Reinforcement Learning in
Continuous State and Action Spaces

Hado van Hasselt

Abstract Many traditional reinforcement-learning algorithms haeen designed
for problems with small finite state and action spaces. Liagrm such discrete
problems can been difficult, due to noise and delayed reiefoents. However,
many real-world problems have continuous state or actiawesf which can make
learning a good decision policy even more involved. In thiapter we discuss how
to automatically find good decision policies in continuowsndins. Because an-
alytically computing a good policy from a continuous modehde infeasible,
in this chapter we mainly focus on methods that explicithdaie a representa-
tion of a value function, a policy or both. We discuss consitiens in choosing
an appropriate representation for these functions andisksgradient-based and
gradient-free ways to update the parameters. We show hopply these methods
to reinforcement-learning problems and discuss many padgorithms. Amongst
others, we cover gradient-based temporal-differenceiegy evolutionary strate-
gies, policy-gradient algorithms and (natural) actoticrinethods. We discuss the
advantages of different approaches and compare the penfaerof a state-of-the-
art actor-critic method and a state-of-the-art evolutigrsdrategy empirically.

1 Introduction

In this chapter, we consider the problem of sequential @@timaking in continu-
ous domains with delayed reward signals. The full problequires an algorithm to
learn how to choose actions from an infinitely large acticacgo optimize a noisy
delayed cumulative reward signal in an infinitely largeestgptace, where even the
outcome of a single action can be stochastic. Desirablegptieg of such an algo-
rithm include applicability in many different instantiatis of the general problem,

Hado van Hasselt
Centrum Wiskunde en Informatica (CWI, Center for Mathewséind Computer Science)
Amsterdam, The Netherlands

2 Hado van Hasselt

computational efficiency such that it can be used in rea¢tmd sample efficiency
such that it can learn good action-selection policies witfited experience.

Because of the complexity of the full reinforcement-leagyroblem in contin-
uous spaces, many traditional reinforcement-learnindgnott have been designed
for Markov decision processes (MDPs) with small finite statel action spaces.
However, many problems inherently have large or contindoumsains. In this chap-
ter, we discuss how to use reinforcement learning to leaod gtion-selection
policies in MDPs with continuous state spaces and discraieraspaces and in
MDPs where the state and action spaces are both continuous.

Throughout this chapter, we assume that a model of the enwieat is not
known. If a model is available, one can use dynamic programgrgBellman, 1957;
Howard, 1960; Puterman, 1994; Sutton and Barto, 1998; 8eats 2005, 2007),
or one can sample from the model and use one of the reinforaeleerning algo-
rithms we discuss below. We focus mainly on the problermasttrol, which means
we want to find action-selection policies that yield highures, as opposed to the
problem ofprediction which aims to estimate the value of a given policy.

For general introductions to reinforcement learning frammying perspectives,
we refer to the books by Bertsekas and Tsitsiklis (1996) arith8 and Barto (1998)
and the more recent books by Bertsekas (2007), Powell (2@2€pesvari (2010)
and Busoniu et al (2010). Whenever we refer to a chaptes,iinplied to be the
relevant chapter from the same volume as this chapter.

In the remainder of this introduction, we describe the stmecof MDPs in con-
tinuous domains and discuss three general methodologfgsdtgood policies in
such MDPs. We discuss function approximation techniquesdetd with large or
continuous spaces in Section 2. We apply these techniquesforcement learn-
ing in Section 3, where we discuss the current state of kraigedor reinforcement
learning in continuous domains. This includes discussomgemporal differences,
policy gradients, actor-critic algorithms and evolutionstrategies. Section 4 shows
the results of an experiment, comparing an actor-critichmeto an evolutionary
strategy on a double-pole cart pole. Section 5 concludesttapter.

1.1 Markov Decision Processesin Continuous Spaces

A Markov decision process (MDP) is a tuflg, A, T, R, y). In this chapter, the state
spaceSis generally an infinitely large bounded set. More specificale assume
the state space is a subset of a possibly multi-dimensionelidean space, such
thatSC RPs, whereDs € N is the dimension of the state space. The action space
is discrete or continuous and in the latter case we assAImeéRPA, whereDp €

N is the dimension of the action spat&Ve consider two variants: MDPs with
continuous states and discrete actions and MDPs where t@ttates and actions

1In general, the action space is more accurately represeitieé function that maps a state into
a continuous set, such thats) C RPA. We ignore this subtlety for conciseness.

Reinforcement Learning in Continuous State and Action 8pac 3

Table 1 Symbols used in this chapter. All vectors are column vectors

Dx € {1,2,...} dimension of spac¥

SC RPs state space

AC RPa action space

T:SxAxS—[0,1] state-transition function
R:SxAxS—R expected-reward function

ye[0,1] discount factor

V:S—R state value function

Q:SxA—R state-action value function
m:SxA—[0,]] action-selection policy

aeR,BeR step-size parameters (may depend on state and action)
teN time step

keN episode

® C RPe feature space

Q.S— @ feature-extraction function

© CRPe parameter space for value functions
6eo parameter vector for a value function

Y C RPv parameter space for policies

yeW parameter vector for a policy

ecRPe eligibility trace vector

IX]| = S ox(i]? quadratic norm of vectox = {x[0],...,x[n]}
(1]l = frex(f ()% dx quadratic norm of functiorf : X — R

[Fllw = JfuexW(X)(f(x))? dx|quadratic weighted norm of functioh: X — R

are continuous. Often, when we write ‘continuous’ the risshibld for ‘large finite’
spaces as well. The notation used in this chapter is sumethinzrable 1.

The transition functiof (s,a,s') gives the probability of a transition ® when
actiona is performed ins. When the state space is continuous, we can assume the
transition function specifies a probability density funat{PDF), such that

/%T(s,a,s’) ds =P(s41 € S|s =sanda = a)

denotes the probability that actiarin states results in a transition to a state in the
regionS C S. It is often more intuitive to describe the transitions thgh a function
that describes the system dynamics, such that

S1=T(s,a) +wr(s, &) ,

whereT : Sx A — Sis a deterministic transition function that returns theentpd
next state for a given state-action pair as¢l(s,a) is a zero-mean noise vector
with the same size as the state vector. For exangple,could be sampled from a
Gaussian distribution centeredBts, a;). The reward function gives the expected
reward for any two states and an action. The actual reward@atain noise:

rp1 = R(s,a,S41) + Or(S, 8, S41)

wherewr(s,a,s) is a real-valued zero-mean noise termwi and the components
of wr are not uniformly zero at all time steps, the MDP is callecsstic. Oth-

4 Hado van Hasselt

erwise it is deterministic. IT or R is time-dependent, the MDP is non-stationary.
In this chapter, we assume stationary MDPs. Since it is conlyrassumed that
S, A andy are known, when we refer toraodelin this chapter we usually mean
(approximations of I andR.

When only the state space is continuous, the action-sefegtblicy is repre-
sented by a state dependent probability mass funetio®x A — [0, 1], such that

n(s,a)=P(a;=algs =s) and zAn(s, a=1.

When the action space is also continuaus) represents a PDF on the action space.
The goal of prediction is to find the value of tbgpected future discounted re-

ward for a given policy. The goal of control is to optimize this walby finding

an optimal policy. It is useful to define the following openatB™ : ¥ — ¥ and

B*: ¥ — ¥, where¥ is the space of all value functioss:

(B"™V)(s) :An(s,a) /;T(s,a7s')(R(s,a,s’)+W(s’)) ds da , (1)
(B'V)(s) = maax/ST(s, ad) (Risas)+W()) ds |

In continuous MDPs, the values of a given policy and the oativalue can then
be expressed with the Bellman equatidis= B™V™ andV* = B*V*. HereV(s)
is the value of performing policyr starting from state andV*(s) = max;V'(s) is
the value of the best possible policy. If the action spacenitefithe outer integral
in equation (1) should be replaced with a summation. In thepter, we mainly
consider discounted MDPs, which means that(0,1).

For control with finite action spaces, action values arerotteed. The optimal
action value for continuous state spaces is given by therB2ellequation

Q*(s7a):LT(s,a,§) (R(s,a7s’)+yma§1xQ*(s’,a’)) ds . (2)

The idea is that whe®* is approximated byQ with sufficient accuracy, we get
a good policy by selecting the argumenthat maximize€Q(s,a) in each states.
Unfortunately, when the action space is continuous bothdglection and the max
operator in equation (2) may require finding the solutiongoron-trivial optimiza-
tion problem. We discuss algorithms to deal with continuactions in Section 3.
First, we discuss three general ways to learn good poliniesmtinuous MDPs.

2 In the literature, these operators are more commonly defidt@ndT* (e.g., Szepesvari, 2010),
but since we us@ to denote the transition function, we choose to Bse

Reinforcement Learning in Continuous State and Action 8pac 5

1.2 Methodologiesto Solve a Continuous MDP

In the problem of control, the aim is an approximation of tiptimal policy. The
optimal policy depends on the optimal value, which in turpeteds on the model
of the MDP. In terms of equation (2), the optimal policy is fi@icy * that maxi-
mizesQ* for each statey , 11" (s,a)Q" (s, a) = maxa Q*(s,a). This means that rather
than trying to estimater* directly, we can try to estimat®*, or we can even es-
timate T andR to constructQ* and r* when needed. These observations lead to
the following three general methodologies that differ iniethpart of the solution

is explicitly approximated. These methodologies are ndually exclusive and we
will discuss algorithms that use combinations of these @ggres.

Model Approximation Model-approximation algorithms approximate the MDP
and compute the desired policy on this approximate MDP.&$ & andy are
assumed to be known, this amounts to learning an approximédr the functions
T andR.3 Because of the Markov property, these functions only dementbcal
data. The problem of estimating these functions then taéeslto a fairly standard
supervised learning problem. For instance, one can usesiZayeethods (Dear-
den et al, 1998, 1999; Strens, 2000; Poupart et al, 2006)timats the required
model. Learning the model may not be trivial, but in gendra easier than learn-
ing the value of a policy or optimizing the policy directlyolFa recent survey on
model-learning algorithms, see Nguyen-Tuong and Pet&®l1(2

An approximate model can be used to compute a value fundtfis can be done
iteratively, for instance usingalue iterationor policy iteration (Bellman, 1957;
Howard, 1960; Puterman and Shin, 1978; Puterman, 1994)niEjer drawback of
model-based algorithms in continuous-state MDPs is thext éa model is known,
in general one cannot easily extract a good policy from thdehtor all possible
states. For instance, value iteration uses an inner looptbeewhole state space,
which is impossible if this space is infinitely large. Altatively, a learned model
can be used to generate sample runs. These samples can tieedle estimate a
value function, or to improve the policy, using one of the noets outlined below.
However, if the accuracy of the model is debatable, the tiegubolicy may not be
better than a policy that is based directly on the sampldésitbee used to construct
the approximate model. In some cases, value iteration cé@dsile, for instance
becausd (s,a,5) is non-zero for only a small number of stagsEven so, it may
be easier to approximate the value directly than to infewttiees from an approxi-
mate model. For reasons of space, we will not consider m@gebaimation further.

Value Approximation In this second methodology, the samples are used to ap-
proximateV* or Q* directly. Many reinforcement-learning algorithms faltarthis
category. We discuss value-approximation algorithms ictiSe 3.1.

3 In engineering, the reward function is usually considerebe known. Unfortunately, this does
not make things much easier, since the transition funciarsually harder to estimate anyway.

6 Hado van Hasselt

Policy Approximation Value-approximation algorithms parametrize the policy in
directly by estimating state or action values from which éqyocan be inferred.
Policy-approximation algorithms store a policy directlydatry update this policy
to approximate the optimal policy. Algorithms that only r&t@ policy, and not a
value function, are often calledirect policy-searci{Ng et al, 1999) olctor-only
algorithms (Konda and Tsitsiklis, 2003). Algorithms th&dre both a policy and
a value function are commonly known astor-critic methods (Barto et al, 1983;
Sutton, 1984; Sutton and Barto, 1998; Konda, 2002; KondaTaitdiklis, 2003).
We will discuss examples of both these approaches. Usisgehininology, value-
based algorithms that do not store an explicit policy candresitlerectritic-only
algorithms. Policy-approximation algorithms are diseuss Section 3.2.

2 Function Approximation

Before we discuss algorithms to update approximations lfevunctions or poli-
cies, we discuss general ways to store and update an ap@teXiamction. General
methods to learn a function from data are the topic of actgearch in the field
of machine learning. For general discussions, see fornnstthe books by Vapnik
(1995), Mitchell (1996) and Bishop (2006).

In Sections 2.1 and 2.2 we discuss linear and non-lineartifitmapproxima-
tion. In both cases, the values of the approximate functierdatermined by a set
of tunable parameters. In Section 2.3 we disaysslient-base@ndgradient-free
methods to update these parameters. Both approaches heréieen used in re-
inforcement learning with considerable success (Sutt®88;1Werbos, 1989b,a,
1990; Whitley et al, 1993; Tesauro, 1994, 1995; Moriarty &fittkulainen, 1996;
Moriarty et al, 1999; Whiteson and Stone, 2006; Wierstral eP@08; Riickstiel3
et al, 2010). Because of space limitations, we will not déscoon-parametric ap-
proaches, such as kernel-based methods (see, e.g., Ot &en, 2002; Powell,
2007; Busoniu et al, 2010).

In this section, we mostly limit ourselves to the generalctional form of the
approximators and general methods to update the paraniaterder to apply these
methods to reinforcement learning, there are a number ajilesnsiderations. For
instance, we have to decide how to measure how accurate pheapation is. We
discuss how to apply these methods to reinforcement leginiSection 3.

In supervised learning, a labeled data set is given thaagm& number of inputs
with the intended outputs for these inputs. One can thenanstatistical questions
about the process that spawned the data, such as the vahesfahttion that gen-
erated the data at unseen inputs. In value-based reinferagdearning, targets may
depend on an adapting policy or on adapting values of steesefore, targets may
change during training and not all methods from supervisarhing are directly ap-
plicable to reinforcement learning. Nonetheless, manyhef¢ame techniques can
successfully be applied to the reinforcement learningmnggtas long as one is care-
ful about the inherent properties of learning in an MDP. t-ivge discuss some

Reinforcement Learning in Continuous State and Action 8pac 7

issues on the choice of approximator. This discussion isispbd a part on linear
function approximation and one on non-linear function agpmation.

