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1. INTRODUCTION

The numerical computations reported on in this note were motivated by a com-
bination of the following considerations (A) and (B):

(A) The absolute values of the Mobius function, |u(n)|, can be bulk-computed

very quickly by means of a sieve (one of the fastest we know of).

(B) Theorem. If A(x) := Z}gl (lun)| — &) = O(x3%€) for every e > 0,

then the Riemann Hypothesis is true.
Before proving (B), we make a few historical remarks.

Writing M (z) := Z}gl u(n), it can be shown [1] that the Riemann Hypoth-
esis is equivalent to M(z) = O(z2*¢). In 1911 Axer [2] showed that assuming
the slightly stronger Stieltjes Hypothesis, namely that M (z) = O(x%), it follows
that A(z) = (’)(x%) Although the Stieltjes Hypothesis has to date not been dis-
proved, there are some indications that it might be false. In particular, it was
proved that the (slightly stronger still) Mertens Hypothesis, |M(z)| < T2, is
false, as in 1985 Odlyzko and te Ricle [3] showed that limsup M(z)/z2 > 1.06,
liminf M(z)/z2 < —1.009, and in 2006 Kotnik and te Riele [4] improved this to
limsup M (z)/z2 > 1.218, liminf M (z)/z2 < —1.229. In the light of these devel-
opments, the condition assumed by Axer in deriving his result may be questioned.
This potential problem was overcome in 1980 by Montgomery and Vaughan [5],
who developed a method allowing to show rather straightforwardly that the Rie-
mann Hypothesis itself implies the stronger result A(z) = O(x3%¢), and with a
more involved argument they were able to strengthen the exponent % further to
29—8 = (0.321428... Their result was published in 1981, and building upon their work,
the exponent % was improved in the same year by Graham [6] to % = 0.32, then
in 1985 by Baker and Pintz [7] to o5 = 0.318181..., and in 1993 by Jia [8] to
17 =0.314814...

It is interesting to note that in none of these works, the authors conjecture the
actual order of magnitude of A(x), in the sense of the smallest value of the exponent
v for which A(z) = O(z"*¢) is true. Moreover, we were also unable to find any
work on the converse implication, i.e. on a value of v that would imply the Riemann
Hypothesis, as is the case of our theorem (B), of which we now give a proof.
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Theorem. If A(z) = O(x3i1€), then the Riemann Hypothesis is true.

Proof. Let s := o + it be a complex variable. For ¢ > 1 we have
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At s =1, ¥(s) is analytic, as the simple pole of {(s) is cancelled by the simple zero
of ﬁ — %. Since ¢(2s) # 0 for o > %, it follows that v (s) is analytic for o > %
Now suppose that for every € > 0 we have
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Since by assumption A(z) = O(z3 1), we find that (s) = s = As(f]) dx is analytic
for o > i + ¢, and as € may be taken arbitrarily small it follows that (s) is
analytic for o > i.

Now we proceed by contradiction: Suppose that the Riemann Hypothesis is not
true, and let p = % + a + i3 be the zero of ((s) with the smallest 5 > 0 and the
largest a with 0 < o < % (L.e., first take the smallest 5 > 0 and then the largest
corresponding «.)

Now consider the point s = £ = 1 + 5 +i g Then ¢(2s) = ((p) = 0, so that

has a pole at s = £. Clearly, 4(23) 2 then also has a pole there. Since

=1+9+ zf and ¢(s) = C(s)(ﬁ - 5)is regular for o > f, it follows that

2

2
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C(s) must have a zero of at least the same order at s = 1 + & + z2 But then ¢(s)

also has a zero at s = (1 — (1 + % ))—&—16:1—7—1—25 Slnce—<f—9<1and

0< g < f3, this contradicts our assumption about the minimality of . O

2. THE COMPUTATIONAL RESULTS

For = > 1 we define
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Thus, the sufficient condition for the validity of the Riemann Hypothesis can also be
written as ¢(x) = O(z°), and to investigate this condition numerically, we need to
perform a systematic search for large extrema of |¢(x)|. Since all positive maxima
and negative minima of g(x) occur at = € N, for our purpose we may restrict our
computations of ¢(x) to integer values of x.

