
On the Unification Free Prolog Programs

Krzysztof R. Apt1 and Sandro Etalle2

1 CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

and
Faculty of Mathematics and Computer Science

University of Amsterdam, Plantage Muidergra.cht 24
1018 TV Amsterdam, The Netherlands

2 Dipartimento di Matematica Pura ed Applicata
Universita di Padova

Via Belzoni 7, 35131 Padova, Italy

Abstract. We provide simple conditions which allow us to conclude that
in case of several well-known Prolog programs the unification algorithm can
be replaced by iterated matching. The main tools used here are types and
generic expressions for types. As already noticed by other researchers, such
a replacement offers a possibility of improving the efficiency of program's
execution.

Notes. The work of the first author was partly supported by ESPRIT Basic
Research Action 6810 (Compulog 2). This research was done partly during
the second author's stay at Centre for Mathematics and Computer Science,
Amsterdam.

1 Introduction

Unification is heralded as one of the crucial features offered by Prolog, so it is
natural to ask whether it is actually used in specific programs. The aim of this
paper to identify natural conditions under which unification can be replaced by
iterated matching and to show that they are applicable to several well-known Prolog
programs. These conditions can be statically checked without analyzing the search
trees for the queries. For programs which use ground inputs they can be efficiently
tested.

The problem of replacing unification by iterated matching was already studied
in the literature by a number of researchers - see e.g. Deransart and Maluszynski
[DM85b], Maluszynski and Komorowski [MK85) and Attali and Franchi-Zannettacci
[AFZ88). As in the previous works on this subject, we use modes, which indicate how
the arguments of a relation should be used. Our results improve upon the previous
ones due to the additional use of types. This allows us to deal with non-ground
inputs.

We use here a simple notion of a type, which is a set of terms closed under
substitution. The main tool in our approach is the concept of a generic expression.
Intuitively, a term s is a generic expression for a type T if it is more general than all
elements of T which unify with s. This simple no_tion turns out to be crucial here,

2

because surprisingly often the input positions of the heads of program clauses a.re
filled in by generic expressions for appropriate types.

We combine in our analysis the use of generic expressions with the notion of a
well-typed program, recently introduced by Bronsa.rd, Lakshman and Reddy [BLR92),
which allows us to ensure that the input positions of the selected atoms remain
correctly typed. As the table included at the end of this paper shows, our results
can be applied to astonishingly many Prolog programs.

2 Preliminaries

In what follows we study logic programs executed by means of the LD-resolution,
which consists of the SLD-resolution combined with the leftmost selection rule. An
SLD-derivation in which the leftmost selection rule is used is ea.lied an LD-derivation.
We allow in programs various first-order built-in's, like =, f:., >, etc, and assume
that they are resolved in the way conforming to their interpretation.

We work here with queries, that is sequences of atoms, instead of goals, that is
constructs of the form +- Q, where Q is a query. Apart from this we use the standard
notation of Lloyd [Llo87) and Apt [Apt90). In particular, given a syntactic construct
E (so for example, a term, an atom or a set of equations) we denote by Var(E) the
set of the variables appearing in E. Given a substitution 8 = {x1 /ti, ... , xn/tn} we
denote by Dom(8) the set of variables { x 1 , ... , xn}, by Range(8) the set of terms
{ti, ... , t,.}, and by Ran(8) the set of variables appearing in { t1 , ... , tn}· Finally, we
define Var(8) = Dom(8) U Ran(8).

Recall that a substitution 8 is called grounding if Ran(8) is empty, and is called
a renaming if it is a permutation of the variables in Dom(8). Given a substitution
fJ and a set of variables V, we denote by BIV the substitution. obtained from (} by
restricting its domain to V.

2.1 Unifiers

Given two sequences of terms s = s1 , ... , s,. and t = t1 , ... , tn of the same length we
abbreviate the set of equations {s1 = t 1 , ... , Sn= tn} to {s = t} and the sequence
s18, ... , snB to s8. Two atoms can unify only if they have the same relation symbol.
With two atoms p(s) and p(t) to be unified. we associate the set of equations { s = t}.
In the applications we often refer to this set as p(s) = p(t). A substitution 8 such
that s8 = t8 is called a unifier of the set of equations {s = t}. Thus the set of
equations { s = t} has the same unifiers as the atoms p(s) and p(t).

A unifier 8 of a set of equations E is called a most general unifier (in short mgu)
of E if it is more general than all unifiers of E. An mgu 8 of a set of equations Eis
called relevant if Var(8) ~ Var(E).

The following lemma was proved in La.ssez, Marriot and Maher [LMM88).

Lemma 1. Let 81 and 82 be mgu 's of a set of equations. Then for some renaming T/
we have 82 = 811). O

Finally, the following well-known lemma allows us to search for mgu's in an
iterative fashion.