2.1 Linear Function Approximation

We assume some feature-extraction functipnS — @ is given that maps states
into features in the feature spade We assume C RP¢ whereDy is the dimen-
sion of the feature space. A full discussion about the chofgpod features falls
outside the scope of this chapter, but see for instancerBuigd al (2010) for some
considerations.

A linear function is a simple parametric function that degiean the feature vec-
tor. For instance, consider a value-approximating algoritvhere the value function
is approximated by

Vi(s) = 67 9(s) - 3)

In equation (3) and in the rest of this chapi&re © denotes the adaptable param-
eter vector at timé andg(s) € @ is the feature vector of stageSince the function
in equation (3) is linear in the parameters, we refer to it sear function approxi-
mator. Note that it may be non-linear in the state varialilepending on the feature
extraction. In this section, the dimensibg of the parameter space is equal to the
dimension of the feature spaBry. This does not necessarily hold for other types
of function approximation.

Linear function approximators are useful since they aréebetnderstood than
non-linear function approximators. Applied to reinforcamhlearning, this has led to
a number of convergence guarantees, under various addiiesumptions (Sutton,
1984, 1988; Dayan, 1992; Peng, 1993; Dayan and Sejnows¥4,; Bertsekas and
Tsitsiklis, 1996; Tsitsiklis and Van Roy, 1997). From a piead point of view, linear
approximators are useful because they are simple to impieamel fast to compute.

Many problems have large state spaces in which each statleeceapresented
efficiently with a feature vector of limited size. For instan the double pole cart
pole problem that we consider later in this chapter has oaootis state variables,
and therefore an infinitely large state space. Yet, evetg stan be represented with
a vector with six elements. This means that we would needla tdhnfinite size,
but can suffice with a parameter vector with just six elem#énte use (3) with the
state variables as features.

This reduction of tunable parameters of the value functmmes at a cost. It is
obvious that not every possible value function can be reprtesl as a linear combi-
nation of the features of the problem. Therefore, our soiuis limited to the set of
value functions that can be represented with the chosetiduat form. If one does
not know beforehand what useful features are for a givenlpnolit can be benefi-
cial to use non-linear function approximation, which wecdsss in Section 2.2.

8 Hado van Hasselt

CO TS
| | l L |
(—+— -+ 3

| L |
ARG+ -+ 24
I 1 \
L I I

Fig. 1: An elliptical state space is discretized by tile coding wik tilings. For a
state located at the X, the two active tiles are shown in lggky. The overlap of
these active features is shown in dark grey. On the left, 8fwfp contains 12 tiles.
The feature vector contains 24 elements and 35 differenbauations of active fea-
tures can be encountered in the elliptical state space. ©rght, the feature vector
contains 13 elements and 34 combinations of active feattaede encountered,
although some combinations correspond to very small pattecellipse.

2.1.1 Discretizing the State Space: Tile Coding

A common method to find features for a linear function apprator divides the
continuous state space into separate segments and atteehg=ature to each seg-
ment. A feature is active (i.e., equal to one) if the rele\sate falls into the corre-
sponding segment. Otherwise, it is inactive (i.e., equakim).

An example of such a discretizing method that is often usectimforcement
learning istile coding (Watkins, 1989; Lin and Kim, 1991; Sutton, 1996; San-
tamaria et al, 1997; Sutton and Barto, 1998), which is basedhe Cerebel-
lar Model Articulation Controller (CMAC) structure proped by Albus (1971,
1975). In tile coding, the state space is divided into a nundfedisjoint sets.
These sets are commonly called tiles in this context. Fdant®, one could de-
fine N hypercubes such that each hypercthds defined by a Cartesian product
Hn = [Xn1,¥n,1] X ... X [XnDs, Yn.Dg)» Wherex,q is the lower bound of hypercube
Hn in state dimensiod andyy, g is the corresponding upper bound. Then, a feature
@ (s) € @(s) corresponding tly is equal to one whese Hy, and zero otherwise.

The idea behind tile coding is to use multiple non-overlapyilings. If a single
tiling containsN tiles, one could us& such tilings to obtain a feature vector of
dimensionDy = MN. In each state, precisel of these features are then equal to
one, while the others are equal to zero. An example Witk 2 tilings andD ¢ = 24
features is shown on the left in Figure 1. The tilings do neetta be homogeneous.
The right picture in Figure 1 shows a non-homogeneous exawigh M = 2 tilings
andDg = 13 features.

WhenM features are active for each state, u;ﬁp) different situations can the-
oretically be represented withy features. This contrasts with the naive approach
where only one feature is active for each state, which woulgl be able to repre-

Reinforcement Learning in Continuous State and Action 8pac 9

1
[|
r 0
a— 1 I
“3 2 -1 0 1 2 3 s
o) (10,00 | ©,1,0 . ©on
©3 2 -1 0 1 2 3 s

Fig. 2: A reward function and feature mapping. The reward is Markowthe
features. Ifs 1 = s + & with & € {-2,2}, the feature-transition function is not
Markov. This makes it impossible to determine an optimaiqyol

sentD different situations with the same number of featdréspractice, the upper
bound of('?w“’) will rarely be obtained, since many combinations of actwatfires
will not be possible. In both examples in Figure 1, the nundfelifferent possible
feature vectors is indeed larger than the length of the featector and smaller than
the theoretical upper bound: 2435 < (%) = 276 and 13< 34< () = 78.

2.1.2 Issues with Discretization

One potential problem with discretizing methods such as ddding is that the
resulting function that maps states into features is nacinje. In other words,
©(s) = ¢(s') does not imply thas = <. This means that the resulting feature-space
MDP is partially observable and one should consider usinglgaorithm that is ex-
plicitly designed to work on partially observable MDPs (PORE). For more on
POMDPs, see Chaptér. In practice, many good results have been obtained with
tile coding, but the discretization and the resulting loksthe Markov property im-
ply that most convergence proofs for ordinary reinforcetearning algorithms do
not apply for the discretized state space. This holds forfangtion approximation
that uses a feature space that is not an injective functidimeoarkov state space.

Intuitively, this point can be explained with a simple exdmConsider a state
spaceS = R that is discretized such that(s) = (1,0,0)" whens < —2, ¢(s) =
(0,1,0)T when—2 < s< 2 andg(s) = (0,0,1)T whens > 2. The action space is
A= {-2,2}, the transition function is.;1 = & + & and the initial state isp = 1.
The reward is defined by, 1 =1 if § € (—2,2) andryy1 = —1 otherwise. The
reward function and the feature mapping are shown in Figute this MDP, it is
optimal to jump back and forth between the states—1 ands= 1. However, if we
observe the feature vect@®,1,0)T, we can not know if we are is= —1 ors= 1
and we cannot determine the optimal action.

Another practical issue with methods such as tile codinglaged to the step-size
parameter that many algorithms use. For instance, in mauoyidims the parame-
ters of a linear function approximator are updated with athatig akin to

Note that 1< M < D¢ implies thatDe < (39).

10 Hado van Hasselt

Oti1= 6t + (s)ao(s) (4)

whereat(s) € [0,1] is a step size andl is an error for the value of the current state.
This may be a temporal-difference error, the differencevbeh the current value
and a Monte Carlo sample, or any other relevant error. A dédm and explanation
of this update and variants thereof are given below, in 8est?2.3.1 and 3.1.2.

If we look at the update to a vald&(s) = 87 ¢(s) that results from (4), we get

Visa(S) = 6{,10(s) = (6i + ar(5)a9(s)) " @(s)
= 0] @(s)+ ar(9)9" (99(9)&
=W(s)+ ar(s)@" (99(5)

In other words, the effective step size for the values is Eigua

ar(3)0" (2)9(s) = ar(s) ()] - ()

For instance, in tile codingo(s)| is equal to the number of tilingsl. Therefore,
the effective step size on the value function is larger thaforo; (s) > 1/M. This
can cause divergence of the parameters. Conversely, ifuitlelean norm|¢(s)||
of the feature vector is often small, the change to the valnetfon may be smaller
than intended.

This issue can occur for any feature space and linear funeipproximation,
since then the effective step sizes in (5) are used for thateyd the value function.
This indicates that it can be a good idea to scale the steagm®priately, by using

a(s)=a(s)/)] ,

wheredi(s) is the scaled step siZeThis scaled step size can prevent unintended
small as well as unintended large updates to the values.

In general, it is often a good idea to make sure tipgs)| = ZE‘” w(s) < 1for
all s. For instance, in tile coding we could set the value of acteatures equal
to 1/M instead of to 1. Such feature representations have gooeogence proper-
ties, because they are non-expansions, which means that@sX 6 — ¢(s)" 6’| <
max |6 — 6| for any feature vectop(s) and any two parameter vectdsand6’.

A non-expansive function makes it easier to prove that aordhgn iteratively im-
proves its solution in expectation through a so-calledremtiopn mapping (Gordon,
1995; Littman and Szepesvari, 1996; Bertsekas and Tk#s1996; Szepesvari and
Smart, 2004; Bertsekas, 2007; Szepesvari, 2010; Bugdraly 2010). Algorithms
that implement a contraction mapping eventually reach @imabsolution and can
be guaranteed not to diverge, for instance by updating ffegameters to infinitely
high values.

5 One can safely defing (s) = 0 if ||@(s)|| = 0, since in that case update (4) would not change
the parameters anyway.

Reinforcement Learning in Continuous State and Action 8pac 11

A final issue with discretization is that it introduces distinuities in the func-
tion. If the input changes a small amount, the approximatddevmay change a
fairly large amount if the two inputs fall into different segnts of the input space.

2.1.3 Fuzzy Representations

Some of the issues with discretization can be avoided bygusifunction that is
piece-wise linear, rather than piece-wise constant. Onetavao this, is by using
so-called fuzzy sets (Zadeh, 1965; Klir and Yuan, 1995; Bkhu1998). A fuzzy
setis a generalization of normal sets to fuzzy membershis.Means that elements
can partially belong to a set, instead of just the possigdliof truth or falsehood.

A common example of fuzzy sets is the division of temperatute ‘cold’ and
‘warm’. There is a gradual transition between cold and wasmoften it is more
natural to say that a certain temperature is partially cotiigartially warm.

Inreinforcementlearning, the state or state-action spanée divided into fuzzy
sets. Then, a state may belong partially to the set defineddiyifieq and partially
to the set defined by featugg. For instance, we may havg(s) = 0.1 andg; (s) =
0.3. An advantage of this view is that it is quite natural to assuhaty @ (s) < 1,
since each part of an element can belong to only one set. Banice, something
cannot be fully warm and fully cold at the same time.

It is possible to define the sets such that each combinatifeatidre activations
corresponds precisely to one single state, thereby awpttim partial-observability
problem sketched earlier. A common choice is to use triaarguinctions that are
equal to one at the center of the corresponding feature acalydmearly to zero
for states further from the center. With some care, suclufeatcan be constructed
such that they span the whole state spaceXaml(s) < 1 for all states.

A full treatment of fuzzy reinforcement learning falls oidis the scope of this
chapter. References that make the explicit connectiondstviuzzy logic and re-
inforcement learning include Berenji and Khedkar (1992rdhji (1994); Lin and
Lee (1994); Glorennec (1994); Bonarini (1996); Jouffe @9Zhou and Meng
(2003) and Busoniu et al (2008, 2010). A drawback of fuzzg ðat these sets
still need to be defined beforehand, which may be difficult.

2.2 Non-linear Function Approximation

The main drawback of linear function approximation comgacenon-linear func-
tion approximation is the need for good informative featfr&he features are of-
ten assumed to be hand-picked beforehand, which may redminain knowledge.
Even if convergence in the limit to an optimal solution is argeed, this solution
is only optimal in the sense that it is the best possible lifigaction of the given

6 Non-parametric approaches somewhat alleviate this gmimgre harder to analyze in general. A
discussion on such methods falls outside the scope of thisteh

12 Hado van Hasselt

features. Additionally, while less theoretical guarastegn be given, nice empirical
results have been obtained by combining reinforcememtileg algorithms with
non-linear function approximators, such as neural neta/grlaykin, 1994; Bishop,
1995, 2006; Ripley, 2008). Examples include Backgammosdlim, 1992, 1994,
1995), robotics (Anderson, 1989; Lin, 1993; Touzet, 1993uI6m, 2002) and ele-
vator dispatching (Crites and Barto, 1996, 1998).

In a parametric non-linear function approximator, the fiorcthat should be op-
timized is represented by some predetermined paramefuretion. For instance,
for value-based algorithms we may have

Vi (s) =V(9(s),&) - (6)

Here the size of € O is not necessarily equal to the sizegk) € @. For instance,
V may be a neural network wheéeg is a vector with all its weights at timte Often,
the functional form o¥ is fixed. However, it is also possible to change the structure
of the function during learning (e.g., Stanley and Miikknkn, 2002; Taylor et al,
2006; Whiteson and Stone, 2006; Busoniu et al, 2010).

In general, a non-linear function approximator may appr@te an unknown
function with better accuracy than a linear function apprator that uses the same
input features. In some cases, it is even possible to avdicing features altogether
by using the state variables as inputs. A drawback of nagalifunction approxima-
tion in reinforcement learning is that less convergenceantaes can be given. In
some cases, convergence to a local optimum can be assuged/aei et al, 2009),
but in general the theory is less well developed than forlirm@proximation.

2.3 Updating Parameters

Some algorithms allow for the closed-form computation ofapaeters that best
approximate the desired function, for a given set of expegesamples. For in-
stance, when TD-learning is coupled with linear functiompragimation, least-

squares temporal-difference learning (LSTD) (Bradtke Bagto, 1996; Boyan,

2002; Geramifard et al, 2006) can be used to compute paresiiktd minimize the

empirical temporal-difference error over the observeaditions. However, for non-
linear algorithms such as Q-learning or when non-lineacfion approximation is

used, these methods are not applicable and the parameteid Sle optimized in a
different manner.

Below, we explain how to use the two general techniques afligrd descent
and gradient-free optimization to adapt the parametetsdpproximations. These
procedures can be used with both linear and non-linear appadion and they can
be used for all three types of functions: models, value fonstand policies. In
Section 3, we discuss reinforcement-learning algorithrasuse these methods.

