.
(B2) How to proceed for $k \geq 3$? Compute d_{3}, d_{4} and d_{5}.

Solution of (A), the case $k=1$.

The generating Dirichlet series of the almost flat numbers is obtained by expanding
(1) $\sum_{q \text { prime }} \frac{1}{q^{2 s}} \frac{\prod_{p \text { prime }}\left(1+\frac{1}{p^{s}}\right)}{1+\frac{1}{q^{s}}}=\frac{\zeta(s)}{\zeta(2 s)} \sum_{q \text { prime }} \frac{1}{q^{s}\left(q^{s}+1\right)}$,

$$
(s=\sigma+i t, \sigma>1)
$$

Invoking the well-known Wiener-Ikehara Tauberian theorem (which applies indeed see [3, p. 259-266]), we find that the required natural

A NOTE ON $A L M O S T$ FLAT NUMBERS

density d_{1} exists and equals

$$
\begin{equation*}
d_{1}=\frac{6}{\pi^{2}} \sum_{q \text { prime }} \frac{1}{q(q+1)} \tag{2}
\end{equation*}
$$

The sum of the last series may be approximated by observing that

$$
\begin{align*}
\sigma_{1}:=\sum_{q \text { prime }} \frac{1}{q(q+1)} & =\sum_{q \text { prime }} \frac{1}{q^{2}} \frac{1}{1+\frac{1}{q}}=\sum_{q \text { prime }} \frac{1}{q^{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{q^{n}}= \tag{3}\\
& =\sum_{n=0}^{\infty}(-1)^{n} \sum_{q \text { prime }} \frac{1}{q^{2+n}}=\sum_{n=0}^{\infty}(-1)^{n} P(n+2)
\end{align*}
$$

where, for $s>1$,

$$
\begin{equation*}
P(s):=\sum_{p \text { prime }} \frac{1}{p^{s}}=\sum_{r=1}^{\infty} \frac{\mu(r)}{r} \log \zeta(r s) \tag{4}
\end{equation*}
$$

(see Titchmarsh [4, p. 12, formula (1.6.1)]) and that, also for $s>1$

$$
\begin{aligned}
\left|\frac{\mu(r)}{r} \log \zeta(r s)\right| \leq \frac{1}{r} \log \zeta(r s)<\frac{1}{r} \log (1+ & \left.\frac{1}{2^{r s}}+\int_{2}^{+\infty} \frac{d x}{x^{r s}}\right)< \\
& <\frac{1}{r} \log \left(1+\frac{3}{2^{r s}}\right)<\frac{3}{2^{r s}}
\end{aligned}
$$

so that, for $n \geq 2$,

$$
\begin{equation*}
P(n)<\sum_{r=1}^{\infty} \frac{1}{r} \log \zeta(r s)<\sum_{r=1}^{\infty} \frac{3}{2^{r s}}<\frac{3}{2^{n}-1} \leq \frac{4}{2^{n}} \tag{5}
\end{equation*}
$$

A combination of these ingredients is sufficient for a high precision computation of $\sum_{n=2}^{\infty}(-1)^{n} P(n)$.

For $n \geq 2$ we may approximate $P(n)$ by evaluating $\sum_{r=1}^{R} \frac{\mu(r)}{r} \log \zeta(r n)$ for a sufficiently large R.

If we want an accuracy of ε then it suffices to take R such that $\sum_{r=R+1}^{\infty} \frac{1}{r} \log \zeta(r n)<\varepsilon$. It is easily seen that

$$
\begin{equation*}
R=\left\lfloor\frac{1}{n} \frac{\log \left(\frac{4}{\varepsilon}\right)}{\log 2}\right\rfloor \tag{6}
\end{equation*}
$$

suffices. Using Mathematica we find $\sigma_{1} \approx 0.33022992626420324101509458808674476064425941947407 \ldots$ so that (recall that $d_{1}=\frac{6}{\pi^{2}} \sigma_{1}$)
$d_{1} \approx 0.20075572201926598699625072311440476585353555535256 \ldots$

Solution of (B1), the case $k=2$.
Similarly as in (A) the required density d_{2} equals

$$
\begin{equation*}
d_{2}=\frac{6}{\pi^{2}} \sum_{p<q} \frac{1}{p(p+1) q(q+1)} \tag{7}
\end{equation*}
$$