3

Lemma2. Let E 1 , E2 be two sets of equations. Suppose that 81 is a relevant mgu
of E1 and 82 is a relevant mgu of E281. Then 8182 is a relevant mgu of E1 U E2.
Moreover, ij E1 U E2 is unifiable then 81 exists and for any such 81 an appropriate
82 exists, as well. D

2.2 Modes and Types

Below we extensively use modes.

Definition 3. Consider an n-ary relation symbol p. By a mode for p we mean a
function mp from {l, ... ,n} to the set{+,-}. If mp(i) ='+',we call i an input
positionofp and ifmp(i) ='-',we call i an output positionofp (both w.r.t. mp)· D

Modes indicate how the arguments of a relation should be used. The definition
of moding assumes one mode per relation in a program. Multiple modes may be
obtained by simply renaming the relations. When every considered relation has a
mode associated with it, we can talk about input positions and output positions of
an atom. In that case for an atom A we denote by In(A) and Out(A) the family of
terms filling in, respectively, the input and the output positions of A. Given an atom
A, we denote by Varln(A) (resp. VarOut(A)) the set of variables occurring in the
input (resp. output) positions of A. Similar notation is used for sequences of atoms.

In the sequel, we also use types. The following very general definition is sufficient
for our purposes.

Definition 4. A type is a decidable set of terms closed under ~ubstitution. D

We call a type T ground if all its elements are ground, and non-ground if some
of its elements is non-ground. By a typed term we mean a construct of the form s : S
where s is a term and S is a type. Given a sequence s : S = s 1 : 81, .. ., sn : Sn of
typed terms we writes E S if for i E [l, n] we have Si E S;.

Certain types will be of special interest:
U - the set of all terms,
List - the set of lists,
Bin Tree - the set of binary trees,
Nat - the set of natural numbers,
Ground - the set of ground terms.
Of course, the use of the type List assumes the existence of the empty list []

and the list constructor [. I .] in the language, and the use of the type Nat assumes
the existence of the numeral 0 and the successor function s (.), etc. Throughout the
paper we fix a specific set of types, denoted by Types, which includes the above ones.

We also associate types with relation symbols.

Definition 5. Consider an n-ary relation symbol p. By a type for p we mean a
function tp from [l, n] to the set Types. If tp(i) = T, we call T the type associated
with the position i of p. Assuming a type tp for the relation p, we say that an atom
p(s1, .. ., sn) is correctly typed in position i if s; E tp(i). D

4

When every considered relation has a mode a.nd a type associated with it, we can
talk about types of input positions and of output positions of an atom. An n-ary
relation p with a mode mp and type t1 will be denoted by

p(mp(l): tp(l), ... ,m1(n): t,(n)).

For example, app(+ : List, + : List, - : U) denotes a ternary relation app with the
first two positions moded as input and typed as List, and the third position moded
as output and typed as U.

lF'rom the context it will be always clear whether modes and/or types are as­
sumed for the considered relations. In this paper we shall always use types in presence
of modes.

3 Solvability by (Iterated) Matching

3.1 Solvability by Matching

We begin by recalling the following concepts.

Definition 6. Consider a set of equations E = { s = t}.

- A substitution (J such that either Dom(6) ~ Var(s} and s(J = t or Dom(6) ~
Var(t) and s = t(J, is called a match for E.

- Eis called left-tight disjoint if Var(s) n Var(t) = 0. D

Clearly, if Eis left-right disjoint, then a match for Eis also a relevant mgu of E.
The sets of equations we consider in this paper will always satisfy this disjointness
proviso due to the standardization apart.

Definition 1. Let Ebe a left-right disjoint set of equations. We say that Eis solvable
by matching if E is unifiable implies that a match for E exists. D

A simple test allowing us to determine whether a given set of equations is solvable
by matching is summarized in the following lemma.

Definition 8.

- We call an atom (resp. a term) a pure atom (resp. pure variable term) if it is of
the form p(x) with x a sequence of different variables.

- Two atoms (resp. terms) are called disjoint if they have no variables in common.
D

Lemma9 (Matching 1). Consider two disjoint atoms A and H with the same
relation symbol. Suppose that

- one of them is ground or pure.

Then A = H is solvable by matching.

Proof. Clear. D

5

3.2 Generic Expressions

A more interesting condition for solvability by matching can be obtained using types.
For example, assume the standard list notation and consider a term t = [xly] with
x and y variables. Note that whenever a list l unifies with t, then l is an instance of
t, i.e l = t is solvable by matching.

Thus solvability by matching can be sometimes deduced from the shape of the
considered terms. This motivates the following definition.

Definition 10. Let T be a type. A term t is a generic expression for T if for every
s E T disjoint with t, if s unifies with t then s is an instance of t. D

In other words, t is a generic expression for type T iff all left-right disjoint equa­
tions s = t, where s E T, are solvable by matching. Note that a generic expression
for type T needs not to be a member of T.

Example 1.