We will not discuss Bayesian methods in any detail, but suetihods can be used
to learn the probability distributions of stationary fuiects, such as the reward and

Reinforcement Learning in Continuous State and Action 8pac 13

1: input: differentiable functiorE : RN x R” — R to be minimized,
step size sequenar < [0, 1], initial parameterg € RP

2: output: a parameter vectd such thak is small

3:forallte{1,2,...} do

4: Observeq, E(x, &)

5 Calculate gradient:

.
0B, 8) = (g B0 B O8]

26[1] &[P]

6: Update parameters:
0i11= 60t —ai0gE(x, &)

Algorithm 1: Stochastic gradient descent

transition functions of a stationary MDP. An advantage &f ththat the exploration

of an online algorithm can choose actions to increase the/latdge of parts of the

model that have high uncertainty. Bayesian methods arewbhatdess suited to

learn the value of non-stationary functions, such as theevaf a changing policy.

For more general information about Bayesian inference fee@stance Bishop

(2006). For Bayesian methods in the context of reinforcereanning, see Dearden
et al (1998, 1999); Strens (2000); Poupart et al (2006) arapEn??.

2.3.1 Gradient Descent

A gradient-descent update follows the direction of the tiegagradient of some
parametrized function that we want to minimize. The gradefra parametrized
function is a vector in parameter space that points in thection in which the
function increases, according to a first-order Taylor esgam Put more simply, if
the function is smooth and we change the parameters a smalireim the direction
of the gradient, we expect the function to increase slightly

The negative gradient points in the direction in which thection is expected to
decrease, so moving the parameters in this direction shiealidt in a lower value
for the function. Algorithm 1 shows the basic algorithm, wdédor simplicity a
real-valued parametrized functi@h: RN x RP — R is considered. The goal is to
make the output of this function small. To do this, the parmseofd € RPe of
E are updated in the direction of the negative gradient. TheigntdyE(x,0) is
a column vector whose components are the derivativ&stofthe elements of the
parameter vectof, calculated at the input Because the gradient only describes
the local shape of the function, this algorithm can end uplotal minimum.

Usually,E is an error measure such as a temporal-difference or a pigeoéror.
For instance, consider a parametrized approximate rewardibnR: Sx Ax RP —
R and a samplés, a1y, 1). Then, we might usg(s, &, &) = (R(s,a;, &) —ri11)°

If the gradient is calculated over more than one input-oupair at the same
time, the result is the following batch update

14 Hado van Hasselt

Bry1=06t — z OgEi(xi, &)
I

whereE; (X, &) is the error for theth inputx; anda; € [0, 1] is a step-size parameter.
If the error is defined over only a single input-output pdie update is called a
stochastic gradient descent update. Batch updates carbdénusffline algorithms,
while stochastic gradient descent updates are more saifiabbdnline algorithms.

There is some indication that often stochastic gradientelgsconverges faster
than batch gradient descent (Wilson and Martinez, 2003htier advantage of
stochastic gradient descent over batch learning is thasiraightforward to extend
online stochastic gradient descent to non-stationargtayépr instance if the policy
changes after an update. These features make online gragéémods quite suitable
for online reinforcement learning. In general, in combio@twith reinforcement
learning convergence to an optimal solution is not guaeahtalthough in some
cases convergence to a local optimum can be proven (MagiZ2@9).

In the context of neural networks, gradient descent is dftgslemented through
backpropagation (Bryson and Ho, 1969; Werbos, 1974; Ruane#t al, 1986),
which uses the chain rule and the layer structure of the n&sito efficiently calcu-
late the derivatives of the network’s output to its paramsetdowever, the principle
of gradient descent can be applied to any differentiabletfan.

In some cases, the normal gradient is not the best choicee fdanally, a prob-
lem of ordinary gradient descent is that the distance metp@arameter space may
differ from the distance metric in function space, becausateractions between
the parameters. Ledd < RP denote a vector in parameter space. The euclidean
norm of this vector ig|d@|| = d9"d6. However, if the parameter space is a curved
space—known as a Riemannian manifold—it is more appraptatisedd’ G do
whereG is aP x P positive semi-definite matrix. With this weighted distanoetric,
the direction of steepest descent becomes

OgE(x,0) = G 0gE(x,8) |

which is known as th@atural gradient(Amari, 1998). In general, the best choice
for matrix G depends on the functional form Bf SinceE is not known in general,
G will usually need to be estimated.

Natural gradients have a number of advantages. For insténeceatural gradient
is invariant to transformations of the parameters. In ottends, when using a natu-
ral gradient the change in our function does not depend oprése parametriza-
tion of the function. This is somewhat similar to our obsépmin Section 2.1.2
that we can scale the step size to tune the size of the stefui@ space rather than
in parameter space. Only here we consider the directioneofigdate to the pa-
rameters, rather than its size. Additionally, the naturadgnt avoids plateaus in
function space, often resulting in faster convergence. W8euds natural gradients
in more detail when we discuss policy-gradient algorithmSeéction 3.2.1.

Reinforcement Learning in Continuous State and Action 8pac 15

2.3.2 Gradient-Free Optimization

Gradient-free methods are useful when the function thapignized is not differ-
entiable or when it is expected that many local optima ekistny general global
methods for optimization exist, including evolutionargatithms (Holland, 1962;
Rechenberg, 1971; Holland, 1975; Schwefel, 1977; Davi811Back and Schwe-
fel, 1993), simulated annealing (Kirkpatrick, 1984), pzet swarm optimization
(Kennedy and Eberhart, 1995) and cross-entropy optinoizgfRubinstein, 1999;
Rubinstein and Kroese, 2004). Most of these methods share sommon features
that we will outline below. We focus on cross-entropy and lasst of evolutionary
algorithms, but the other approaches can be used quiteasiynfror introductions to
evolutionary algorithms, see the books by Back (1996) abdritand Smith (2003).
For a more extensive account on evolutionary algorithmeiimforcement learning,
see Chapte??. We give a short overview of how such algorithms work.

All the methods described here use a population of solutidreglitional evo-
lutionary algorithms create a population of solutions addp this population by
selecting some solutions, recombining these and possibtating the result. The
newly obtained solutions then replace some or all of thet®wls in the old popula-
tion. The selection procedure typically takes into accalafitness of the solutions,
such that solutions with higher quality have a larger prdiiglof being used to cre-
ate new solutions.

Recently, it has become more common to adapt the paramétansrobability
distribution that generates solutions, rather than to athgpsolutions themselves.
This approach is used in so-called evolutionary strate@éask, 1996; Beyer and
Schwefel, 2002). Such approaches generate a populatibnseuhe fithess of the
solutions to adapt the parameters of the generating disiwifp, rather than the so-
lutions themselves. A new population is then obtained byeggting new solutions
from the adapted probability distribution. Some specifgoathms include the fol-
lowing. Covariance matrix adaptation evolution strateg(€MA-ES) (Hansen and
Ostermeier, 2001) weigh the sampled solutions accordirthe fithess and use
the weighted mean as the mean of the new distribubiatural evolutionary strate-
gies(NES) (Wierstra et al, 2008; Sun et al, 2009) use all the geadrsolutions to
estimate the gradient of the parameters of the generatimifun, and then use nat-
ural gradient ascent to improve these parame@@sss-entropy optimizatiometh-
ods (Rubinstein and Kroese, 2004) simply selectrthgolutions with the highest
fithness—wherenis a parameter—and use the mean of these solutions to find a new
mean for the distributior.

7 According to this description, cross-entropy optimizatian be considered an evolutionary strat-
egy similar to CMA-ES, using a special weighting that weiges topm solutions with ¥m and
the rest with zero. There are more differences between tbherkralgorithmic implementations
however, most important of which is perhaps the more elegstitnation of the covariance ma-
trix of the newly formed distribution by CMA-ES, aimed to nease the probability of finding
new solutions with high fitness. Some versions of crosseegtadd noise to the variance to pre-
vent premature convergence (e.g., Szita and Lorincz, 2006 the theory behind this seems less
well-developed than covariance estimation used by CMA-ES.

16 Hado van Hasselt

1: input: parametrized population PDF: RX x RP — R, fitness functionf : RP — R,
initial parameters)y € R¥, population size
2: output: a parameter vectaf such that ifd ~ p(Z,-) thenf(0) is large with high probability|
3: forallte {1,2,...} do o _ _
4: Construct populatio® = {61, 6,,...,6,}, where6 ~ p((,-)
5 Use the fitness scordg6;) to computef; 1 such tha€{f(8)|{i+1} > E{f(0)[{}

Algorithm 2: A generic evolutionary strategy

A generic evolutionary strategy is shown in Algorithm 2. Tihethod to com-
pute the next parameter settigg, 1 for the generating function in line 5 differs
between algorithms. However, all attempt to increase thmeeted fitness such
that E{f(0)|{;+1} is higher than the expected fitness of the former population
E{f(0)|{i}. These expectations are defined by

E(1(0)i¢} = [, p(.0)f(6) a6 .

Care should be taken that the variance of the distributi@s emt become too small
too quickly, in order to prevent premature convergence baptimal solutions. A

simple way to do this, is by using a step-size parameter (#tdin and Kroese,
2004) on the parameters in order to prevent from too largegés per iteration.
More sophisticated methods to prevent premature conveegieclude the use of
the natural gradient by NES, and the use of enforced coivaklbetween the co-
variance matrices of consecutive populations by CMA-ES.

No general guarantees can be given concerning convergeitice bptimal so-
lution for evolutionary strategies. Convergence to thenogk solution for non-
stationary problems, such as the control problem in reg&iorent learning, seems
even harder to prove. Despite this lack of guarantees, timetkods can perform
well in practice. The major bottleneck is usually that thenpaitation of the fithess
can be both noisy and expensive. Additionally, these megithade been designed
mostly with stationary optimization problems in mind. Téfare, they are more
suited to optimize a policy using Monte Carlo samples thaagproximate the
value of the unknown optimal policy. In Section 4, we compheeperformance of
CMA-ES and an actor-critic temporal-difference approach.

The gradient-free methods mentioned above all fall into tegiry known as
metaheuristic§Glover and Kochenberger, 2003). These methods itergitsezdrch
for good candidate solutions, or a distribution that get@srahese. Another ap-
proach is to construct an easier solvable (e.g., quadratidel of the function that
is to be optimized and then maximize this model analyticédlge, e.g., Powell,
2002, 2006; Huyer and Neumaier, 2008). New samples can taiviey chosen
to improve the approximate model. We do not know any papeas hhve used
such methods in a reinforcement learning context, but thpaefficiency of such

On a similar note, it has recently been shown that CMA-ES aBE8 Kre equivalent except for
some differences in the proposed implementation of theriéfgos (Akimoto et al, 2011).

Reinforcement Learning in Continuous State and Action 8pac 17

methods in high-dimensional problems make them an infagegirection for future
research.

3 Approximate Reinforcement Learning

In this section we apply the general function approximateehniques described
in Section 2 to reinforcement learning. We discuss someetthrent state of the
art in reinforcement learning in continuous domains. As tieged earlier in this
chapter, we will not discuss the construction of approxemabdels because even if
a model is known exact planning is often infeasible in camimns spaces.

3.1 Value Approximation

In value-approximation algorithms, experience samplesuaed to update a value
function that gives an approximation of the current or thé&mgl policy. Many
reinforcement-learning algorithms fall into this categdmportant differences be-
tween algorithms within this category is whether they argohcy or off-policy and
whether they update online or offline. Finally, a value-apgmation algorithm may
store a state-value functidh: S— R, or an action-value functio® : Sx A — R,
or even both (Wiering and van Hasselt, 2009). We will expthgse properties and
give examples of algorithms for each combination of prapsrt

On-policyalgorithms approximate the state-value functidhor the action-value
function Q™, which represent the value of the polizythat they are currently fol-
lowing. Although the optimal policyt* is unknown initially, such algorithms can
eventually approximate the optimal value functidéh or Q*by using policy iter-
ation, which improves the policy between evaluation st&ugh policy improve-
ments may occur as often as each time st@&p-policyalgorithms can learn about
the value of a different policy than the one that is beingdietd. This is useful, as
it means we do not have to follow a (near-) optimal policy tarteabout the value
of the optimal policy.

Online algorithms adapt their value approximation after each fesesample.
Offlinealgorithms operate on batches of samples. Usually, onlgurighms require
much less computation per sample, whereas offline algosittequire less samples
to reach a similar accuracy of the approximation.

Online on-policy algorithms include temporal-differen(@®) algorithms, such
as TD-learning (Sutton, 1984, 1988), Sarsa (Rummery anahiin, 1994; Sutton
and Barto, 1998) and Expected-Sarsa (van Seijen et al, 2009)

Offline on-policy algorithms include least-squares apphas, such as least-
squared temporal difference (LSTD) (Bradtke and Bartog] 8®yan, 2002; Geram-
ifard et al, 2006), least-squares policy evaluation (LSR¥gdic and Bertsekas,
2003) and least-squares policy iteration (LSPI) (Lagoislakd Parr, 2003). Be-

18 Hado van Hasselt

cause of limited space we will not discuss least-squaresaphes in this chapter,
but see Chapte?? of this volume.

Arguably the best known model-free online off-policy algiom is Q-learning
(Watkins, 1989; Watkins and Dayan, 1992). Its many denreatinclude Perseus
(Spaan and Vlassis, 2005), Delayed Q-learning (Streh| 208i6) and Bayesian Q-
learning (Dearden et al, 1998; see also ChapBerAll these variants try to estimate
the optimal policy through use of some variant of the Bellroptimality equation.
In general, off-policy algorithms need not estimate themat policy, but can also
approximate an arbitrary other policy (Precup et al, 2008¢&p and Sutton, 2001;
Sutton et al, 2008; van Hasselt, 2011, Section 5.4). Offlaméants of Q-learning
include fitted Q-iteration (Ernst et al, 2005; Riedmille®0®; Antos et al, 2008a).

An issue with both the online and the offline variants of Quhéag is that noise in
the value approximations, due to the stochasticity of tlodlem and the limitations
of the function approximator, can result a structural osgneation bias. In short,
the value of maxQ;(s,a), as used by Q-learning, may—even in expectancy—be far
larger than maxQ*(s,a). This bias can severely slow convergence of Q-learning,
even in tabular settings (van Hasselt, 2010) and if caretisaken with the choice
of function approximator, it may result in divergence of gferameters (Thrun and
Schwartz, 1993). A partial solution for this bias is giventhg Double Q-learning
algorithm (van Hasselt, 2010), where two action-value fioms produce an esti-
mate which may underestimate m&¥ (s, a), but is bounded in expectancy.

