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In this note we present a solution of the following

Problem. For n ∈ N let β(n) be the product of all prime divisors of n
( not counting multiplicities ).

So, in the notation of Hardy & Wright, if n =
∏
pe then β(n) =

∏
p

with β(1) = 1.
A positive integer n is called flat iff n = β(n) ( or, equivalently, iff

|µ(n)| = 1, where µ(n) is the Möbius function ).
A positive integer is called almost flat iff n/β(n) is prime.

(A) Show that the sequence of almost flat numbers has a positive
natural density ( denoted by d1 ), and indicate how this density can be
computed to any degree of accuracy. ( This is the case k = 1 in the
next, more general problem (B). )

(B) Let ω(n) denote the number of different prime divisors of n ∈ N
( not counting multiplicities ), and let k be any ( fixed ) positive integer.

Show that the sequence of all n ∈ N such that q := q(n) := n/β(n) is
flat with ω(q) = k, has positive natural density ( denoted by dk ), and
indicate how this density can be computed to any degree of accuracy.

(B1) Solve this problem for k = 2.
(B2) How to proceed for k ≥ 3? Compute d3, d4 and d5.

Solution of (A), the case k = 1.
The generating Dirichlet series of the almost flat numbers is obtained

by expanding

(1)
∑
q prime

1

q2s

∏
p prime

(
1 + 1

ps

)
1 + 1

qs

=
ζ(s)

ζ(2s)

∑
q prime

1

qs(qs + 1)
,

(s = σ + it, σ > 1).

Invoking the well-known Wiener-Ikehara Tauberian theorem ( which
applies indeed see [3, p. 259–266] ), we find that the required natural
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density d1 exists and equals

(2) d1 =
6

π2

∑
q prime

1

q(q + 1)
.

The sum of the last series may be approximated by observing that

(3) σ1 :=
∑
q prime

1

q(q + 1)
=
∑
q prime

1

q2
1

1 + 1
q

=
∑
q prime

1

q2

∞∑
n=0

(−1)n

qn
=

=
∞∑
n=0

(−1)n
∑
q prime

1

q2+n
=
∞∑
n=0

(−1)nP (n+ 2)

where, for s > 1,

(4) P (s) :=
∑
p prime

1

ps
=
∞∑
r=1

µ(r)

r
log ζ(rs)

( see Titchmarsh [4, p. 12, formula (1.6.1)] ) and that, also for s > 1∣∣∣µ(r)

r
log ζ(rs)

∣∣∣ ≤ 1

r
log ζ(rs) <

1

r
log
(

1 +
1

2rs
+

∫ +∞

2

dx

xrs

)
<

<
1

r
log
(

1 +
3

2rs

)
<

3

2rs

so that, for n ≥ 2,

(5) P (n) <
∞∑
r=1

1

r
log ζ(rs) <

∞∑
r=1

3

2rs
<

3

2n − 1
≤ 4

2n
.

A combination of these ingredients is sufficient for a high precision
computation of

∑∞
n=2(−1)nP (n).

For n ≥ 2 we may approximate P (n) by evaluating
∑R

r=1
µ(r)
r

log ζ(rn)
for a sufficiently large R.

If we want an accuracy of ε then it suffices to take R such that∑∞
r=R+1

1
r

log ζ(rn) < ε. It is easily seen that

(6) R =
⌊ 1

n

log
(
4
ε

)
log 2

⌋
suffices. Using Mathematica we find

σ1 ≈ 0.3302299262 6420324101 5094588086 7447606442 5941947407 . . .

so that ( recall that d1 = 6
π2σ1 )

d1 ≈ 0.2007557220 1926598699 6250723114 4047658535 3555535256 . . .
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Solution of (B1), the case k = 2.
Similarly as in (A) the required density d2 equals

(7) d2 =
6

π2

∑
p<q

1

p(p+ 1)q(q + 1)

( p and q denoting primes ).
The last series may also be written as

σ2 :=
∑
p<q

1

p(p+ 1)q(q + 1)
=

1

2

(∑
p<q

1

p(p+ 1)q(q + 1)
+
∑
q<p

1

q(q + 1)p(p+ 1)

)
=

=
1

2

∑
p6=q

1

p(p+ 1)q(q + 1)
=

1

2

(∑
p,q

1

p(p+ 1)q(q + 1)
−
∑
p=q

1

p(p+ 1)q(q + 1)

)
=

=
1

2

[(∑
p

1

p(p+ 1)

)2
−
∑
p

1

p2(p+ 1)2

]
=
σ2
1

2
− 1

2

∑
p

1

p4
(

1 + 1
p

)2
( with σ1 = π2

6
d1 ) and this in its turn may be reduced to a form “only”

containing P (n)’s, so that we can compute σ2 ( and hence d2 ) to any
degree of accuracy. Indeed, it is easily verified that

(8) σ2 =
1

2
σ2
1 −

1

2

∞∑
n=1

(−1)n+1nP (n+ 3).