- 0, s(x), s(s(x)), ... are generic expressions for the type Nat,
- [], [x], [xly], [xlx], [x, ylz], ... are generic expressions for the type List. D

Next, we provide some important examples of generic expressions which will be
used in the sequel.

Lemmall. Let T be a type. Then

- variables are generic expressions for T,
- the only generic expressions for type U are variables,
- if T does not contain variables, then every pure variable term is a generic ex-

pression for T,
- if T is ground, then every term is a generic expression for T.

Proof. Clear. 0

When the types are defined by structural induction (as for example in Bronsard,
Lakshman and Reddy [BLR92] or in Yardeni, T. Friihwirth and E. Shapiro [YFS92]),
then it is easy to characterize the generic expressions for each type by structural
induction.

We can now provide another simple test for establishing solvability by matching.

Lemma 12 (Matching 2). Consider two disjoint typed atoms A and H with the
same relation symbol. Suppose that

- A is correctly typed,
- the positions of H are filled in by mutually disjoint terms and each of them is a

generic expression for its position's type.

Then A = H is solvable by matching. Moreover, if A and H are unifiable, then a
substitution 8 with Dom(8) f; Var(H) exists such that A= HO.

Proof. Clear. D

6

3.8 Solvability by Iterated Matching

Consider a selected atom A and the head H of an input clause used to resolve A. In
presence of modes the input and output positions can be used to model a parameter
passing mechanism as follows. First the input values are passed from the selected
atom A to the head H. Then the output values are passed from H to A.

To formalize and extend this idea we introduce the following notion where passing
a value is modeled by matching.

Definition 18. Let E be a left-right disjoint set of equations.

- We say that E is solvable by iterated matching if E is unifiable implies that for
some E1, ••. , E,. and substitutions (Ji, ... , 8,. . ,.
- E =Ui=l Ei,
and for i E [1, n]
- Ei81 ... 8i-1 is left-right disjoint,
- 8i is a match for E;81 ... 8;-1. D

We shall also call it double matching when n = 2. In fact, in this paper we shall only
study this form of iterated matching.

Note that when 81, ... , 8,. satisfy the above three conditions, then by Lemma 2
8182 ... 8,. is a relevant mgu of E.

A slightly less general definition of solvability by (iterated) matching was consid­
ered by Maluszynski and Komorowski [MK85), where for E = {s1 = t1, ... , s,. = t,.}
the fixed partition E =U7=l E; with E; = { Sj = t;} is used.

According to this terminology the above modeling of a parameter passing mech­
anism amounts to solvability by double matching.

To study solvability by double matching, modes and types are useful. Again, let
us consider the case of passing the input values from a selected atom A to the head
Hof the clause used to resolve A. In presence of types, we can expect those input
values to be correctly typed. Then the Matching 2 Lemma 12 can be applicable to
deal with the input positions. If we are able to combine it with the Matching 1 Lemma
9 applied to the output positions, we can then conclude that A = H is solvable by
double matching. This observation is at the base of the following definitions.

Definition 14. An atom is called input safe if

- each of its input positions is filled in with a generic expression for this position's
type,

- either the types of all input positions are ground or the terms filling in the input
positions are mutually disjoint. D

In particular, an atom is input safe if the types of all input positions are ground.

Definition 15. An atom is called input-output disjoint if the family of terms oc­
curring in its input positions has no variable in common with the family of terms
occurring in its output positions. D

Definition 16. An atom A is called ijo regular if

7

(i) it is correctly typed in its input positions,
(ii) it is input-output disjoint,

(iii) each of its output positions is filled in by a distinct variable. 0

We now prove a result allowing us to conclude that A = H is solvable by double
matching.

Lemma 17 (Double Matching). Consider two disjoint atoms A and H with the
same relation symbol. Suppose that

- A is i/o regular,
- H is input safe,

Then A = H is solvable by double matching.

Proof. Assume that A = H is unifiable. Take as E1 the subset of A = H corre­
sponding to the input positions, as E2 the subset of A = H corresponding to the
output positions.

By the Matching 1 Lemma 9 or the Matching 2 Lemma 12 E1 is solvable by
matching, and it determines a match 91 such that Dom(91) £;;; Var(H) and Ran(Bi) £;;;
Varln(A). But A is input-output disjoint, so Ran((h) n VarOut(A) = 0. Thus E281
is left-right disjoint. Applying to E2 91 the Matching 1 Lemma 9 we get a match 82
for E2B1 such that Dom(82) £;;; VarOut(A). 0

3.4 Unification Free Programs

Recall that the aim of this paper is to clarify for what Prolog programs unification
can be replaced by iterated matching. The following definition is the key one.

Definition 18.
- Let e be an LD-derivation. Let A be an atom selected in e and H the head of

the input clause selected to resolve A in e. Suppose that A and H have the same
relation symbol. Then we say that the system A = H is considered in e.

- Suppose that all systems of equations considered in the LD-derivations of PU{ Q}
are solvable by iterated matching. Then we say that PU { Q} is unification free.