Many of the aforementioned algorithms can be used both eulind offline, but
are better suited for either of these approaches. For iostditted Q-iteration usu-
ally is used as an offline algorithm, since the algorithm iesidered too compu-
tationally expensive to be run after each sample. Convgrseline algorithms can
store the observed samples are reuse these as if they werg@dagain in a form of
experience replay (Lin, 1992). The least-squares and fidgdnts are usually used
as offline versions of temporal-difference algorithms. fEhere exceptions however,
such as the online incremental LSTD algorithm (Geramifaia 2006, 2007).

If the initial policy does not easily reach some interestpagts of the state-
space, online algorithms have the advantage that the gslicsually updated more
quickly, because value updates are not delayed until a muffig large batch of
samples is obtained. This means that online algorithmsamnesmes more sample-
efficient in control problems.

In the next two subsections, we discuss in detail some owdihee-approximation
algorithms that use a gradient-descent update on a predefirem measure.

3.1.1 Objective Functions

In order to update a value with gradient descent, we mustsgheome measure
of error that we can minimize. This measure is often refetoeds theobjective
function To be able to reason more formally about these objectivetimms, we
introduce the concepts &iinction spac@ndprojections Recall that/ is the space
of value functions, such th& € 7. Let.# C 7 denote the function space of rep-

Reinforcement Learning in Continuous State and Action 8pac 19

resentable functions for some function approximator.itiveely, if . contains a
large subset oft’, the function is flexible and can accurately approximate ynan
value functions. However, it may be prone to overfitting & ffrerceived data and it
may be slow to update since usually a more flexible functiguires more tunable
parameters. Conversely, # is small compared t&#, the function is not very flexi-
ble. For instance, the function space of a linear approxanmiatusually smaller than
that of a non-linear approximator. A parametrized functias a parameter vector
0 = {6[1],...,0[De]} € RPe that can be adjusted during training. The function
space is then defined by

F ={V(.0)[0 c R} .

From here on further, we denote parametrized value funetign/ if we want to
stress the dependence on time and/Byif we want to stress the dependence on the
parameters. By definitioV; (s) = V (s,) andV?(s) =V (s, 0).

A projectionll : ¥ — .Z is an operator that maps a value function to the closest
representable function igF, under a certain norm. This projection is defined by

IV —V|jw = min [V — V| = min[[V =V ,
veF 6
where|| - ||w is @ weighted norm. We assume the norm is quadratic, such that
0 ' NG
IV -V Hw=/ w(s)(V(8)-VO(s)) ds .
Jses

This means that the projection is determined by the funatiform of the approxi-
mator and the weights of the norm.

Let B = B™ or B= B*, depending on whether we are approximating the value of
a given policy, or the value of the optimal policy. It is oftant possible to find a
parameter vector that fulfills the Bellman equatids= BV? for the whole state
space exactly, because the vaB¢® may not be representable with the chosen
function. Rather, the best we can hope for is a parameteon#t fulfills

ve=nBv? . (7)

This is called the projected Bellman equatidhjprojects the outcome of the Bell-
man operator back to the space that is representable byrib&dn approximation.

In some cases, it is possible to give a closed form expressiathe projection
(Tsitsiklis and Van Roy, 1997; Bertsekas, 2007; Szepé&s284.0). For instance,
consider a finite state space with states and a linear function(s) = 67 ¢(s),
whereDg = Do < N. Let ps = P(s = s) denote the expected steady-state prob-
abilities of sampling each state and store these values iagoalN x N matrix
P. We assume the states are always sampled according to tkedegrfobabilities.
Finally, theN x D¢ matrix @ holds the feature vectors for all states in its rows,
such thaiM; = @6 and\k(s) = &6 = Gtho(s). Then, the projection operator can
be represented by the x N matrix

20 Hado van Hasselt
n=o(o"Po) ‘o™P . 8)

The inverse exists if the features are linearly independeich that® has rankD .
With this definition/1V; = M ®6 = ®6 =\, butMBV, # B\, unlesBV; can be
expressed as a linear function of the feature vectors. Aeption matrix as defined
in (8) is used in the analysis and in the derivation of sevalgdrithms (Tsitsiklis
and Van Roy, 1997; Nedi¢ and Bertsekas, 2003; Bertsekds20G@4; Sutton et al,
2008, 2009; Maei and Sutton, 2010). We discuss some of thake next section.

3.1.2 Gradient Temporal-Difference Learning

We generalize standard temporal-difference learnirig-fearning (Sutton, 1984,
1988) to a gradient update on the parameters of a functiomajppator. The tabular
TD-learning update is

Vita(s) =Vi(s) + ae(s)d

whered = ri11+ Wi(s+1) —Mi(s) andai (s) € [0,1] is a step-size parameter. When
TD-learning is used to estimate the value of a given statiopalicy under on-
policy updates the value function converges when the featectors are linearly in-
dependent (Sutton, 1984, 1988). Later it was shown that€bring also converges
when eligibility traces are used and when the features arénearly independent
(Dayan, 1992; Peng, 1993; Dayan and Sejnowski, 1994; Bexssend Tsitsiklis,
1996; Tsitsiklis and Van Roy, 1997). More recently, vargaot TD-learning were
proposed that converge under off-policy updates (Suttcal,e2008, 2009; Maei
and Sutton, 2010). We discuss these variants below. A lifoiteof most afore-
mentioned results is that they apply only to the predictiettirsg. Recently some
work has been done to extend the analysis to the contrahgefthis has led to the
Greedy-GQ algorithm, which extends Q-learning to linearction approximation
without the danger of divergence, under some conditionse(Mial, 2010).

When the state values are stored in a table, TD-learning eanterpreted as a
stochastic gradient-descent update on the one-step tafgitierence error

1
E(s) = 5 (e + Wh(s41) —M(8))* = 5 (8)° (9
If Vi is a parametrized function such thats) =V (s, &), the negative gradient with
respect to the parameters is given by

—0pE(s,0) = — (res 1+ Wi(s41) —M(s)) Do (re 1+ Wh(s41) —M(s)) -

Apart from the state and the parameters, the error depenitie WiDP and the pol-
icy. We do not specify these dependencies explicitly todehittering the notation.
A direct implementation of gradient descent based on ther énr (9) would
adapt the parameters to movgs) closer tor;.1 + YW (s.+1) as desired, but would
also movey;(s+1) closer toVi(s) — re+1. Such an algorithm is called a residual-
gradient algorithm (Baird, 1995). Alternatively, we cateirpretry, 1 + Wi (S+1) as

Reinforcement Learning in Continuous State and Action 8pac 21

a stochastic approximation f& that does not depend dh Then, the negative
gradient is (Sutton, 1984, 1988)

—DOoEt(s1,0) = (rs1+ Wi(st41) —Mi(s)) DoM(s) -
This implies the parameters can be updated as
Ori1 =6t + () a0 i () - (10)

This is the conventional TD learning update and it usualiyvenges faster than the
residual-gradient update (Gordon, 1995, 1999). For lifieaction approximation,
for any 6 we havellgVi(s) = @(s) and we obtain the same update as was shown
earlier for tile coding in (4). Similar updates for actioahre algorithms are obtained
by replacingdgVi(s) in (10) with OpQt (s, &) and using, for instance

& = rep1 + ymaxQ(s1,8) — Qs a) , or
O =1+ YQ(S+1,a1) — Qs &)

for Q-learning and Sarsa, respectively.
We can incorporate accumulating eligibility traces witace parametex with
the following two equations (Sutton, 1984, 1988):

ar1=Aya+0\(s) .
Ori1 =0+ () A&7

wheree € RP? is a trace vector. Replacing traces (Singh and Sutton, 12@dpss
straightforward, although the suggestion by Framlin@)@Geem sensible:

&1 =maxAye,Og\(s)) ,

since this corresponds nicely to the common practice feictilding and this update
reduces to the conventional replacing traces update wieevethies are stored in a
table. However, a good theoretical justification for thiglage is still lacking.

Parameters updated with (10) may diverge when off-policlates are used. This
holds for any temporal-difference method with< 1 when we use linear (Baird,
1995) or non-linear function approximation (Tsitsiklisdavlan Roy, 1996). In other
words, if we sample transitions from a distribution thatslaet comply completely
to the state-visit probabilities that would occur underéisémation policy, the pa-
rameters of the function may diverge. This is unfortunatzduse in the control
setting ultimately we want to learn about the unknown optipwdicy.

Recently, a class of algorithms has been proposed to ddathig issue (Sutton
et al, 2008, 2009; Maei et al, 2009; Maei and Sutton, 2010g.idka is to perform
a stochastic gradient-descent update on the quadrateqbedjtemporal difference:

£(6) = 5IM-NBVIp = [Pls=)((9 - MBU()?ds . (1)

22 Hado van Hasselt

In contrast with (9), this error does not depend on the tirep str the state. The
norm in (11) is weighted according to the state probabdlitleat are stored in the
diagonal matriXP, as described in Section 3.1.1. If we minimize (11), we raheh
fixed pointin (7). To do this, we rewrite the error to

£(8) = 5 (E (30O (E{Da(5TRU)) "E(ETME} . (12)

where it is assumed that the inverse exists (Maei et al, 200%) expectancies are
taken over the state probabilitiesf The error is the product of multiple expected
values. These expected values can not be sampled from a sikjggrience, because
then the samples would be correlated. This can be solved dgting an additional
parameter vector. We use the shorthapds@(s) and¢’ = ¢(s. 1) and we assume
linear function approximation. ThefgV;(s) = @ and we get

—6E(8) =E{(0—yg)o" } (E{pg"}) "E{a0}
~E{(¢p—y@)o" }w ,

wherew; € RP¢ is an additional parameter vector. This vector should agprate
(E{qo" })71 E {& ¢}, which can be done with the update

W1 =W+ B(s) (d—90'w) @,

wheref(s) € [0,1] is a step-size parameter. Then there is only one expected val
left to approximate, which can be done with a single samgies [Eads to the update

Or1= 6+ a(s) (90— y@) (@'wr)

which is called the GTD2 (Gradient Temporal-Difference iiréiag, version 2) al-
gorithm (Sutton et al, 2009). One can also write the gradieatslightly different
manner to obtain the similar TDC algorithm, which is defined a

Oii1=0 +a(s) (Bo—y@ (@'wr))

wherew; is updated as above. This algorithm is named TD with gradiemection
(TDC), because the update to the primary parameter vci®equal to (10), except
for a correction term. This term prevents divergence of themeters when off-
policy updates are used. Both GTD2 and TDC can be shown tawizei(12), if
the states are sampled accordingPtarhe difference with ordinary TD-learning is
that these algorithms also converge when the probabilitiegliffer from those that
result from following the policyt, whose value we are estimating. This is useful for
instance when we have access to a simulator that allows wshipls the states in
any order, whilerr would spend much time in uninteresting states.

When non-linear smooth function approximators are usemritbe proven that
similar algorithms reach local optima (Maei et al, 2009)eTUpdates for the non-
linear algorithms are similar to the ones above, with anotloerection term. The

Reinforcement Learning in Continuous State and Action 8pac 23

updates can be extended to a form of Q-learning in order tm laetion values
with eligibility traces. The resulting GQ(algorithm is off-policy and converges to
the value of a given estimation policy, even when the algarifollows a different
behavior policy (Maei and Sutton, 2010). The methods carxbended to control
problems (Maei et al, 2010) with a greedy non-stationaliyregton policy, although
it is not yet clear how well the resulting Greedy-GQ algaritherforms in practice.

Although these theoretic insights and the resulting ators are promising, in
practice the TD update in (10) is still the better choice irpmficy settings. Addi-
tionally, an update akin to (10) for Q-learning often resuitgood policies, although
convergence can not be guaranteed in general. Furtherfopspecific functions—
so-called averagers—Q-learning does converge (Gordo®5;19zepesvari and
Smart, 2004). In practice, many problems do not have theiggesharacteristics
that result in divergence of the parameters. Finally, thezemyence guarantees are
mainly limited to the use of samples from fixed steady-staddabilities.

If we can minimize the so-called Bellman residual erid) = ||V — BV||p,
this automatically minimizes the projected temporalatiénce error in (11). Using
(&)? as a sample for this error (with = B™) leads to a biased estimate, but other
approaches have been proposed that use this error (Anip2@08b; Maillard et al,
2010). Itis problem-dependent whether minimizing thedweal error leads to better
results than minimizing the projected error (Scherrer@01

Itis non-trivial to extend the standard online tempordfedence algorithms such
as Q-learning to continuous action spaces. Although we @astouct an estimate of
the value for each continuous action, it is non-trivial talfthe maximizing action
quickly when there are infinitely many actions. One way to kis is to simply
discretize the action space, as in tile coding or by perfogna line search (Pazis
and Lagoudakis, 2009). Another method is to use interpatuch as in wire-
fitting (Baird and Klopf, 1993; Gaskett et al, 1999), whichtputs a fixed number
of candidate action-value pairs in each state. The actiodsalues are interpolated
to form an estimate of the continuous action-value functiomhe current state.
Because of the interpolation, the maximal value of the tegyfunction will always
lie precisely on one of the candidate actions, thus fatiligathe selection of the
greedy action in the continuous space. However, the algostin the next section
are usually much better suited for use in problems with cortiis actions.

3.2 Policy Approximation

As discussed, determining a good policy from a model araifyi can be in-
tractable. An approximate state-action value funct@makes this easier, since
then the greedy policy in each stagecan be found by choosing the argument
a that maximizedQ(s,a). However, if the action space is continuous finding the
greedy action in each state can be non-trivial and time+owoirsy. Therefore, it can
be beneficial to store an explicit estimation of the optimaliqy. In this section,
we consider actor-only and actor-critic algorithms thateta parametrized policy

24 Hado van Hasselt

m: SxAx Y —[0,1], wherer(s,a,) denotes the probability of selectirgin s
for a given policy parameter vectgr € ¥ C RPv. This policy is called amctor.

In Section 3.2.1 we discuss the general framework of pdi@dient algorithms
and how this framework can be used to improve a policy. IniSe@&.2.2 we dis-
cuss the application of evolutionary strategies for dipadicy search. Then, in Sec-
tion 3.2.3 we discuss actor-critic methods that use thisiénaork along with an
approximation of a value function. Finally, in Section d.2ve discuss an alterna-
tive actor-critic method that uses a different type of updat its actor.

3.2.1 Policy-Gradient Algorithms

The idea of policy-gradient algorithms is to update the @olvith gradient ascent

on the cumulative expected valwé" (Williams, 1992; Sutton et al, 2000; Baxter
and Bartlett, 2001; Peters and Schaal, 2008b; Riickstiel3 2010). If the gradient

is known, we can update the policy parameters with

Wi = W+ BOWENV(8)} = Y+ By | P& =sV(9)ds .

