Gauß's Lattice Point Problem(s) Revisited An invitation

Dedicated to Herman J. J. te Riele on the occasion of his retirement from the CWI in January 2012

Walter M. Lioen ${ }^{1}$ and Jan van de Lune ${ }^{2}$

1 Introduction to the original Problem

In analytic number theory there is an abundance of unsolved problenis. One of them is Gauß's Lattice Pqint Problem for the circle (see Gauß [6, pp. 269 291 (in particular p. 280)] or [7, p. 657]). Hejhal once wrote that this problem might very well be more difficult than the Riemann Hypothesis (cf. [10]). Let's recall what this problem is all about: For real $t \geq 0$ let $P(t)$ denote the number of lattice Points (x, y) in the circular disc $x^{2}+y^{2} \leq t$ (note that the radius of this disc is \sqrt{t}), and let $A(t)$ be the Area $(=\pi t)$ of the disc. The problem is to estimate the 'Error' $E(t):=P(t)-A(t)$ as $t \rightarrow \infty$. In [20, I9, 5] we find some history of this subject. The ultimate goal is to determine the infimum (θ) of all α satisfying $E(t)=\mathcal{O}\left(t^{\alpha}\right)$. Till today this is still an unsolved problem. It is clear that all (local) extremes of $E(t)$ occur at the points $t=n(\pm 0)$, so that we may restrict ourselves to the determination of $P(n)$ with $n \in \mathbf{N}$. In the past various (numerical) attempts have been made to get an impression of what θ might be. See $[3,12,15,17]$. Various methods have been applied: Gauß's original root methdd[6] Tromp's step method[17]. So far Tromp's method has by far been superior n speed.

Writing $|E(t)| \leq C_{\epsilon} t^{\theta+\epsilon}$, the best bounds on θ are $\frac{1}{4} \leq \theta \leq \frac{131}{416} \approx 0.314904$ (cf. [11]). It was Van der Corput[2] who was the first to prove that $\theta<\frac{1}{3}$.
\square Experimental results suggest that $|E(t)|=\mathcal{O}\left(t^{\frac{1}{4}} \log t\right)$ (as conjectured in [15] and confirmed in [17]).

[^0]We propose to introduce a new method for the computation of $P(n)$, to wit: a fast sieve method based on [8, pp. 241-243, Section 16.9, formula (16.9.5), Theorem 278], which we already announced in [14, Section 7].

We have already written the main features of a program in Delphi Object Pascal and a Fortran version is in progress.

2 Generalization

Now we change notation: $P_{2}(t)$ will now denote the $P(t)$ of Section 1. Similarly $A_{2}(t)=A(t), E_{2}(t)=E(t)$ and $\theta_{2}=\theta$. The index 2 refers to the dimension (of the plane). We now define (in 3 dimensional space) $P_{3}(t)$ as the number of lattice points (x, y, z) satisfying $x^{2}+y^{2}+z^{2} \leq t, V_{3}(t):=$ the Volume of the pertinent sphere $=\frac{4}{3} \pi t^{\frac{3}{2}}$, and $E_{3}(t):=P_{3}(t)-V_{3}(t)$. Of course, also here the problem is to estimate the size of $E_{3}(t)$ as $t \rightarrow \infty$. Writing $\left|E_{3}(t)\right| \leq C_{\epsilon} \theta^{\theta_{3}+\epsilon}$, at the moment of writing the best bound on θ_{3} $\square \square$ is $\theta_{3} \leq \frac{17}{28} \approx 0.607143$ (cf. [1]). Previous theoretical results can be found in $[9,18]$. For earlier numerical work see $[3,16]$.

Since $P_{2}(t)$ can now be computed very fast, it seems worthwhile to have a go at $E_{3}(t)$. Summation over horizontal slices of the sphere yields $P_{3}(n)=$ $P_{2}(n)+2 \sum_{k=1}^{\lfloor\sqrt{n}\rfloor} P_{2}\left(n-k^{2}\right)$. However, here is a nasty catch: the values of $P_{2}(n)$ must be saved, which is rather demanding on fast memory. A simple back of the envelope calculation suggests that at least memory-wise $n \leq 10^{10}$ is feasible using readily available 128-256 GB machines.

3 Invitation

We would like to invite the golden-ager (hopefully with a lot of time) to join the crowd in an attempt to extend the computations on $E_{3}(t)$.

References and related literature

[1] L.G. Arkhipova. Number of lattice points in a sphere. Moscow University Mathematics Bulletin, 63(5):214-215, 2008.
[2] J.G. van der Corput. Neue zahlentheoretische Abschätzungen. Math. Ann., 89:215-254, 1923.
[3] W. Fraser and C.C. Gotlieb. A calculation of the number of lattice points in the circle and sphere. Math. Comp., 16:282-290, 1962.
[4] F. Fricker. Einführung in die Gitterpunktlehre. Birkhäuser, 1982.

[5] J. Galante. Gauss's circle problem. Senior thesis, University of Rochester, 2005. http://www.math.rochester.edu/undergraduate/ sums/reu/2005_galante-joseph.pdf.
[6] C.F. Gauß. De nexu inter multitudinem classium, in quas formae binariae secundi gradus distribuuntur, earumque determinantem. In Werke, volume 2. 1863.
[7] C.F. Gauß. Disquisitiones Arithmeticae. 1886.
[8] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford at the Clarendon Press, fourth edition, 1971.
[9] D.R. Heath-Brown. Lattice points in the sphere. In Number theory in progress, pages 883-892. Walter de Gruyter, Berlin, 1999.
[10] D.A. Hejhal. The Selberg trace formula and the Riemann zeta function. Duke Math. J., 43:441-482, 1976.
[11] M.N. Huxley. Exponential sums and lattice points III. Proc. London Math. Soc., 87(3):591-609, 2003.
[12] H.B. Keller and J.R. Swenson. Experiments on the lattice problem of Gauss. Math. Comp., 17:223-230, 1963.
[13] E. Krätzel. Lattice Points. Kluwer, 1988.
[14] W.M. Lioen and J. van de Lune. Systematic computations on Mertens' conjecture and Dirichlet's divisor problem by vectorized sieving. In K.R. Apt, A. Schrijver, and N.M. Temme, editors, From Universal Morphisms to Megabytes: A Baayen Space Odyssey, pages 421-432, Amsterdam, December 20, 1994. CWI.
[15] J. van de Lune and E. Wattel. Systematic computations on Gauss' lattice point problem (in commemoration of Johannes Gualtherus van der Corput, 1890-1975). Report AM-R9008, CWI, 1990.
[16] W.C. Mitchell. The number of lattice points in a k-dimensional hypersphere. Math. Comp., 20:300-310, 1966.
[17] J.T. Tromp. More computations on Gauss' lattice point problem. Report CS-R9017, CWI, 1990.
[18] K.-M. Tsang. Counting lattice points in the sphere. Bull. London Math. Soc., 32:679-688, 2000.
[19] E.W. Weisstein. Gauss's circle problem. From MathWorlda Wolfram web resource. http://mathworld.wolfram.com/ GausssCircleProblem.html.
[20] J.R. Wilton. The lattice points of a circle: an historical account of the problem. Mess. Math., 58:67-80, 1929.

[^0]: ${ }^{1}$ Walter.Lioen@sara.hl, SARA, P.O. Box 94613, 1090 GP Amsterdam, The Netherlands.
 ${ }^{2}$ j.vandelune@hccnet.nl, Langebuorren 49, 9074 CH Hallum, The Netherlands (formerly at CWI, Amsterdam).