D

The Double Matching Lemma 17 allows us to conclude when PU{ Q} is unification
free. We need this notion.

Definition 19. We call an LD-derivation i/o driven if all atoms selected in it are
i/o regular. 0

Theorem 20. Suppose that

- the head of every clause of P is input safe,
- all LD-derivations of PU {Q} are i/o driven.

Then P U { Q} is unification free. D

In order to apply this theorem we need to find conditions which imply that all
considered LD-derivations are i/o driven. To deal with the first condition for an
atom to be i/o regular we use the concept of well-typed queries and programs.

8

4 Well-Typed Programs

The notion of well-typed queries and programs relies on the concept of a type judge­
ment.

Definition 21.

- By a type judgement we mean a statement of the form

s: S => t: T. (1)

- We say that a type judgement (1) is true, and write

F s: s => t: T,

if for all substitutions B, sB ES implies tB E T. D

For example, the type judgement s(s(x)) : Nat, l : ListNat => [x j l] : ListNat is
true.

To simplify the notation, when writing an atom asp(u : S, v : T) we now assume
that u : S is a sequence of typed terms filling in the input positions of p and v : T
is a sequence of typed terms filling in the output positions of p. We call a construct
of the form p(u : S, v : T) a typed atom.

The following notion is due to Brousard, Lakshman and Reddy [BLR92].

Definition 22.

- A query P1(i1: Il,ol : 01)1 ••• ,pn(in: In, on: On) is called well-typed if for
j E [l, n]

F= o1 : o 1 , ... , oj-l: oj-t => ij: Ij-

- A clausepa(oo: Oo, in+l: In+l) +- p1(i1: Il, 01: 01), ... ,pn(in: In, on: On)
is called well-typed if for j E [1, n + 1]

f= o0 : o0 , ... , oj-l : oj-l => ij : Il

- A program is called well-typed if every clause of it is. D

Thus, a query is well-typed if

- the types of the terms filling in the input positions of an atom can be deduced
from the types of the terms filling in the output positions of the previous atoms.

And a clause is well-typed if

- (j E [1, n]) the types of the terms filling the input positions of a body atom can
be deduced from the types of the terms filling in the input positions of the head
and the output positions of the previous body atoms,

- (j = n + 1) the types of the terms filling in the output positions of the head can
be deduced from the types of the terms filling in the input positions of the head
and the types of the terms filling in the output positions of the body atoms.

9

Note that a query with only one atom is well-typed iff this atom is correctly
typed in its input positions. The following lemma due to Bronsard, Lakshman and
Reddy [BLR92] shows persistence of the notion of being well-typed.

Lemma23. An LD-resolvent of a well-typed query and a disjoint with it well-typed
clause is well-typed. D

Corollary 24. Let P and Q be well-typed, and let€ be an LD-derivation of PU{Q}.
All atoms selected in€ are correctly typed in their input positions.

Proof. A variant of a well-typed clause is well-typed and the first atom of a well­
typed query is correctly typed in its input positions. D

This shows that by restricting our attention to well-typed programs and queries
we ensure that all atoms selected in the LD-derivations satisfy the first condition of
i/o regularity.

5 Simply Moded Programs

To ensure that the other two conditions of i/o regularity are satisfied we introduce
further syntactic restrictions. Later we shall discuss how confining these restrictions
are. We need a definition first.

Definition 25. A fii.mily of terms is called linear if every variable occurs at most
once in it. D

Thus a family of terms is linear iff no variable has two distinct occurrences in
any of the terms and no two terms have a variable in common.

Definition 26.

- A query P1(s1, ti), ... ,pn(sn, tn) is called simply moded if ti, ... , tn is a linear
family of variables and for i E [1, n]

n

Var(si) n (LJ Var(tj)) = 0.
j=i

- A clause
Po(so, to)._ P1(s1, ti), ... ,pn(sn, tn)

is called simply moded if P1(s1, ti), ... ,pn(sn, tn) is simply moded and

n

Var(so) n (LJ Var(tj)) = 0.
j=l

In particular, every unit clause is simply moded.
- A program is called simply moded if every clause of it is. D

Thus, assuming that in every atom the input positions occur first, a query is
simply moded if

10

- all output positions are filled in by variables,
- every variable occurring in an output position of an atom does not occur earlier

in the query.

And a clause is simply moded if

- all output positions of body atoms are filled in by variables,
- every variable. occurring in an output position of a body atom occurs neither

earlier in the body nor in an input position of the head.

So, intuitively, the concept of being simply moded prevents a "speculative bind­
ing" of the variables which fill in the output positions - these variables are required
to be "fresh". A similar notion of nicely moded programs and queries was intro­
duced in Chadha and Plaisted [CP91] and further studied in Apt and Pellegrini
[AP92]. The difference is that the output positions do not need there to be filled in
by variables.

