Gaufl’s Lattice Point Problem(s) Revisited
An invitation

Dedicated to Herman J. J. te Riele on the occasion of his
retirement from the CWI in January 2012

Walter M. Lioen! and Jan van de Lune?

1 Introduction to the original Problem

In analytic number theory there is an abundance of unsolved problenig. One
of them is Gauf}’s Lattice Point Problem for the circle (see Gau$ [6, pp. 269
291 (in particular p. 280)] or [7, p. 657]). Hejhal once wrote that this problem
might very well be more difficult than the Riemann Hypothesis (cf. [10]).
Let’s recall what this problem is all about: For real ¢ > 0 let P(t) denote
the number of lattice Points (x,y) in the circular disc 22 + y? < t (note
that the radius of this disc is v/#), and let A(t) be the Area (= nt) of the
disc. The problem is to estimate the ‘Error’ E(t) := P(t) — A(t) as t — oo.
m [20, 19, 5] we find some history of this subject. The ultimate goal is to
determine the infimum (@) of all « satisfying E(t) = O(t*). Till today this is
still an unsolved problem. It is clear that all (local) extremes of E(t) occur at
the points ¢ = n(£0), so that we may restrict ourselves to the determination
of P(n) with n € N. In the past various (numerical) attempts have been
made to get an impression of what 6 might be. See [3, 12, 15, 17]. Various
methods have been applied: Gaufl’s original root method[6], Trorap’s step
method[17]. So far Tromp’s method has by far been superior in speed.
Writing |E(t)| < C.t*¢, the best bounds on 6 are 1 < § < 11 ~0.314904

116
(cf. [11]). It was Van der Corput[2] who was the first to prove that 6 < 3.

Experimental results suggest[that |E(t)] = o(ti logt) (as conjectured in
[15] and confirmed in [17]).
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We propose to introduce a new method for the computation of P(n), to
wit: a fast sieve method based on [8, pp. 241-243, Section 16.9, formula
(16.9.5), Theorem 278], which we already announced in [14, Section 7).

We have already written the main features of a program in Delphi Object
Pascal and a Fortran version is in progress.

2 Generalization 0

Now we change notation: P(t) will now denote the P(t) of Section 1. Sim-
ilarly As(t) = A(t), Esx(t) = E(t) and 0, = 0. The index 2 refers to the
dimension (of the plane). We now define (in 3 dimensional space) Ps(t) as
the number of lattice points (z,y, 2) satisfying 22 + y* + 22 < t, Va(t) =
the Volume of the pertinent sphere = %mg, and Es(t) := Ps(t) — V5(t). Of
course, also here the problem is to estimate the size of E3(t) as t — oc.
Writing |E3(t)| < Ct%F¢at the moment of writing the best bound on 65
is 03 < $& ~ 0.607143 (cf. [1]). Previoys, thegretical results can be found in
[9, 18]. For earlier numerical work see [3, 16].

Since Py(t) can now be computed very fast, it seems worthwhile to have
a go at Es(t). Summation over horizontal slices of the sphere yields Ps(n) =
Py(n) + 22,&‘4@ Py(n — k*). However, here is a nasty catch: the values of
P5(n) must be saved, which is rather demanding on fast memory. A simple
back of the envelope calculation suggests that at least memory-wise n < 101°
is feasible using readily available 128-256 GB machines.

3 Invitation

We would like to invite the golden-ager (hopefully with a lot of time) to join
the crowd in an attempt to extend the computations on Ejs(t).
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