Here P(s = s) denotes the probability that the agent is in sta@ time stept
and € [0,1] is a step size. In this update we use a subsdxrijpt addition tot
to distinguish between the time step of the actions and tliatepschedule of the
policy parameters, which may not overlap. If the state simfimite, we can replace
the integral with a sum.

As a practical alternative, we can use stochastic gradestenht:

W1 = W+ Bi(s)0yVT(s) - (13)

Here the time step of the update corresponds to the time stk action and we use
the subscript. Such procedures can at best hope to find a local optimumubeca
they use a gradient of a value function that is usually novveriwith respect to
the policy parameters. However, some promising resulte en obtained, for
instance in robotics (Benbrahim and Franklin, 1997; Pedtas, 2003).

The obvious problem with update (13) is that in gen&t&lis not known and
therefore neither is its gradient. For a successful pai@dient algorithm, we need
an estimate ofly,V™. We will now discuss how to obtain such an estimate.

We will use the concept of a trajectory. A trajectay is a sequence of states
and actions:

< ={s,a0,51,a1,...} -

The probability that a given trajectory occurs is equal te ginobability that the
corresponding sequence of states and actions occurs witfivtn policy:

Reinforcement Learning in Continuous State and Action 8pac 25
P(|s,¢) =P(so=9)P (ao|50 Y)P(s1/s0,20)P(as|s1, ¥)P(s2[s1.21) - -+

|'Lnst a0, W)PSR (14)

The expected valué™ can then be expressed as an integral over all possible-trajec
tories for the given policy and the corresponding expeatedrds:

:/;/P(Y|s,w)E{ti)}rt+l y} 4.7

Then, the gradient thereof can be expressed in closed form:

sjes

_/Py|atp)leogPY|Sl,U {zo)}ftﬂ }

= {leogPY|Sw {Zy‘“‘” } } (15)

where we used the general identify f (x) = f(x)Oxlog f(x). This useful observa-
tion is related to Fisher’s score function (Fisher, 1925 Rad Poti, 1946) and the
likelihood ratio (Fisher, 1922; Neyman and Pearson, 1928)as applied to rein-

forcement learning by Williams (1992) for which reason is@metimes called the
REINFORCE trick, after the policy-gradient algorithm thveés proposed therein
(see, for instance, Peters and Schaal, 2008b).

The product in the definition of the probability of the trdjery as given in (14)
implies that the logarithm in (15) consists of a sum of termsywhich only the
policy terms depend oy. Therefore, the other terms disappear when we take the
gradient and we obtain:

OV / 0uP(7|s, W)E { ijrm

OylogP(S|s, @) = <IogP) + Z}Iogna Ja,) +Z}Iog S‘“)

— 50, a, W) . 16
t; wlogm(s,a,) (16)

This is nice, since it implies we do not need the transitiomaioHowever, this only
holds if the policy is stochastic. If the policy is deternsitic we need the gradi-
ent(y logPs, = TalogPS, [y 11(s, &,), which is available only when the transition
probabilities are known. In most cases this is not a big ohlsince stochastic
policies are needed anyway to ensure sufficient explorakaure 3 shows two
examples of stochastic policies that can be used and thespanding gradients.

26 Hado van Hasselt

Boltzmann exploration can be used in discrete actions spaces. Assumeptisad) is a featurs
vector of sizeDy corresponding to stateand actiora. Suppose the policy is a Boltzmann distri
bution with parameterg, such that

el.UT ?(sa)

e¥To(sb) ’

(s, a, =
(w) ZbeA(s)

then, the gradient of the logarithm of this policy is given by

DU’ |Og T[(Sv a, QU) = (p(57 a) - % TT(S, b7 W)QD(S b) .

Gaussian explorationcan be used in continuous action spaces. Consider a Gapssieywith
meanp € RP~ andDa x Da covariance matrixZ, such that

s (1.2 = o ep(5@z e) .

Oulogm(sa{u,2}) =(a—pu)' =1,

Uslogm(s,a, {u,2}) = % (= Ha-pw@-pw'=t-=1) .

where the actiona € A are vectors of the same size @sIf ¢ € ¥ C RPA is a parameter ved
tor that determines the state-dependent location of thenrmpgs), then Oy logmi(s,a,) =

JI,(u(s,)0y logm(s,a,{u,2}), wheredy (1(s, @y)) is theDa x Dy Jacobian matrix, containing
the partial derivatives from each of the elementg:¢f, (/) to each of the elements gf.
The covariance matrix can be the output of a parametrizeztibmas well, but care should be taken

to preserve sufficient exploration. One way is to use naignadient updates, as normal gradignts
may decrease the exploration too fast. Another option iséoaicovariance matri?l, wherea
is a tunable parameter that is fixed or decreased accordswnie predetermined schedule.

Fig. 3: Examples of stochastic policies for policy-gradient aitjons.

When we know the gradient in (16), we can sample the quamtit{ib). For
this, we need to sample the expected cumulative discourteard. For instance,
if the task is episodic we can take a Monte Carlo sample tivatsghe cumulative
(possibly discounted) reward for each episode. In episblids, the sum in (16)
is finite rather than infinite and we obtain

Tc—1
OyV7(s) =E {Rk(&) (> Dw|09"(sjaaja‘l’)> } 17)
=t

whereR«(s) = ZJ-T“:;l V*erl is the total (discounted) return obtained after reach-
ing states in episodek, where this episode ended @pn This gradient can be sam-
pled and used to update the policy through (13).

A drawback of sampling (17) is that the varianceR{s) can be quite high,
resulting in noisy estimates of the gradient. Williams (2pAotes that this can be
mitigated somewhat by using the following update:

Reinforcement Learning in Continuous State and Action 8pac 27

Tk

Y1 =P+ B(s) (R(s) —b(s)) Y Oylogrn(sj,aj, ¢r) (18)
j=t

whereb(s) is a baseline that does not depend on the policy paramelibisiigh it
may depend on the state. This baseline can be used to mirtimeizariance without
adding bias to the update, since for any S

| BuP(Isy)b(s) d =b(e)Ty | P(Is) d
7 57
=b(s)0yl=0 .

It has been shown that it can be a good idea to set this basaiina to an esti-
mate of the state value, such ths) = Vi (s) (Sutton et al, 2000; Bhatnagar et al,
2009), although strictly speaking it is then not independéthe policy parameters.
Some work has been done to optimally set the baseline to rizeithe variance and
thereby increase the convergence rate of the algorithme{Gmeith et al, 2004; Pe-
ters and Schaal, 2008b), but we will not go into this in détaile.

The policy-gradient updates as defined above use a gral&ntpdates the pol-
icy parameters in the direction of steepest ascent of thiemeance metric. How-
ever, the gradient update operates in parameter spacer th#n in policy space.
In other words, when we use normal gradient descent withppssze, we restrict
the size of the change in parameter spaiyg” dyx, wheredys = (4,1 — ¢4 is the
change in parameters. It has been argued that it is much tetestrict the step size
in policy space. This is similar to our observation in Settol.2 that an update in
parameter space for a linear function approximator carltresan update in value
space with a unintended large or small step size. A goodrtisteetric for policies
is the Kullback-Leibler divergence (Kullback and Leibl&g51; Kullback, 1959).
This can be approximated with a second-order Taylor exparigi,” Fy dyx, where
Fy is theDy x Dy Fisher information matrix, defined as

Fy =E{OyP(S|s,¢)0yP(L|s)}

where the expectation ranges over the possible trajestdries matrix can be sam-
pled with use of the identity (16). Then, we can obtain a retpolicy gradient,
which follows a natural gradient (Amari, 1998). This ideaswst introduced in
reinforcement learning by Kakade (2001). The desired wtlesn becomes

Wl =Pl +B(3)F, 0V (s) | (19)

which needs to be sampled. A disadvantage of this update isghd for enough
samples to (approximately) compute the inverse maﬁgfji. The number of re-
quired samples can be restrictive if the number of parammésdeiairly large, espe-
cially if a sample consists of an episode that can take mamy $iteps to complete.

Most algorithms that use a natural gradient @(@?p) time per update and
may require a reasonable amount of samples. More detailbecéound elsewhere

28 Hado van Hasselt

(Kakade, 2001; Peters and Schaal, 2008a; Wierstra et a8; Rltatnagar et al,
2009; Ruckstiel3 et al, 2010).

3.2.2 Policy Search with Evolutionary Strategies

Instead of a gradient update on the policy parameters, weatsm conduct a
gradient-free search in the policy-parameter space. Astaneisting example that
combines ideas from natural policy-gradients and evohatip strategies, we dis-
cuss natural evolutionary strategies (NES) (Wierstra €2@08; Sun et al, 2009).
The idea behind the algorithm is fairly straightforwardhaligh many specific im-
provements are more advanced (Sun et al, 2009). The othdiegtdree methods
discussed in SectioP? can be used in a similar vein.

Instead of storing a single exploratory policy, NES creatgp®pulation oh pa-
rameter vectorgls, ..., Yn. These vectors represent policies that have a certain
expected payoff. This payoff can be sampled by a Monte CartgxeRy(s), Sim-
ilar to (17), wheresy is the first state in an episode. This Monte Carlo sample is
the fitness. The goal is to improve the population paramefears distribution that
generates the policy parameters, such that the new pogutiisitribution will likely
yield better policies. In contrast with policy-gradient tmeds, we do not improve
the policies themselves; we improve the process that gersetee policies. For this,
we use a gradient ascent step on the fitness of the curretibssiu

In NES and CMA-ES, the parameter vectgrsare drawn from a Gaussian distri-
butiony; ~ A (uw, Zw). Let{y be a vector that contains all the population param-
eters for the mean and the covariance matrix. NES uses théeNBamlo samples to
find an estimate of the natural gradiﬁngmz E{R} of the performance to the pop-
ulation parameters ipy andy. This tells us how the meta-parameters should be
changed in order to generate better populations in theduBgcause of the choice
of a Gaussian generating distribution, it is possible towake the Fisher informa-
tion matrix analytically. With further algorithmic speds§, it is possible to restrict
the computation for a single generation in NE®Xmp® + nf), wheren is the num-
ber of solutions in the populatiop,is the number of parameters of a solution dnd
is the computational cost of determining the fitness for glsisolution. Note that
f may be large if the necessary Monte Carlo roll-outs can bg.|l®he potentially
large variance in the fitness may make direct policy seasshdppropriate for large,
noisy problems. Note that in contrast with policy-gradigigorithms, the candidate
policies can be deterministic, which may reduce the vagammnewhat.

3.2.3 Actor-Critic Algorithms

The variance of the estimate 0f,V™(s) in (17) can be very high if Monte Carlo
roll-outs are used, which can severely slow convergendé@wise, this is a prob-
lem for direct policy-search algorithms that use Monte €aoll-outs. A potential

solution to this problem is presented by using an explicgiragimation ofV™. In

Reinforcement Learning in Continuous State and Action 8pac 29

this context, such an approximate value function is calledtec and the combined
algorithm is called actor-critic algorithm (Barto et al, 1983; Sutton, 1984; Konda
and Borkar, 1999; Konda, 2002; Konda and Tsitsiklis, 2003).

Actor-critic algorithms typically use a temporal-differee algorithm to update
V;, an estimate fo¥™. It can be shown that i is selected according ta, under
some assumptions the TD err@r= re;1 + Wi(s+1) — V() is an unbiased esti-
mate ofQ"(s,a) —V™(s). Assumingb(s) = V'(s) as a baseline, this leads to an
unbiased estimate &fdy log (s, &, Y4) for the gradient of the policy (Sutton et al,
2000). This estimate can be extended to an approximateataradient direction
(Peters et al, 2003; Peters and Schaal, 2008a), leadingu@hactor-critic (NAC)
algorithms. A typical actor-critic update would update ffidicy parameters with

Y1 =Y+ B(s)a0ylogn(s,a, gr) ,

whereOy log (s, &, Yx) can be replaced Witﬁulewlog (s, a, Yr) for a NAC
algorithm.

In some cases, an explicit approximation of the inversedtigiformation ma-
trix can be avoided by approximatii@yf'(s,a) — b(s) with a linear function approx-
imator gf’(s,a,w) = w{ Oy log7(s,a, Y1) (Sutton et al, 2000; Konda and Tsitsiklis,
2003; Peters and Schaal, 2008a). After some algebraic roéatigns we then get

OpM(s) = E{Oy logm(s,a, 1) 0y log(s.a, g) e = Fyw
which we can plug into (19) to get the NAC update

U1 =+ B(s)w -

However, this elegant update only applies to critics thatthe specific linear func-
tional form ofg{'(s,a, w) to approximate the valu@™(s,a) — b(s). Furthermore, the
accuracy of this update clearly depends on the accurasy. @ther NAC variants
are described by Bhatnagar et al (2009).

There is significant overlap between some of the policy-graddeas in this
section and many of the ideas in the related field of adapgmeawhic programming
(ADP) (Powell, 2007; Wang et al, 2009). Essentially, rein&ment learning and
ADP can be thought of as different names for the same res@atdhHowever, in
practice there is a divergence between the sort of probleatsate considered and
the solutions that are proposed. Usually, in adaptive dyoanogramming more of
an engineering’s perspective is used, which results inghti different notation
and a somewhat different set of goals. For instance, in ARRytal is often to sta-
bilize a plant (Murray et al, 2002). This puts some restsaant the exploration that
can safely be used and implies that often the goal state istéingng state and the
goal is to stay near this state, rather that to find betteestatdditionally, problems
in continuous time are discussed more often than in reiefoent learning (Beard
et al, 1998; Vrabie et al, 2009) for which the continuous ieref the Bellman op-
timality equation is used, that it known as the Hamilton-elb&eBellman equation

30 Hado van Hasselt

(Bardi and Dolcetta, 1997). A further discussion of thesecfjrs falls outside the
scope of this chapter.