Note that a query with only one atom is simply moded iff it is input-output
disjoint and each of its output positions is filled in by a distinct variable, i.e. so iff
the conditions (ii) and (iii) of i/o regularity are satisfied. The following lemma shows
the persistence of the notion of being simply moded.

Lemma27. An LD-resolvent of a simply moded query and a disjoint with it simply
moded clause is simply moded.

Proof. First, we establish two claims.

Claim 1 Let() be a substitution and A a simply moded query such that Var(O) n
VarOut(A) = 0. Then AO is simply moded, as well.

Proof. () does not affect the variables appearing in the output positions of A and
does not introduce these variables when applied to the terms appearing in the input
positions of A. D

Claim 2 Suppose A andB are simply moded queries such that VarOut(A)n Var(B)
= 0. Then B, A is a simply moded query, as well.

Proof. Immediate by the definition of a simply moded query. D

Consider now a simply moded query A, A and a disjoint with it simply moded
clause H +- B, such that A and H unify. Take as E1 the subset of A = H correspond­
ing to the input positions and as E2 the subset of A = H corresponding to the output
positions. Let (Ji be a relevant mgu of E1. Then Var(01) ~ Varln(H) U Varln(A),
so Var(lh)n VarOut(A) = 0, since A is input-output disjoint. Thus E201 is left-right
disjoint a.nd by virtue of the Matching 1 Lemma 9 is solvable by matching. Let 82

be a match for E201. Then Dom(82) ~ VarOut(A) and Ran(02) ~ VarOut(H).
Let()= 8182. Then Var(O) ~ Var(A)U Var(H), so by the disjointness assumption

and the definition of simply modedness Var(O) n VarOut(A) = 0. Thus by Claim 1
AO is simply moded.

11

Next, 8 = 81 U 82, since A is input-output disjoint. So by the disjointness assump­
tion B8 = B81. But Var(81)n VarOut(B) ~ (Varln(A)U Varln(H))n VarOut(B) =
0, so by Claim 1 B8 is simply moded.

Finally, Var0ut(A8) = VarOut(A) and Var(B8) ~ Var(B) U Var(A) U Var(H),
so by the disjointness assumption and the definition of simply modedness we have
that Var0ut(A8) n Var(B8) = 0. By Claim 2 (B, A)8 is simply moded. Now by
Lemma 2 8 is an mgu of A and H, so (B, A)8 is a resolvent of A, A and H +-B.

8 = 8182 is just one specific mgu of A = H. By Lemma 1 every other mgu of
A = H is of the form 811 for a renaming T/· But a renaming of a simply moded query
is simply moded, so we conclude that every LD-resolvent of A, A and H +- B is
simply moded. D

It is useful to note that the above Lemma can be easily established as a conse­
quence of Lemma 5.9 of Apt and Pellegrini (AP92] stating persistence of the notion
of being nicely moded. To keep the paper self-contained we preferred to give here a
direct proof.

The following immediate consequence show that the notion of being simply
moded is the one we need.

Corollary 28. Let P and Q be simply moded, and let e be an LD-derivation of
PU { Q}. All atoms selected in e are input-output disjoint and such that each of their
output positions are filled in by a distinct variable.

Proof. A variant of a simply moded clause is simply moded and the first atom of a
simply moded query is input-output disjoint and each of its output positions is filled
in by a distinct variable. D

Theorem 29. Suppose that

- P and Q are well-typed and simply moded,

Then all LD-derivations of PU {Q} are i/o driven.

Proof. By Corollaries 24 and 28. D

This brings us to the desired conclusion.

Theorem 30 (Main). Suppose that

- P and Q are well-typed and simply moded,
- the head of every clause of P is input safe.

Then PU {Q} is unification free.

Proof. By Theorems 20 and 29. D

12

6 Examples

Let us see now how the established result can be applied to specific programs. When
presenting the programs we adhere here to the usual syntactic conventions of Prolog
with the exception that Prolog's ":-" is replaced by the logic programming " +- ".

(i) Consider the proverbial program append:

app([X I Xs], Ya, [X I Zs]) +- app(Xs, Ys, Zs).
app([] , Ys, Ya).

with the typing app (+: List, + : List, - : List) . First note that append is well-typed in
the assumed typing. Indeed, the following type judgements are true:

[X!Xs]: List => Xs: List,

Ys: List => Ys: List,

Zs : List => [XIZs]: List.

append is also obviously simply moded and the heads of all clauses are input safe. By
the Main Theorem 30 we conclude that for lists s and t, and a variable u , append
U { app (s , t , u) } is unification free.

(ii) Examine now the program append with the typing app(-: List,-: List,+: List).
First note that by virtue of the same type judgements as above append is well-typed.
Moreover, append is also simply moded and the heads of all clauses are input safe.
The Main Theorem 30 yields that for a list u and variables s, t,_ append U { app(s,
t, u)} is unification free.