Using Mathematica we find that

σ2 ≈ 0.0727869325 3120878610 0250493970 5431864431 8060075841 . . .

so that

d2 ≈ 0.0221245744 7327116398 0012002355 9483175788 6781598850 . . .

Solution of (B2), the case k ≥ 3.
For k ≥ 3 we make use of the well-known (Girard-) Newton formulas.

We briefly recall some pertinent details :
We consider ( formally ) the equation f(x) =

∑
n(−1)nσnx

n = 0
with roots 1

αk
. In our application we will have αn = 1

pn(pn+1)
where pn

is the n-th prime. Then we have∑
n

(−1)nσnx
n =

∏
n

(1−αnx) = 0, with σn =
∑

j1<j2<···<jn

αj1αj2 · · ·αjn

( we assume here that σ0 = 1 ). We define

Sk :=
∑
n

αkn.
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Although the (Girard-) Newton formulas usually express the sums Sn
in terms of the coefficients σn, we will turn things around and express
the ( elementary symmetric functions ) σn in terms of the ( exponential
sums ) Sn. In order to do so we compute f ′(x) in two different ways :

f ′(x) =
∑
n

(−1)nnσnx
n−1

and

f ′(x) = −f(x)
∑
n

αn
1− αnx

= −f(x)
∑
n

∞∑
k=0

αk+1
n xk = −f(x)

∞∑
k=0

Sk+1x
k.

Comparing coefficients we find that ( see [1, Chap. 8, p. 166], [2, p. 140]
or [5, p. 99] )

(9) (−1)mmσm = −
m−1∑
n=0

(−1)nσnSm−n

which leads directly to the recurrence ( with σ0 = 1 )

σm =
(−1)m+1

m
(Sm−σ1Sm−1+σ2Sm−2−· · ·+(−1)m−1σm−1S1), (m ≥ 1).

In this way we easily obtain, for example,

σ1 = S1

σ2 =
1

2
(S2

1 − S2)

σ3 =
1

6
(S3

1 − 3S1S2 + 2S3)

σ4 =
1

24
(S4

1 − 6S2
1S2 + 3S2

2 + 8S1S3 − 6S4)

σ5 =
1

120
(S5

1 − 10S3
1S2 + 15S1S

2
2 + 20S2

1S3 − 20S2S3 − 30S1S4 + 24S5).

For k = 3 we have to deal with the sum

σ3 :=
∑
p

1

p(p+ 1)

∑
p<q

1

q(q + 1)

∑
q<r

1

r(r + 1)
, (p, q, r primes).

In this case we have :

(10) αn =
1

pn(pn + 1)
, σ3 =

∞∑
n=1

αn
∑
n<m

αm
∑
m<r

αr =

=
∑
n

1

pn(pn + 1)

∑
n<m

1

pm(pm + 1)

∑
m<r

1

pr(pr + 1)
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and

σ3 =
1

6
(S3

1 − 3S1S2 + 2S3).

Note that we can compute the Sn =
∑

p
1

pn(p+1)n
by the formula

(11)

Sn =
∑
p

1

pn(1 + p)n
=
∑
p

1

p2n

(
1 +

1

p

)−n
=
∑
p

1

p2n

∞∑
k=0

(
−n
k

)
1

pk
=

=
∞∑
k=0

(
−n
k

)∑
p

1

p2n+k
=
∞∑
k=0

(−1)k
(
n+ k − 1

k

)
P (2n+ k).

Proceeding similarly for k > 3 we find ( using Mathematica )

d1 = 0.2007557220 1926598699 6250723114 4047658535 3555535256 . . .

d2 = 0.0221245744 7327116398 0012002355 9483175788 6781598850 . . .

d3 = 0.0010728279 2166161493 7597184179 0511299854 7080207983 . . .

d4 = 0.0000267593 5151889275 7741972284 4743787780 5157715943 . . .

d5 = 0.0000003834 9005273872 2348794555 0178910921 5013442743 . . .

d6 = 0.0000000034 4999551430 8580387444 6993630085 9120389312 . . .

d7 = 0.0000000000 2082589566 1766505646 3194316856 4945749335 . . .

d8 = 0.0000000000 0008875408 1001607125 3428410234 4454925913 . . .

d9 = 0.0000000000 0000027791 2994465580 9631134694 5089946028 . . .

d10 = 0.0000000000 0000000066 0331441112 0947527899 3022631397 . . .
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