(p and q denoting primes).
The last series may also be written as

$$
\begin{aligned}
& \sigma_{2}:=\sum_{p<q} \frac{1}{p(p+1) q(q+1)}=\frac{1}{2}\left(\sum_{p<q} \frac{1}{p(p+1) q(q+1)}+\sum_{q<p} \frac{1}{q(q+1) p(p+1)}\right)= \\
& =\frac{1}{2} \sum_{p \neq q} \frac{1}{p(p+1) q(q+1)}=\frac{1}{2}\left(\sum_{p, q} \frac{1}{p(p+1) q(q+1)}-\sum_{p=q} \frac{1}{p(p+1) q(q+1)}\right)= \\
& \quad=\frac{1}{2}\left[\left(\sum_{p} \frac{1}{p(p+1)}\right)^{2}-\sum_{p} \frac{1}{p^{2}(p+1)^{2}}\right]=\frac{\sigma_{1}^{2}}{2}-\frac{1}{2} \sum_{p} \frac{1}{p^{4}\left(1+\frac{1}{p}\right)^{2}}
\end{aligned}
$$

(with $\sigma_{1}=\frac{\pi^{2}}{6} d_{1}$) and this in its turn may be reduced to a form "only" containing $P(n)$'s, so that we can compute σ_{2} (and hence d_{2}) to any degree of accuracy. Indeed, it is easily verified that

$$
\begin{equation*}
\sigma_{2}=\frac{1}{2} \sigma_{1}^{2}-\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n+1} n P(n+3) \tag{8}
\end{equation*}
$$

Using Mathematica we find that
$\sigma_{2} \approx 0.07278693253120878610025049397054318644318060075841 \ldots$
so that
$d_{2} \approx 0.02212457447327116398001200235594831757886781598850 \ldots$

Solution of (B2), the case $k \geq 3$.

For $k \geq 3$ we make use of the well-known (Girard-) Newton formulas. We briefly recall some pertinent details :

We consider (formally) the equation $f(x)=\sum_{n}(-1)^{n} \sigma_{n} x^{n}=0$ with roots $\frac{1}{\alpha_{k}}$. In our application we will have $\alpha_{n}=\frac{1}{p_{n}\left(p_{n}+1\right)}$ where p_{n} is the n-th prime. Then we have
$\sum_{n}(-1)^{n} \sigma_{n} x^{n}=\prod_{n}\left(1-\alpha_{n} x\right)=0, \quad$ with $\quad \sigma_{n}=\sum_{j_{1}<j_{2}<\cdots<j_{n}} \alpha_{j_{1}} \alpha_{j_{2}} \cdots \alpha_{j_{n}}$
(we assume here that $\sigma_{0}=1$). We define

$$
S_{k}:=\sum_{n} \alpha_{n}^{k}
$$

Although the (Girard-) Newton formulas usually express the sums S_{n} in terms of the coefficients σ_{n}, we will turn things around and express the (elementary symmetric functions) σ_{n} in terms of the (exponential sums) S_{n}. In order to do so we compute $f^{\prime}(x)$ in two different ways :

$$
f^{\prime}(x)=\sum_{n}(-1)^{n} n \sigma_{n} x^{n-1}
$$

and
$f^{\prime}(x)=-f(x) \sum_{n} \frac{\alpha_{n}}{1-\alpha_{n} x}=-f(x) \sum_{n} \sum_{k=0}^{\infty} \alpha_{n}^{k+1} x^{k}=-f(x) \sum_{k=0}^{\infty} S_{k+1} x^{k}$.
Comparing coefficients we find that (see [1, Chap. 8, p. 166], [2, p. 140] or [5, p. 99])

$$
\begin{equation*}
(-1)^{m} m \sigma_{m}=-\sum_{n=0}^{m-1}(-1)^{n} \sigma_{n} S_{m-n} \tag{9}
\end{equation*}
$$