(iii) Consider now the program permutation sort which is often used as a bench­
mark program.

ps(Xs, Ys) +-permutation(Xs, Ys), ordered(Ys).

permutation(Xs, [Y I Ys]) +-
select(Y, Xs, Zs),
permutation(Zs, Ys).

permutation([], []) .

select(X, [X Xs], Xs).
select (X, [Z I Xs] , [Z I Zs]) +- select (X, Xs, Zs) .

ordered ([]) .
ordered ([X]) .
ordered([X, Y I Xs]) +- X $ Y, ordered([YI Xs]).

With the following typing: ps (+:List, - : List), permutation(+: List, -: List),
select(-: U,+:List,-:List), $(+:U,+: U), ordered(+:List), the program is well­
typed. Indeed, in addition to the above type judgements the following type judge­
ment is true:

[X, YjXs]: List => [YjXs]: List.

13

permutation sort is also simply moded and the heads of all clauses are input
safe. By the Main Theorem 30 we get that for a list s and a variable t, permutation
sort U { ps (s, t)} is unification free.

In all the examples seen before, the generic expressions which were filling in the
input positions of the clauses were always either variables or pure variable terms.
This is not the case with permutation sort. Indeed, the terms [X] and [X, Y
I Xs], filling in the input positions of, respectively, the first and the third clause
defining the relation ordered, are generic expressions for List, but are not pure
variable terms. In a sense we could say that [X] and [X, Y I Xs] are nontrivial
generic expressions.

(iv) Finally, consider the program in-order which converts a (n ordered) binary
tree into a (n ordered) list and consists in the following clauses:

in-order(tree(X, L, R), Xs) ;.-­
in-order(L, Ls),
in-order(R, Rs),
app(Ls, [X I Rs], Xs).

in-order(void, []).

augmented by the append program.

The type BinTree can be defined recursively as follows:
- void is a binary tree,
- if 1 and r are binary trees and label is a term, then tree (label, 1, r) is a

binary tree.
With the typing in-order(+: Bin Tree,- :List), app(+:List,+: List,-: List), the pro­
gram in-order is well-typed. Indeed, in addition to the above type judgements the
following type judgements are clearly true:

tree(X, L, R) : BinTree =? L: BinTree,

tree(X, L, R) : BinTree =? R: BinTree.

in-order is also simply moded and the heads of all clauses are input safe. By the
Main Theorem 30 we conclude that for a binary tree t and a variable s, in-order
U { in-order(t, s)} is unification free.

7 A voiding Unification Using Modes

When trying to apply the Main Theorem 30 one has to verify whether for a given
typing a program and a query are well-typed. This can be inefficient and for some ar­
tificially constructed types even undecidable. However, when dealing with programs
which use ground inputs the conditions of the Main Theorem 30 can be efficiently
tested for a given moding, program and query.

This is due to the fact that it is possible then to formulate this theorem without
explicit reference to types. The notion which is sufficient then is that of a well-moded
program. The concept is essentially due to Dembinski and Maluszynski [DM85a]; we
use here an elegant formulation due to Rosenblueth [Ros91]. To simplify the notation,

14

when writing an atom as p(u, v), we now assume that u is a sequence of terms filling
in the input positions of p and that v is a sequence of terms filling in the output
positions of p.

Definition 31.

- A query P1(s1, ti), ... ,pn.(sn, tn) is called well-moded if for i E [1, n]

i-1

Var(si) £;; LJ Var(tj)·
j=l

- A clause
Po(to, sn+l) +-Pi (s1, ti), ... , Pn(sn, tn)

is called well-moded if for i E [1, n + 1]

i-1

Var(si) ~ LJ Var(tj)·
j=O

- A program is called well-moded if every clause of it is.

Thus, a query is well-moded if

0

- every variable occurring in an input position of an atom (i E [1, n]) occurs in an
output position of an earlier (j E [1, i - 1)) atom.

And a clause is well-moded if

- (i E [1, n]) every variable occurring in an input position of a body atom occurs
either in an input position of the head (j = 0), or in an output position of an
earlier (j E [l, i - 1]) body atom,

- (i = n + 1) every variable occurring in an output position of the head occurs in
an input position of the head (j = 0), or in an output position of a body atom
(j E [l, n]).

It is useful to note that the concept of a well-moded program (resp. query) is
a particular case of that of a well-typed program. Indeed, if the only type used is
Ground, then the notions of a well-typed program (resp. query) and a well-moded
program (resp. query) coincide. All programs considered in Section 6 become well­
moded when the type information is dropped.

This brings us to the following special case of the Main Theorem 30.

Corollary 32. Suppose that

- P and Q are simply moded and well-moded.

Then PU {Q} is unification free.

Proof. When the only types used are ground, all atoms are input safe. O

Note that for a given moding it is easy to test whether conditions of this corollary
are applicable. Indeed, assume that in every atom the input positions occur first.
Then a query Q is simply moded and well-moded iff

15

- every first from the left occurrence of a variable in Q is within an output position,
- the output positions of Q are filled in by distinct variables.