One of the earliest actor-critic methods stems from the AildPdture. It approx-
imatesQ”, rather tharV™. Suppose we use Gaussian exploration, centered at the
output of a deterministic functioAc: Sx ¥ — A. Here, we refer to this function
as the actor, instead of to the whole policy. If we use a dffiéiable functior® to
approximate”, it becomes possible to update the parameters of this adtouse
of the chain rule:

Yri1 = P+ o0y Qi (s, Ac(s, @), 0)
=+ o dp(Ac(s,) DaQi(s,0)

whereJy (Ac(s,) is theDa x Dy Jacobian matrix of which the element on ife
row andj ™ column is equal tea%qu (s.), whereAg (s, i) is theih element of

Ac(s,). This algorithm is called action dependent heuristic dyiegrogramming
(ADHDP) (Werbos, 1977; Prokhorov and Wunsch, 2002). Thicazan be in fact
updated with any action-value algorithm, including Q-féag, which would imply
an estimate of* rather tharQ™. There are multiple variants of this algorithm, many
of which assume a known model of the environment, the rewardtion or both, or
they construct such models. Then, often an additional ag8amis that the model
is differentiable.

3.2.4 Continuous Actor-Critic Learning Automaton

In this section we discuss the continuous actor-criticrgay-automaton (Cacla)
algorithm (van Hasselt and Wiering, 2007, 2009). In contrath most other actor-
critic methods, Cacla uses an error in action space ratharithparameter or policy
space and it uses the sign of the temporal-difference eatber than its size.

In the Cacla algorithm, a criti¥/ : Sx @ — R approximated/™, where is
the current policy. An actoAc: Sx ¥ — A outputs a single—possibly multi-
dimensional—action for each state. During learning, itdstamed that there is ex-
ploration, such thas # Ac(s,yx) for reasons that will soon become clear. For
instance, (s, Yt) could be a Gaussian distribution centeredAmnts;, yx). As in
many other actor-critic algorithms, if the temporal-difface erro is positive, we
judgea; to be a good choice and we reinforce it. In Cacla, this is dgnegduating
the output of the actor towards. This is why exploration is necessary: without ex-
ploration the actor output is already equal to the actiod,tae parameters cannot
be updated.

8 Feedback on actions equal to the output of the actor carirsfilove the value function. This
can be useful, because then the value function can improile thie actor stays fixed. Similar to
policy iteration, we could interleave steps without expt@n to update the critic, with steps with
exploration to update the actor. Although promising, we dbaxplore this possibility here further.

Reinforcement Learning in Continuous State and Action 8pac 31

1: Initialize 69 (below\4(s) =V (s, &)), Yo, So-

2: fort€{0,1,2,...} do

3: Choosex ~ mi(s, Y1)

4: Performa;, observer; 1 ands .1

5 & =ry1t+Wi(s) —M(s)

6: Br11=6t+ai(s)d0eM(s)

7. if & >0then

8: Yrrr = Yo+ Bi(s) (@ — Acls,) Uy Acls, Pr)
9: if §.1is terminalthen
10: Reinitializes 11

Algorithm 3: Cacla

An update to the actor only occurs when the temporal-diffeeeerror is positive.
This is similar to a linear reward-inaction update for leagnautomata (Narendra
and Thathachar, 1974, 1989), using the sign of the tempuliffakence error as a
measure of ‘success’. Most other actor-critic methods hsssize of the temporal-
difference error and also update in the opposite directibanits sign is negative.
However, this is usually not a good idea for Cacla, since ihisquivalent to up-
dating towards some action that was not performed and foctwitiis not known
whether it is better than the current output of the actor.exreme case, consider
an actor that already outputs the optimal action in eacle $teitsome determinis-
tic MDP. For most exploring actions, the temporal-diffezerrror is then negative.
If the actor would be updated away from such an action, itpututvould almost
certainly no longer be optimal.

This is an important difference between Cacla and poli@dgnt methods: Ca-
cla only updates its actor when actual improvements have béserved. This
avoids slow learning when there are plateaus in the valueespad the temporal-
difference errors are small. It was shown empirically tlég tan indeed result in
better policies than when the step size depends on the dize tfmporal-difference
error (van Hasselt and Wiering, 2007). Intuitively, it malsense that the distance to
a promising actior; is more important than the size of the improvementin value.

A basic version of Cacla is shown in Algorithm 3. The policyiire 3 can depend
from the actor’s output, but this is not strictly necess&y: instance, unexplored
promising parts of the action space could be favored by tlieraselection. In
Section 4, we will see that Cacla can even learn from a fullyloan policy. Cacla
can only update its actor when # Ac(s, Y), but after training has concluded the
agent can deterministically use the action that is outpuhbyactor.

The critic update in line 6 is an ordinary TD learning upd&iee can replace this
with a TD(A) update, an incremental least-squares update or with athedafther
updates from Section 3.1.2. The actor update in line 8 cantbepireted as gradient
descent on the errdla; — Ac(s, ¢t) || between the action that was performed and the
output of the actor. This is the second important differenite most other actor-
critic algorithms: instead of updating the policy in paraerespace (Konda, 2002)
or policy space (Peters and Schaal, 2008a; Bhatnagar €G9),2ve use an error
directly in action space.

32 Hado van Hasselt

In some ways, Cacla is similar to an evolutionary strategyhé context of rein-
forcement learning, evolutionary strategies usuallyestodistribution in parameter
space, from which policy parameters are sampled. This agpre/as for instance
proposed for NES (Ruckstiel3 et al, 2010), CMA-ES (Heiddidbisner and Igel,
2008) and cross-entropy optimization (Busoniu et al, 30C0nversely, Cacla uses
a probability distribution in action space: the actionesgibn policy.

Cacla is compatible with more types of exploration than @eliradient algo-
rithms. For instance, a uniform random policy would stilbal Cacla to improve its
actor, whereas such a policy has no parameters to tune fioymphadient methods.

In previous work, Cacla was compared favorably to ADHDP ariigkfitting
(van Hasselt and Wiering, 2007) and to discrete tempofédrédnce methods such
as Q-learning and Sarsa (van Hasselt and Wiering, 2009helméxt section, we
compare it to CMA-ES and NAC on a double-pole cart pole pnwblEor simplic-
ity, in the experiment we use the simple version of Caclaimed in Algorithm 3.
However, Cacla can be extended and improved in numerous. Waysomplete-
ness, we list some of the possible improvements here.

First, Cacla can be extended with eligibility traces. Fatamce, the value func-
tion can be updated with T2} or the new variants TDQ() and GTD2@) (Sutton
et al, 2009). The latter variants may be beneficial to leagn/diue function for the
actor in an off-policy manner, rather than to learn the véduehe stochastic policy
thatis used for exploration as is done in the simple versfdheoalgorithm. The ac-
tor can also be extended with traces that update the actapsibfor a certain state
a little bit towards the action that was taken there if pusiiiD errors are observed
later. It is not yet clear whether such actor traces imprbhegierformance.

Second, Cacla can be extended with batch updates that maile effiwient
use of the experiences that were observed in the past. Ranegs (incremental)
least-squares temporal-difference learning (BradtkeBartb, 1996; Boyan, 2002;
Geramifard et al, 2006) or a variant of (neural) fitted Qdtemn (Ernst et al, 2005;
Riedmiller, 2005) can be used. Since this can decrease ti@nea in the TD er-
rors, this can prevent actor updates to poor actions and ttay for larger actor
step sizes. Similarly, samples could be stored in orderuser¢hem in a form of
experience replay (Lin, 1992).

Third, Cacla can use multiple actors. This can prevent therdmom getting
stuck in a locally optimal policy. One could then use a diszidgorithm such as
Q-learning to choose between the actors. Preliminary tewuth this approach are
promising, although the additional actor selector intmekiadditional parameters
that need to be tuned.

4 An Experiment on a Double-Pole Cart Pole

In this section, we compare Cacla, CMA-ES and NAC on a dopble-cart-pole
problem. In this problem, two separate poles are attachedtbgge to a cart. The
poles differ in length and mass and must both be balancedtaychihe cart.

Reinforcement Learning in Continuous State and Action 8pac 33

In reinforcement learning, many different metrics haverbesed to compare the
performance of algorithms and no fully standardized berarksexist. Therefore,
we compare the results of Cacla to the results for CMA-ES ai@ flom an earlier
paper (Heidrich-Meisner and Igel, 2008), using the dynaraitd the performance
metric used therein. We choose this particular paper bedausports results for
NAC and for CMA-ES, which is considered the current staté¢hefart in direct
policy search and black-box optimization (Jiang et al, 2088mez et al, 2008;
Glasmachers et al, 2010; Hansen et al, 2010).

The dynamics of the double cart pole are as follows (Wield88,1):

F—pesign(¥) + 525 2miZsiny + 3m cosyi (244 + gsiny)

X =

Mo+ 52 1m (1 Fcod xi)
R I AN 1)
X__8|i (xcosx.+gsmx.+2m|i)

Herel; = 1m andl, = 0.1 m are the lengths of the poles; = 1kg is the weight of
the cartym, = 0.1kg andm, = 0.01 kg are the weights of the poles améet 9.81 m/$

is the gravity constant. Friction is modeled with coeffitgm. = 5-10~4N s/m and
Uy = U = 2-10" N ms. The admissible state space is defined by the positidreof t
cartx € [-2.4m,2.4m| and the angles of both polgs e [-36°,36°] fori € {1,2}.
On leaving the admissible state space, the episode ends; twve step yields a
reward ofry = 1 and therefore it is optimal to make episodes as long aslgessi
The agent can choose an action from the rgrg® N,50N| every 002s.

Because CMA-ES uses Monte Carlo roll-outs, the task was neagécitly
episodic by resetting the environment every 20 s (Heidkitdisner and Igel, 2008).
This is not required for Cacla, but was done anyway to makedmneparison fair.
The feature vector ig(s) = (X, X, X1, X1, X2, X2)" . All episodes start inp(s) =
(0,0,1°,0,0,0)". The discount factor in the paper wgs= 1. This means that the
state values are unbounded. Therefore, we use a discototdg = 0.99. In prac-
tice, this makes little difference for the performance. ictleough Cacla optimizes
the discounted cumulative reward, we use the reward peo@pias performance
metric, which is explicitly optimized by CMA-ES and NAC.

CMA-ES and NAC were used to train a linear controller, so &aslalso used
to find a linear controller. We use a bias feature that is absegual to one, so we
are looking for a parameter vectgre R’. A hard threshold is used, such that if the
output of the actor is larger than 50N or smaller tha0 N, the agent outputs 50N
or —50N, respectively. The critic was implemented with a mlasier perceptron
with 40 hidden nodes an a tanh activation function for theléidlayer. The initial
controller was initialized with uniformly random paramestbetween-0.3 and 03.
No attempt was made to optimize this initial range for theapagters or the number
of hidden nodes.

The results by CMA-ES are shown in Figure 4. Heidrich-Meisral Igel (2008)
show that NAC performs far worse and therefore we do not st®ywerformance.

34 Hado van Hasselt

1000 F
S0 o= Mw,mwwwwwwwwmmmﬂm
L =1 ¢]

600

400

median of performances

200 4

o £))))
0 2000 4000 6000 8000 10000

Fig. 4. Median reward per episode by CMA-ES out of 500 repetitionthefex-
periment. Thex-axis shows the number of episodes. Figure is taken fromridbid
Meisner and Igel (2008).

The performance of NAC is better if it is initialized closette optimal policy, in
which case the median performance of NAC reaches the optéwalrd per episode
of 1000 after 3000 to 4000 episodes. However, this would ofg®assume a pri-
ori knowledge about the optimal solution. The best perfaroeaof CMA-ES is a
median reward of approximately 850. As shown in the figurey&dues of the pa-
rametero other thano = 1, the performance is worse.

We ran Cacla for just 500 episodes with fixed step sizes ef 8 = 102 and
Gaussian exploration witlr = 5000. This latter value was coarsely tuned and the
reason the exploration is so high is that Cacla effectivelyis a bang-bang con-
troller: the resulting actor outputs values far above 50 N fan below—50N. The
results are very robust to the exact setting of this explomgiarameter.

We also ran Cacla witke-greedy exploration, in which a uniform random action
is chosen with probabilitg. We useds = 0.1 ande = 1, where the latter implies
a fully random policy. Thee-greedy versions of Cacla do not learn a bang-bang
controller, because the targets for the actor are alwaysmibe admissible range.
Note that the actor is only updated on average once everyéps where = 0.1,
because at the other steps the action is equal to its output.

Table 2 shows the results of our experiments with Cacla. Teamreward per
episode (with a maximum of 1000) and the success rate is shehere the lat-
ter is the percentage of controllers that can balance thesgol at least 20s. The
onlinecolumn shows the average online results for episodes 4@ #&uding ex-
ploration. Theoffline column shows the average offline results, obtained by ggstin
the actor without exploration after 500 episodes were cated. In Figure 4 the
median performances are shown, but the online and offlinéangekrformance of
Cacla witha = 5000 ande = 0.1 is already perfect at 1000. This can be seen from
Table 2, since in those cases the success rate is over 50% dblédto compare
different exploration techniques for Cacla, we show themmzformances.

On average, the controllers found by Cacla after only 508asf@s are signifi-
cantly better than those found by CMA-ES after 10,000 ep@soBvere = 1 results

Reinforcement Learning in Continuous State and Action 8pac 35

Table 2 The mean reward per episodadan), the standard error of this measg(and the per-
centage of trials where the reward per episode was equal(@ GQccesy are shown for Cacla
with o = 8 = 103, Results are shown for training episodes 401-500ire) and for the greedy
policy after 500 episodes of trainingffline). Theaction noiseandexploration are explained in
the main text. Averaged over 1000 repetitions.

online offline
action noise | exploration || mean | se [success|| mean| se| success
o =5000 946.3| 6.7 | 92.3% || 954.2| 6.3 | 945%
0 =01 807.6| 9.6 | 59.0% || 875.2| 9.4 | 845%
e=1 29.2 | 0.0 0% || 514.0(10.4| 25.5%
o =5000 9446| 6.9 | 925% || 952.4| 65| 945%
[-20N,20N] | e=0.1 841.0| 8.7 | 60.7% || 909.5| 8.1 | 87.4%
e=1 28.7 | 0.0 0% || 454.7 95| 11.3%
o =5000 936.0| 7.4 | 91.9% || 9449 7.0| 93.8%
[40N,40N] | e=0.1 854.2| 79| 505% || 932.6| 6.7 | 86.7%
e=1 27.6 | 0.0 0% || 303.0(6.7 0%

in quite reasonable greedy policies. Naturally, wigea 1 the online performance
is poor, because the policy is fully random. But note thaigireedy performance of
514.0 is much better than the performance of CMA-ES after 500oej@s.