which leads directly to the recurrence (with $\sigma_{0}=1$)
$\sigma_{m}=\frac{(-1)^{m+1}}{m}\left(S_{m}-\sigma_{1} S_{m-1}+\sigma_{2} S_{m-2}-\cdots+(-1)^{m-1} \sigma_{m-1} S_{1}\right), \quad(m \geq 1)$.
In this way we easily obtain, for example,
$\sigma_{1}=S_{1}$
$\sigma_{2}=\frac{1}{2}\left(S_{1}^{2}-S_{2}\right)$
$\sigma_{3}=\frac{1}{6}\left(S_{1}^{3}-3 S_{1} S_{2}+2 S_{3}\right)$
$\sigma_{4}=\frac{1}{24}\left(S_{1}^{4}-6 S_{1}^{2} S_{2}+3 S_{2}^{2}+8 S_{1} S_{3}-6 S_{4}\right)$
$\sigma_{5}=\frac{1}{120}\left(S_{1}^{5}-10 S_{1}^{3} S_{2}+15 S_{1} S_{2}^{2}+20 S_{1}^{2} S_{3}-20 S_{2} S_{3}-30 S_{1} S_{4}+24 S_{5}\right)$.
For $k=3$ we have to deal with the sum

$$
\sigma_{3}:=\sum_{p} \frac{1}{p(p+1)} \sum_{p<q} \frac{1}{q(q+1)} \sum_{q<r} \frac{1}{r(r+1)}, \quad(p, q, r \text { primes })
$$

In this case we have :

$$
\begin{align*}
& \alpha_{n}=\frac{1}{p_{n}\left(p_{n}+1\right)}, \quad \sigma_{3}=\sum_{n=1}^{\infty} \alpha_{n} \sum_{n<m} \alpha_{m} \sum_{m<r} \alpha_{r}= \tag{10}\\
&= \sum_{n} \frac{1}{p_{n}\left(p_{n}+1\right)} \sum_{n<m} \frac{1}{p_{m}\left(p_{m}+1\right)} \sum_{m<r} \frac{1}{p_{r}\left(p_{r}+1\right)}
\end{align*}
$$

and

$$
\sigma_{3}=\frac{1}{6}\left(S_{1}^{3}-3 S_{1} S_{2}+2 S_{3}\right)
$$

Note that we can compute the $S_{n}=\sum_{p} \frac{1}{p^{n}(p+1)^{n}}$ by the formula

$$
\begin{gather*}
S_{n}=\sum_{p} \frac{1}{p^{n}(1+p)^{n}}=\sum_{p} \frac{1}{p^{2 n}}\left(1+\frac{1}{p}\right)^{-n}=\sum_{p} \frac{1}{p^{2 n}} \sum_{k=0}^{\infty}\binom{-n}{k} \frac{1}{p^{k}}= \tag{11}\\
=\sum_{k=0}^{\infty}\binom{-n}{k} \sum_{p} \frac{1}{p^{2 n+k}}=\sum_{k=0}^{\infty}(-1)^{k}\binom{n+k-1}{k} P(2 n+k) .
\end{gather*}
$$

Proceeding similarly for $k>3$ we find (using Mathematica)
$d_{1}=0.20075572201926598699625072311440476585353555535256 \ldots$
$d_{2}=0.02212457447327116398001200235594831757886781598850 \ldots$
$d_{3}=0.00107282792166161493759718417905112998547080207983 \ldots$
$d_{4}=0.00002675935151889275774197228447437877805157715943 \ldots$
$d_{5}=0.00000038349005273872234879455501789109215013442743 \ldots$
$d_{6}=0.00000000344999551430858038744469936300859120389312 \ldots$
$d_{7}=0.00000000002082589566176650564631943168564945749335 \ldots$
$d_{8}=0.00000000000008875408100160712534284102344454925913 \ldots$
$d_{9}=0.00000000000000027791299446558096311346945089946028 \ldots$
$d_{10}=0.00000000000000000066033144111209475278993022631397 \ldots$

References

[1] W. S. Burnside \& A. W. Panton, The Theory of Equations, Vol. 1, Dover, 1960.
[2] N. Jacobson, Basic Algebra, Vol. 1, 2 ed., W. H. Freeman and Company, 1996.
[3] H. L. Montgomery \& R. C. Vaughan, Multiplicative Number Theory I, Classical Theory, Cambridge University Press, Cambridge, 2006.
[4] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Second ed. revised by D. R. Heath-Brown, Oxford University Press, 1986.
[5] B. L. van der Waerden, Algebra, Vol. 1, Springer, 1991.
Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080-Sevilla, Spain

E-mail address: arias@us.es
Langebuorren 49, 9074 CH Hallum, The Neterlands (Formerly at CWI, Amsterdam)

E-mail address: j.vandelune@hccnet.nl