And a clause p(s, t) t-B is simply moded and well-moded iff

- every first from the left occurrence of a variable in the sequence s, B, t is in s or
within an outpPt position in B,

- the output posit.ions of B are filled in by distinct variables which do not appear
in s.

This corollary allows us to deal with more restricted queries than the Ma.in
Theorem 30, but in a number of cases this is sufficient.

Example2.

(i) Examine the following program palindrome:

palindrome(Xs) +- reverse(Xs, Xs).

reverse (X1s, X2s) - reverse (X1s, [], X2s).
reverse ((X I X1s] , X2s, Ys) +- reverse (X1s, (X I X2s] , Ys).
reverse((], Xs, Xs).

With the typing palindrome(+: List), reverse(+: List, -:List), reverse(+:List,
+:L'•t, -:List), reverse is simply moded, but palindrome is not, a.s the body of
the ; ~st clause does not satisfy Definition 26 (the variable in the second position
of reverse appears "earlier" twice). Switching to the typing palindrome (+:List),
reverse (+:List,+: List), reverse (+:List,+: List,+: List), does not help as now the
head of the last clause is not input safe. .

On the other hand, when adopting the mode palindrome (+), reverse (+, +),
reverse (+, +, +), palindrome is simply moded and well-moded. Hence, by Corollary
32, when t is ground, palindrome U { palindrome (t)} is unification free.

It is worth noticing that for non-ground inputs palindrome (+:List) may actually
require unification in order to run properly. Indeed, consider the following query:
palindrome ((f (X, a) , f (b, X)]). When evaluated it eventually leads to the equation
f(X, a) = f(b, X), which to be solved requires unification.

(ii) Applying Corollary 32 to the programs handled in Section 6 we can only draw
conclusions for the case when all terms filling in the input positions are ground.

8 Discussion

To apply the established results to a program and a query, one needs to find ap­
propriate modings and typings for the considered relations such that the conditions
of the Main Theorem 30 or of Corollary 32 are satisfied. In the table below several
programs taken from the book of Sterling and Shapiro [SS86] are listed. For each
program it is indicated for which nonground typing (i.e. one with some non-ground
type) the Main Theorem 30 is applicable, and for which modings Corollary 32 is.
All built-in's are moded completely input with all positions typed U.

16

In programs which use difference-lists we replaced "\" by ",", thus splitting a
position filled in by a difference-list into two positions. Because of this change in
some relations additional arguments are introduced, and so certain clauses have to
be modified in an obvious way. For example, in the parsing program on page 258
each clause of the form p (X) +- r (X) has to be replaced by p (X, Y) +- r CX, Y) .

Such changes are purely syntactic and they allow us to draw conclusions about the
original program.

In the program dutch we refer to a new type CList which consists of lists of co lo red
objects, where a colored object is a term of the form red(s), blue(s) or white(s).

program page (nonground) typings modings

member 45 (-: U,+:List) (-,+)
member 45 none (+,+)

prefix 45 (-:List,+:List) (-,+)
prefix 45 (+:List,-: List) (+,-)
prefix 45 none (+,+)

suffix 45 (-:List,+:List) (-,+)
suffix 45 (+:List,-:List) (+,-)
suffix 45 none (+,+)

naive reverse 48 (+:List,-: List) (+,-)

reverse-accum. 48 r(+:List,-: List) r(+,-)
r(+:List,+: List,-: List) r(+,+,-)

reverse-accum. 48 none r(+,+)
r(+,+,+)

delete 53 none (+,+,-)
delete 53 none (+,+,+)

select 53 none (+,+,-)
select 53 (-: U,+:List,-:List) (-,+,-)
select 53 (+: U,-:List,+:List) (+,-,+)
select 53 none (+,+,+)

insertion sort 55 s(+:List,-:List) s(+,-)
i(+:List,+:List,-:List) i(+,+,-)

quicksort 56 q(+:List,-: List) q(+,-)
p(+:List,+: U,-:List,-:List) p(+,+,-,-)
app(+:List,+:List,-:List) app(+,+,-)

tree-member 58 (-: U,+:BinTree) (-,+)
tree-member 58 none (+,+)

17

isotree 58 (-:Bin Tree,+:Bin '.n-ee) (-,+)
isotree 58 (+:Bin'.n-ee,-:Bin'.n-ee) (+,-)
isotree 58 none (+,+)

substitute 60 none (+,+,+,-)

pre-order 60 (+:Bin Tree,-: List) (+,-)

post-order 60 (+:Bin'.n-ee,-:List) (+,-)

polynomial 62 none (+,+)

derivative 63 none (+,+,-)
derivative 63 none (+,+,+)

hanoi 64 (+:Nat,+: U,+: U,+: U,-:List) (+,+,+,+,-)

flatten 243 none f(+,-)
f(+,+,-)

reverse_dl 244 r(+:List,-: List) r(+,-)
r_dl(+:List,-:List,+:List) r_dl(+,-,+)

reverse_dl 244 none r(+,+)
r_dl(+,+,+)

dutch 246 dutch(+: CList,-: CList) dutch(+,-)
di(+: CList,-: CList,-: CList,-: CList) di(+,-,-,-)

parsing 258 none all (+,-)

9 Conclusions

In view of the above results it is natural to ask when unification is intrinsically
needed in Prolog programs. A canonic example is the Prolog program curry which
computes a type assignment to a lambda term, if such an assignment exists (see e.g.
Reddy [Red86]). We are not aware of other natural examples, though it should be
added that for complicated queries which anticipate in their ouput positions the form
of computed answers, almost any program will necessitate the use of unification.