To test robustness of Cacla, we reran the experiment withenioi the action
execution. A uniform random force in the range20N,20N] or [-40N,40N] is
added to the action before execution. The action noise isdhdtter cropping the
actor output to the admissible range and the algorithm igniotmed of the amount
of added noise. For example, assume the actor of Cacla sw@puatction oAc(s) =
40. Then Gaussian exploration is added, for instance regiitta; = 70. This action
is not in the admissible rande-50,50], so it is cropped to 50. Then uniform noise,
drawn from[—20, 20] or [-40,40], is added. Suppose the result is 60. Then, a force
of 60N is applied to the cart. If the resulting temporal-eli#ince is positive, the
output of the actor for this state is updated towaads- 70, so the algorithm is
unaware of both the cropping and the uniform noise that wepdied to its output.

The results including action noise are also shown in Tableh2. performance
of Cacla is barely affected when Gaussian exploration isl.uske slight drop in
performance falls within the statistical margins of eradthough it does seem con-
sistent. Interestingly, the added noise even improves tiiaeand offline perfor-
mance of Cacla whea-greedy exploration witte = 0.1 is used. Apparently, the
added noise results in desirable extra exploration.

This experiment indicates that the relatively simple Cadtprithm is very ef-
fective at solving some continuous reinforcement-leaypimblems. Other previous
work show that natural-gradient and evolutionary alganightypically need a few
thousand episodes to learn a good policy on the double poteglo on the sin-
gle pole task (Sehnke et al, 2010). We do not show the reseitts but Cacla also
performs very well on the single-pole cart pole. Naturatys does not imply that
Cacla is the best choice for all continuous MDPs. For ingtairc a partially ob-

36 Hado van Hasselt

servable MDPs an evolutionary approach to directly seargarameter space may
find good controllers faster, although it is possible to usel&to train a recurrent
neural network, for instance with real-time recurrentiéag (Williams and Zipser,
1989) or backpropagation through time (Werbos, 2002). #altklly, convergence
to an optimal policy or even local optima for variants of Gaid not (yet) guar-
anteed, while for some actor-critic (Bhatnagar et al, 2@08) direct policy-search
algorithms convergence to a local optimum can be guaranteed

The reason that Cacla performs much better than CMA-ES anpthiticular
problem is that CMA-ES uses whole episodes to estimate thesBtof a candidate
policy and stores a whole population of such policies. Gamfathe other hand,
makes use of the structure of the problem by using tempaifekence errors. This
allows it to quickly update its actor, making learning pbssieven during the first
few episodes. NAC has the additional disadvantage thaé gufew samples are
necessary to make its estimate of the Fisher informatiomixredcurate enough to
find the natural-gradient direction. Finally, the improwants to the actor in Cacla
are not slowed down by plateaus in the value space. As egdmd®me longer, the
value space will typically exhibit such plateaus, making ¢inadient estimates used
by NAC more unreliable and the updates smaller. Becausea@gerates directly
in action space, it does not have this problem and it can nawartls better actions
with a fixed step size, whenever the temporal-differencesitpe.

As a final note, the simple variant of Cacla will probably netfprm very well
in problems with specific types of noise. For instance, Catdg be tempted to
update towards actions that often yield fairly high retdsnssometimes yield very
low returns, making them a poor choice on average. This prolglan be mitigated
by storing an explicit approximation of the reward function by using averaged
temporal-difference errors instead of the stochasticreribhese issues have not
been investigated in depth.

5 Conclusion

There are numerous ways to find good policies in problemseuaititinuous spaces.
Three general methodologies exist that differ in which péthe problem is explic-
itly approximated: the model, the value of a policy, or thégoitself. Function ap-
proximation can be used to approximate these functiongwdan be updated with
gradient-based or gradient-free methods. Many differeinforcement-learning al-
gorithms result from combinations of these techniques. \Wstiyfocused on value-
function and policy approximation, because models of catis MDPs quickly
become intractable to solve, making explicit approximadiof these less useful.
Several ways to update value-function approximators wiseudsed, including
temporal-difference algorithms such as TD-learning, &+#ég, GTD2 and TDC.
To update policy approximators, methods such as policgigrd, actor-critic and
evolutionary algorithms can be used. Because these lgipgpaches store an ex-

Reinforcement Learning in Continuous State and Action 8pac 37

plicit approximation for the policy, they can be appliededitly to problems where
the action space is also continuous.

Of these methods, the gradient-free direct policy-sedgurithms have the best
convergence guarantees in completely continuous probldowever, these meth-
ods can be inefficient, because they use complete Monte @dHouts and do not
exploit the Markov structure of the MDP. Actor-critic metigstore both an explicit
estimate of the policy and a critic that can exploit thisstuue, for instance by using
temporal differences. These methods have much poteritlzugh they are harder
to analyze in general.

To get some idea of the merits of different approaches, théragous actor-critic
learning automaton (Cacla) algorithm (van Hasselt and M4ei2007, 2009) was
compared on a double-pole balancing problem to the statkesért in black-box
optimization and direct policy search: the covariancermadaptation evolution
strategy (CMA-ES) (Hansen et al, 2003). In earlier work, & was compared
favorably to other methods, such as natural evolutionaageggies (NES) (Wierstra
et al, 2008; Sun et al, 2009) and the natural actor-critic @NAlgorithm (Peters
and Schaal, 2008a). Our results show that Cacla reaches Inetiein policies in a
much smaller number of episodes. A reason for this is thaleGa@n online actor-
critic method, whereas the other methods need more sanoglesitice the direction
to update the policy to. In other words, Cacla uses the dailexperience samples
more efficiently, although it can easily be extended to be evere sample-efficient.

There are less general convergence guarantees in corgiMoBs than in finite
MDPs. Some work has been done recently to fill this gap (sge Bertsekas, 2007;
Szepesvari, 2010), but more analysis is still desirablenybf the current methods
are either (partially) heuristic, sample-inefficient ongautationally intractable on
large problems. However, recent years have shown an ireiedkeoretical guar-
antees and practical general-purpose algorithms and wexettps trend will con-
tinue. Efficiently finding optimal decision strategies imgeal problems with large
or continuous domains is one of the hardest problems inaalifntelligence, but it
is also a topic with many real-world applications and imations.

Acknowledgments

I would like to thank Peter Bosman and the anonymous reviefeerelpful com-
ments.

References

Akimoto Y, Nagata Y, Ono |, Kobayashi S (2011) Bidirectiomelation between CMA evolution
strategies and natural evolution strategies. Paralldd|Bno Solving from Nature—PPSN Xl pp
154-163

Albus JS (1971) A theory of cerebellar function. MathemeltBiosciences 10:25-61

38 Hado van Hasselt

Albus JS (1975) A new approach to manipulator control: Thelellar model articulation con-
troller (CMAC). Dynamic Systems, Measurement and Contp2p0-227

Amari SI (1998) Natural gradient works efficiently in leargi Neural computation 10(2):251-276

Anderson CW (1989) Learning to control an inverted pendulising neural networks. IEEE Con-
trol Systems Magazine 9(3):31-37

Antos A, Munos R, Szepesvari C (2008a) Fitted Q-iteratiortontinuous action-space MDPs.
Advances in neural information processing systems (NIPS20:9-16

Antos A, Szepesvari C, Munos R (2008b) Learning near-agitipolicies with Bellman-residual
minimization based fitted policy iteration and a single skmpath. Machine Learning
71(1):89-129

Babuska R (1998) Fuzzy modeling for control. Kluwer AcadeRublishers

Back T (1996) Evolutionary algorithms in theory and preetievolution strategies, evolutionary
programming, genetic algorithms. Oxford University Pré$SA

Back T, Schwefel HP (1993) An overview of evolutionary aigfams for parameter optimization.
Evolutionary computation 1(1):1-23

Baird L (1995) Residual algorithms: Reinforcement leagnimith function approximation. In:
Prieditis A, Russell S (eds) Machine Learning: Proceedofghe Twelfth International Con-
ference, Morgan Kaufmann Publishers, San Francisco, CB0pf37

Baird LC, Klopf AH (1993) Reinforcement learning with highmensional, continuous actions.
Tech. Rep. WL-TR-93-114, Wright Laboratory, Wright-Padten Air Force Base, OH

Bardi M, Dolcetta IC (1997) Optimal control and viscosityigmns of Hamilton—Jacobi—Bellman
equations. Springer

Barto AG, Sutton RS, Anderson CW (1983) Neuronlike adapéilaments that can solve diffi-
cult learning control problems. IEEE Transactions on SysteMan, and Cybernetics SMC-
13:834-846

Baxter J, Bartlett PL (2001) Infinite-horizon policy-gradt estimation. Journal of Atrtificial Intel-
ligence Research 15:319-350

Beard R, Saridis G, Wen J (1998) Approximate solutions tdithe-invariant Hamilton—Jacobi—
Bellman equation. Journal of Optimization theory and Apgtions 96(3):589-626

Bellman R (1957) Dynamic Programming. Princeton UnivgrBitess

Benbrahim H, Franklin JA (1997) Biped dynamic walking usieqforcement learning. Robotics
and Autonomous Systems 22(3-4):283-302

Berenji H (1994) Fuzzy Q-learning: a new approach for fuzgpainic programming. In: Pro-
ceedings of the Third IEEE Conference on Fuzzy Systems,.18¥E World Congress on
Computational Intelligence., IEEE, pp 486—491

Berenji H, Khedkar P (1992) Learning and tuning fuzzy logiatollers through reinforcements.
IEEE Transactions on Neural Networks 3(5):724-740

Bertsekas DP (2005) Dynamic Programming and Optimal Contod |. Athena Scientific

Bertsekas DP (2007) Dynamic Programming and Optimal Coniod 11. Athena Scientific

Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic ProgramymAthena Scientific, Belmont, MA

Bertsekas DP, Borkar VS, Nedic A (2004) Improved temporitince methods with linear func-
tion approximation. Handbook of Learning and ApproximatsmBmic Programming pp 235—
260

Beyer H, Schwefel H (2002) Evolution strategies—a comprsive introduction. Natural comput-
ing 1(1):3-52

Bhatnagar S, Sutton RS, Ghavamzadeh M, Lee M (2009) Natctat-eritic algorithms. Automat-
ica 45(11):2471-2482

Bishop CM (1995) Neural networks for pattern recognitionfd®d University Press, USA

Bishop CM (2006) Pattern recognition and machine learrapginger New York:

Bonarini A (1996) Delayed reinforcement, fuzzy Q-learnantdd fuzzy logic controllers. In: Her-
rera F, Verdegay JL (eds) Genetic Algorithms and Soft Compgu(Studies in Fuzziness, 8),
Physica-Verlag, Berlin, D, pp 447-466

Boyan JA (2002) Technical update: Least-squares tempiffedehce learning. Machine Learning
49(2):233-246

Reinforcement Learning in Continuous State and Action 8pac 39

Bradtke SJ, Barto AG (1996) Linear least-squares algostiion temporal difference learning.
Machine Learning 22:33-57

Bryson A, Ho Y (1969) Applied Optimal Control. Blaisdell Righing Co.

Busoniu L, Ernst D, De Schutter B, BabuSka R (2008) Comtirsastate reinforcement learn-
ing with fuzzy approximation. Adaptive Agents and Multi-> Systems Il Adaptation and
Multi-Agent Learning pp 27-43

Busoniu L, BabuSka R, De Schutter B, Ernst D (2010) Reo#orent Learning and Dynamic
Programming Using Function Approximators. CRC Press, Brett@n, Florida

Coulom R (2002) Reinforcement learning using neural netejorith applications to motor con-
trol. PhD thesis, Institut National Polytechnique de Gigao

Crites RH, Barto AG (1996) Improving elevator performangng reinforcement learning. In:
Touretzky DS, Mozer MC, Hasselmo ME (eds) Advances in Nebnf@rmation Processing
Systems 8, MIT Press, Cambridge MA, pp 1017-1023

Crites RH, Barto AG (1998) Elevator group control using riplét reinforcement learning agents.
Machine Learning 33(2/3):235-262

Davis L (1991) Handbook of genetic algorithms. Arden Shpkease

Dayan P (1992) The convergence of D for general lambda. Machine Learning 8:341-362

Dayan P, Sejnowski T (1994) TI2): Convergence with probability 1. Machine Learning 14:295—
301

Dearden R, Friedman N, Russell S (1998) Bayesian Q-learhimdroceedings of the fifteenth
national/tenth conference on Artificial intelligence/tvative applications of artificial intelli-
gence, American Association for Artificial Intelligencey 61768

Dearden R, Friedman N, Andre D (1999) Model based Bayesiplogation. In: Proceedings of
the fifteenth Conference on Uncertainty in Artificial Intgéince, pp 150-159

Eiben AE, Smith JE (2003) Introduction to evolutionary cartipg. Springer Verlag

Ernst D, Geurts P, Wehenkel L (2005) Tree-based batch mad®meement learning. Journal of
Machine Learning Research 6(1):503-556

Fisher RA (1922) On the mathematical foundations of thémakstatistics. Philosophical Trans-
actions of the Royal Society of London Series A, Containirgpd?s of a Mathematical or
Physical Character 222:309-368

Fisher RA (1925) Statistical methods for research work@liser & Boyd, Edinburgh

Framling k (2007) Replacing eligibility trace for actimaiue learning with function approxima-
tion. In: Proceedings of the 15th European Symposium offiéiei Neural Networks (ESANN-
07), d-side publishing, pp 313-318

Gaskett C, Wettergreen D, Zelinsky A (1999) Q-learning intocmious state and action spaces.
Advanced Topics in Atrtificial Intelligence pp 417-428

Geramifard A, Bowling M, Sutton RS (2006) Incremental lesgtiares temporal difference learn-
ing. In: Proceedings of the 21st national conference orfiéidl intelligence-Volume 1, AAAI
Press, pp 356-361

Geramifard A, Bowling M, Zinkevich M, Sutton R (2007) ilstBligibility traces and convergence
analysis. Advances in Neural Information Processing 3yst&9:441-448

Glasmachers T, Schaul T, Yi S, Wierstra D, Schmidhuber JQR&kponential natural evolution
strategies. In: Proceedings of the 12th annual conferenc@emetic and evolutionary compu-
tation, ACM, pp 393—400

Glorennec P (1994) Fuzzy Q-learning and dynamical fuzzye&ring. In: Proceedings of the
Third IEEE Conference on Fuzzy Systems, 1994. |IEEE WorldgBzss on Computational
Intelligence., IEEE, pp 474-479