The values of g(n) for all n < N2 may be computed by a sieve-program, the
functioning of which can be briefly outlined as follows:

(1) Precompute (by a sieve) all primes p < N and store their squares p.
[Sieving over the odd numbers we can reach n = (2N + 1)2]
(2) Set nDone = 0 and declare a sieve block SB as an array of length LSB = N
of integers.
[Or, equivalently, of Booleans.]
(3) Set MaxQ = MinQ =0 and SB = {1,1,1,...,1}.
[Or, equivalently, SB = {True, True, ..., True}.]
(4) For p? | n set SB[n] = 0.
[Or, equivalently, SB[n] = False. SB now contains the values of |u(n)|.
Note that a complete factorization of n is not necessary.|
(5) For nDone < n < nDone + LSB, compute ¢(n).
If g(n) > MaxQ then replace MaxQ by ¢(n),
else if ¢(n) < MinQ then replace MinQ by ¢(n).
(6) Output the values MaxQ, MinQ, their pertaining values of n, and possibly
some other relevant results.
[The maximal and the minimal value of ¢(n) in the current sieve block.]
(7) Tf n < N? then increment nDone by LSB and go to (3).
[Note that we use the same sieve block SB repeatedly.]

We wrote such a program using Delphi 6 (Borland Inc., Scotts Valley, CA, USA)
and ran it on a PC with 2 GB of RAM. Tables 1 and 2 below present the maxi-
mal and the minimal value of ¢(x) in 15 contiguous intervals spanning the range
1 <2 <5 x 10" (with LSB = 53361000 = 23 x 3% x 53 x 72 x 112).

xr

2-range : SO | A | 4@
(1, 10) 7 6 +1.744... | +1.0725...
[10, 100) 43 29 +2.859... | +1.1165...
[100, 1000) 115 73 +3.088... | +0.9430...
[10%, 10%) 1663 1017 +6.017... | +0.9422...
[10%, 10%) 47523 28905 |  +14.480... | +0.9807...
[10°, 10%) 351115 213474 | 4+21.675... | +0.8904...
(105, 107) 2015403 1225252 | +33.895... | +0.8995...
[107, LSB) 10143015 6166263 | +49.286... | +0.8733...
[LSB, 10 X LSB) 413384223 251307591 | +118.359... | +0.8300...
[10 X LSB, 102X LSB) 4804033147 2920502173 | +224.733... | +0.8536...
[102 x LSB, 10° x LSB) 29109682663 17696565352 | +334.792... | +0.8105...
[10% X LSB, 107 x LSB) 183141684519 111336794166 | +667.699... | +1.0206...
(107 X LSB, 10° X LSB) 0987483328243 600317878538 | +670.064... | +0.6721...
[10° X LSB, 105 X LSB) | 12693019531903 | 7716430579185 | +1378.655... | +0.7304...
[105 X LSB, 107 X LSB) | 214455677199819 | 130373418319553 | +3324.378... | +0.8687...

Table 1: The maximal values of ¢(z) in 15 intervals spanning the investigated z-range.
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z-range z D p(n)] A(z) q()
[1, 10) 10 - 0 6 10.528... | +0.2972...
(10, 100) 56 34 ~0.043... | —0.0160...
[100, 1000) 380 229 ~2.012... | ~0.4557...
[10%, 10%) 1864 1130 ~3.176... | —0.4833...
[10%, 10°) 80156 48715 | —14.004.. | —0.8323...
[10°, 105) 436484 265330 20.453... | —0.7957...
(105, 107) 1146476 696952 | —21.832... | —0.6671...
(107, LSB) 17199380 10455914 | —55.237... | —0.8577...
[LSB, 10 X LSB) 487335681 296264461 | —107.180... | ~0.7213...
[10 X LSB, 102X LSB) 3620494684 2200996604 | —236.522... | —0.9642...
(102 X LSB, 10° X LSB) 20219949552 12292254976 | -354.781... | ~0.9408...
[10° x LSB, 107 x LSB) 379688379896 230822855814 | —583.825... | ~0.7437...
(107 x LSB, 10° X LSB) 744078020392 452345193748 | —742.189... | ~0.7991...
[10° X LSB, 10% X LSB) | 11590475428980 | 7046164135224 | —1426.117... | ~0.7729...
(105 X LSB, 107 x LSB) | 154953313738408 | 94200318939698 | —3970.103... | —1.1252...

Table 2: The minimal values of ¢(z) in 15 intervals spanning the investigated z-range.

The presented computational data of course cannot rigorously resolve the ques-
tion whether A(z) = O(z3i "), but they do not seem to contradict this estimate.
In particular, the data shown in Fig. 1 could be interpreted as suggesting that

perhaps A(z) = O(x7 logz), and even |A(z)| < z7 logz for all z > 2.
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Figure 1: A plot of the function ¢(z)/log « in the z-range [1, 108].
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