In our analysis we restricted our attention to the case of programs in which the
output positions of the clause bodies are filled in by variables. This obviously limits
applicability of our results, since in a number of natural programs these output
positions are compound terms. An example is the following program permutation:

perm(Xs, Ys) +- Ys is a permutation of the list Xs.

perm(Xs, [X I Ys]) +­

app(Xls, [X I X2s], Xs),
app(Xls, X2s, Zs),
perm(Zs, Ys).

perm([], []).

augmented by the APPEND program.

18

in which the first call of app uses a compound term [X I X2s] in an output position.
We checked by hand that when s is a list and x a variable, permutation U { perm(s,
x)} is unification free. Currently we are working on extension of the obtained results
to the case of non-variable outputs.

This work is naturally related to the study of conditions which guarantee that
Prolog programs can be executed using unification without the occur-check. It should
be noted however, that unification freedom property rests exclusively upon those
considered systems of equations which are unifiable, whereas the property of being
occur-check free rests exclusively upon those considered systems which are not unifi­
able. Indeed, the occur-check is only needed to correctly identify the non-unifiable
systems of equations. Still, when comparing the outcome of this paper with our
previous work on the occur-check problem (Apt and Pellegrini [AP92]) we note an
astonishing similarity between both classes of identified Prolog programs.

Acknowledgements

We thank Jan Heer1ng and Alessandro Pellegrini for interesting discussions on the
subject of this paper.

References

[AFZ88) I. Attali and P. Franchi-Zannetta.cci. Unification-free execution of TYPOL pro·
grams by semantic attribute evaluation. In R.A. Kowalski and K.A. Bowen, ed­
itors, Proceedings of the Fifth International Conference on Logic Programming,
pages 160-177. The MIT Press, 1988.

[AP92] K. R. Apt and A. Pellegrini. Why the occur-check is not a problem. In
M. Bruynooghe and M. Wirsing, editors, Proceeding of the Fourth International
Symposium on Programming Language Implementation and Logic Programming
(PLILP 92), Lecture Notes in Computer Science 631, pages 69-86, Berlin, 1992.
Springer-Verlag.

[Apt90] K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theo­
retical Computer Science, pages 493-574. Elsevier, 1990. Vol. B.

[BLR92] F. Bronsard, T.K. Lakshman, and U.S. Reddy. A framework of directionality for
proving termination of logic programs. In K.R. Apt, editor, Proc. of the Joint
International Conference and Symposium on Logic Programming, pages 321-335.
MIT Press, 1992.

[CP91] R. Chadha and D.A. Plaisted. Correctness of unification without occur check in
Prolog. Technical report, Department of Computer Science, University of North
Carolina, Chapel Hill, N.C., 1991.

[DM85a] P. Dembinski and J. Maluszynski. AND-parallelism with intelligent backtra.cking
for annotated logic programs. In Proceedings of the International Symposium on
Logic Programming, pages 29-38, Boston, 1985.

19

[DM85b] P. Deransart and J. Maluszynski. Relating Logic Programs and Attribute Gram­
mars. Journal of Logic Programming, 2:119-156, 1985.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.

[LMM88] J.-L. Lassez, M. J. Maher, and K. Marriott. Unification Revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587-
625. Morgan Kaufmann, Los Altos, Ca., 1988.

[MK85] J. Maluszynski and H. J. Komorowski. Unification-free execution of logic pro­
grams. In Proceedings of the 1985 IEEE Symposium on Logic Programming,
pages 78-86, Boston, 1985. IEEE Computer Society Press.

[Red86] U.S. Reddy. On the relationship between logic and functional languages. In
D. DeGroot and G. Lindstrom, editors, Functional and Logic Programming, pages
3-36. Prentice-Hall, 1986.

[Ros91] D.A. Rosenblueth. Using program transformation to obtain methods for elimi­
nating backtracking in fixed-mode logic programs. Technical Report 7, Universi­
dad Nacional Autonoma de Mexico, Institute de Investigaciones en Matematicas
Aplicadas y en Sistemas, 1991.

[SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.
[YFS92] E. Yardeni, T. Friihwirth, and E. Shapiro. Polymorphically typed logic programs.

In F. Pfenning, editor, Types in Logic Programming, pages 63-90. MIT Press,
Cambridge, Massachussets, 1992.