Glover F, Kochenberger G (2003) Handbook of metaheurisBpsinger

Gomez F, Schmidhuber J, Miikkulainen R (2008) Acceleratedral evolution through coopera-
tively coevolved synapses. The Journal of Machine LearRiegearch 9:937-965

Gordon GJ (1995) Stable function approximation in dynamagpamming. In: Prieditis A, Rus-
sell S (eds) Proceedings of the Twelfth International Carfee on Machine Learning (ICML
1995), Morgan Kaufmann, San Francisco, CA, pp 261-268

40 Hado van Hasselt

Gordon GJ (1999) Approximate solutions to Markov decisioocpsses. PhD thesis, Carnegie
Mellon University

Greensmith E, Bartlett PL, Baxter J (2004) Variance reauctechniques for gradient estimates in
reinforcement learning. The Journal of Machine Learningdaech 5:1471-1530

Hansen N, Ostermeier A (2001) Completely derandomizedagkziptation in evolution strategies.
Evolutionary computation 9(2):159-195

Hansen N, Miller SD, Koumoutsakos P (2003) Reducing the tiemplexity of the derandomized
evolution strategy with covariance matrix adaptation (CIE8). Evolutionary Computation
11(1):1-18

Hansen N, Auger A, Ros R, Finck S, PoSik P (2010) Comparisglts of 31 algorithms from
the black-box optimization benchmarking BBOB-2009. Inod¢&edings of the 12th annual
conference companion on Genetic and evolutionary compuatadCM, New York, NY, USA,
GECCO '10, pp 1689-1696

Haykin S (1994) Neural Networks: A Comprehensive FoundatiRrentice Hall PTR

Heidrich-Meisner V, Igel C (2008) Evolution strategies &brect policy search. Parallel Problem
Solving from Nature-PPSN X pp 428-437

Holland JH (1962) Outline for a logical theory of adaptivestgms. Journal of the ACM (JACM)
9(3):297-314

Holland JH (1975) Adaptation in Natural and Artificial Syt University of Michigan Press,
Ann Arbor

Howard RA (1960) Dynamic programming and Markov process#$. Press

Huyer W, Neumaier A (2008) SNOBFIT—stable noisy optimiaatby branch and fit. ACM Trans-
actions on Mathematical Software (TOMS) 35(2):1-25

Jiang F, Berry H, Schoenauer M (2008) Supervised and ewolaity learning of echo state net-
works. Parallel Problem Solving from Nature—PPSN X pp 22%-2

Jouffe L (1998) Fuzzy inference system learning by reirdorent methods. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications andeRe\28(3):338—-355

Kakade S (2001) A natural policy gradient. In: Dietterich ,TBecker S, Ghahramani Z (eds)
Advances in Neural Information Processing Systems 14 (NIPSMIT Press, pp 1531-1538

Kennedy J, Eberhart RC (1995) Particle swarm optimizatimrProceedings of IEEE international
conference on neural networks, Perth, Australia, vol 4,942+1948

Kirkpatrick S (1984) Optimization by simulated annealiqguantitative studies. Journal of Statis-
tical Physics 34(5):975-986

Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic: theory angblegations. Prentice Hall PTR
Upper Saddle River, NJ, USA

Konda V (2002) Actor-critic algorithms. PhD thesis, Maduasetts Institute of Technology

Konda VR, Borkar V (1999) Actor-critic type learning algitmins for Markov decision processes.
SIAM Journal on Control and Optimization 38(1):94-123

Konda VR, Tsitsiklis JN (2003) Actor-critic algorithms./&AW Journal on Control and Optimiza-
tion 42(4):1143-1166

Kullback S (1959) Statistics and Information Theory. J.&yiand Sons, New York

Kullback S, Leibler RA (1951) On information and sufficiené&nnals of Mathematical Statistics
22:79-86

Lagoudakis M, Parr R (2003) Least-squares policy iteratidre Journal of Machine Learning
Research 4:1107-1149

Lin C, Lee C (1994) Reinforcement structure/parametemiegrfor neural-network-based fuzzy
logic control systems. IEEE Transactions on Fuzzy Systgii)s45—63

Lin CS, Kim H (1991) CMAC-based adaptive critic self-leargicontrol. IEEE Transactions on
Neural Networks 2(5):530-533

Lin L (1992) Self-improving reactive agents based on racément learning, planning and teach-
ing. Machine learning 8(3):293-321

Lin LJ (1993) Reinforcement learning for robots using néwmetworks. PhD thesis, Carnegie
Mellon University, Pittsburgh

Reinforcement Learning in Continuous State and Action 8pac 41

Littman ML, Szepesvari C (1996) A generalized reinforcatdearning model: Convergence and
applications. In: Saitta L (ed) Proceedings of the 13thri@gonal Conference on Machine
Learning (ICML 1996), Morgan Kaufmann, Bari, Italy, pp 3818

Maei HR, Sutton RS (2010) GQ\|: A general gradient algorithm for temporal-difference-pr
diction learning with eligibility traces. In: Proceedingéthe Third Conference On Artificial
General Intelligence (AGI-10), Atlantis Press, LuganojtSerland, pp 91-96

Maei HR, Szepesvari C, Bhatnagar S, Precup D, Silver Dp8WRt (2009) Convergent temporal-
difference learning with arbitrary smooth function appmation. Advances in Neural Infor-
mation Processing Systems 22 (NIPS-09) 22

Maei HR, Szepesvari C, Bhatnagar S, Sutton RS (2010) Towf#gblicy learning control with
function approximation. In: Proceedings of the 27th Anrla&rnational Conference on Ma-
chine Learning (ICML-10), ACM, New York, NY, USA

Maillard OA, Munos R, Lazaric A, Ghavamzadeh M (2010) Firseemple analysis of Bellman
residual minimization. In: Asian Conference on Machinernézy (ACML-10)

Mitchell TM (1996) Machine learning. McGraw Hill, New YorkJS

Moriarty DE, Miikkulainen R (1996) Efficient reinforcemeleiarning through symbiotic evolution.
Machine Learning 22:11-32

Moriarty DE, Schultz AC, Grefenstette JJ (1999) Evolutiyralgorithms for reinforcement learn-
ing. Journal of Artificial Intelligence Research 11:241627

Murray JJ, Cox CJ, Lendaris GG, Saeks R (2002) Adaptive dymprogramming. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEESaations on 32(2):140-153

Narendra KS, Thathachar MAL (1974) Learning automata - sesulEEE Transactions on Sys-
tems, Man, and Cybernetics 4:323-334

Narendra KS, Thathachar MAL (1989) Learning automata: amduction. Prentice-Hall, Inc.
Upper Saddle River, NJ, USA

Nedit A, Bertsekas DP (2003) Least squares policy evalnatigorithms with linear function
approximation. Discrete Event Dynamic Systems 13(1-2)1719

Neyman J, Pearson ES (1928) On the use and interpretati@rtafrctest criteria for purposes of
statistical inference part i. Biometrika 20(1):175-240

Ng AY, Parr R, Koller D (1999) Policy search via density estmn. In; Solla SA, Leen TK,
Muller KR (eds) Advances in Neural Information ProcessBygtems 13, The MIT Press, pp
1022-1028

Nguyen-Tuong D, Peters J (2011) Model learning for robotrmbra survey. Cognitive Processing
pp 1-22

Ormoneit D, Ser§ (2002) Kernel-based reinforcement learning. Machineleg 49(2):161-178

Pazis J, Lagoudakis MG (2009) Binary action search for iegroontinuous-action control poli-
cies. In: Proceedings of the 26th Annual International @mice on Machine Learning, ACM,
pp 793-800

Peng J (1993) Efficient dynamic programming-based learfioingontrol. PhD thesis, Northeastern
University

Peters J, Schaal S (2008a) Natural actor-critic. Neuroctimgp 71(7-9):1180-1190

Peters J, Schaal S (2008b) Reinforcement learning of métis with policy gradients. Neural
Networks 21(4):682—697

Peters J, Vijayakumar S, Schaal S (2003) Reinforcementitegafor humanoid robotics. In: IEEE-
RAS international conference on humanoid robots (Huma28ia3), IEEE Press

Poupart P, Vlassis N, Hoey J, Regan K (2006) An analytic smiub discrete Bayesian reinforce-
ment learning. In: Proceedings of the 23rd internationafe@nce on Machine learning, ACM,
pp 697704

Powell M (2002) UOBYQA: unconstrained optimization by quetit approximation. Mathemati-
cal Programming 92(3):555-582

Powell M (2006) The NEWUOA software for unconstrained optiation without derivatives.
Large-Scale Nonlinear Optimization pp 255-297

Powell WB (2007) Approximate Dynamic Programming: Solvihg Curses of Dimensionality.
Wiley-Blackwell

42 Hado van Hasselt

Precup D, Sutton RS (2001) Off-policy temporal-differefearning with function approximation.
In: Machine learning: proceedings of the eighteenth Irggomal Conference (ICML 2001),
Morgan Kaufmann, Williams College, Williamstown, MA, USpp 417-424

Precup D, Sutton RS, Singh SP (2000) Eligibility traces fifipolicy policy evaluation. In: Pro-
ceedings of the Seventeenth International Conference ochid@ Learning (ICML 2000),
Morgan Kaufmann, Stanford University, Stanford, CA, USA, 166773

Prokhorov DV, Wunsch DC (2002) Adaptive critic designs. EEEansactions on Neural Networks
8(5):997-1007

Puterman ML (1994) Markov Decision Processes: Discretetststic Dynamic Programming.
John Wiley & Sons, Inc. New York, NY, USA

Puterman ML, Shin MC (1978) Modified policy iteration algbrs for discounted Markov deci-
sion problems. Management Science 24(11):1127-1137

Rao CR, Poti SJ (1946) On locally most powerful tests whesridttives are one sided. Sankhy a:
The Indian Journal of Statistics pp 439—439

Rechenberg | (1971) Evolutionsstrategie - Optimierungécher Systeme nach Prinzipien der
biologischen Evolution. Fromman-Holzboog

Riedmiller M (2005) Neural fitted Q iteration - first expergas with a data efficient neural rein-
forcement learning method. In: Gama J, Camacho R, Brazddrge A, Torgo L (eds) Proceed-
ings of the 16th European Conference on Machine Learning/AE@5), Springer, pp 317-328

Ripley BD (2008) Pattern recognition and neural networkan@ridge University Press

Rubinstein R (1999) The cross-entropy method for combmedtand continuous optimization.
Methodology and Computing in Applied Probability 1(2):32B0

Rubinstein R, Kroese D (2004) The cross-entropy method:iffeedrapproach to combinatorial
optimization, Monte-Carlo simulation, and machine leagniSpringer-Verlag New York Inc

RuckstieR T, Sehnke F, Schaul T, Wierstra D, Sun Y, Schnliehd (2010) Exploring parameter
space in reinforcement learning. Paladyn 1(1):14-24

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning int@rrepresentations by error propa-
gation. In: Parallel Distributed Processing, vol 1, MIT $5epp 318—-362

Rummery GA, Niranjan M (1994) On-line Q-learning using ceationist sytems. Tech. Rep.
CUED/F-INFENG-TR 166, Cambridge University, UK

Santamaria JC, Sutton RS, Ram A (1997) Experiments witHaiement learning in problems
with continuous state and action spaces. Adaptive beh&y®ri63—-217

Scherrer B (2010) Should one compute the temporal differdémgoint or minimize the Bellman
residual? The unified oblique projection view. In: Furmiza, Joachims T (eds) Proceedings of
the 27th International Conference on Machine Learning (L2@10), Omnipress, pp 959—-966

Schwefel HP (1977) Numerische Optimierung von Computeddllen. Birkhauser, Basel, vol-
ume 26 of Interdisciplinary Systems Research

Sehnke F, Osendorfer C, Rickstiel T, Graves A, Peters dniSichber J (2010) Parameter-
exploring policy gradients. Neural Networks 23(4):551955

Singh SP, Sutton RS (1996) Reinforcement learning witha@py eligibility traces. Machine
Learning 22:123-158

Spaan M, Vlassis N (2005) Perseus: Randomized point-baded eration for POMDPs. Journal
of Artificial Intelligence Research 24(1):195-220

Stanley KO, Miikkulainen R (2002) Efficient reinforcemerfining through evolving neural net-
work topologies. In: Proceedings of the Genetic and Evohairy Computation Conference
(GECCO0-2002), Morgan Kaufmann, San Francisco, pp 569-577

Strehl AL, Li L, Wiewiora E, Langford J, Littman ML (2006) PA@odel-free reinforcement
learning. In: Proceedings of the 23rd international cariee on Machine learning, ACM, pp
881-888

Strens M (2000) A Bayesian framework for reinforcementréag. In: Proceedings of the Sev-
enteenth International Conference on Machine Learninggllio Kaufmann Publishers Inc., p
950

Reinforcement Learning in Continuous State and Action 8pac 43

Sun 'Y, Wierstra D, Schaul T, Schmidhuber J (2009) Efficientirz evolution strategies. In: Pro-
ceedings of the 11th Annual conference on Genetic and ésnary computation (GECCO-
09), ACM, pp 539-546

Sutton RS (1984) Temporal credit assignment in reinforcergarning. PhD thesis, University of
Massachusetts, Dept. of Comp. and Inf. Sci.

Sutton RS (1988) Learning to predict by the methods of teaipifferences. Machine Learning
3:9-44

Sutton RS (1996) Generalization in reinforcement leariBgccessful examples using sparse
coarse coding. In: Touretzky DS, Mozer MC, Hasselmo ME (est$yances in Neural In-
formation Processing Systems 8, MIT Press, Cambridge MAQ38-1045

Sutton RS, Barto AG (1998) Reinforcement Learning: An Idtrction. The MIT press, Cambridge
MA

Sutton RS, McAllester D, Singh S, Mansour Y (2000) Policydigat methods for reinforcement
learning with function approximation. Advances in Neurgbrmation Processing Systems 13
(NIPS-00) 12:1057-1063

Sutton RS, Szepesvari C, Maei HR (2008) A convergent O@grahm for off-policy temporal-
difference learning with linear function approximationdvances in Neural Information Pro-
cessing Systems 21 (NIPS-08) 21:1609-1616

Sutton RS, Maei HR, Precup D, Bhatnagar S, Silver D, Szepe§; Wiewiora E (2009) Fast
gradient-descent methods for temporal-difference leamiith linear function approximation.
In: Proceedings of the 26th Annual International Confeeeno Machine Learning (ICML
2009), ACM, pp 993-1000

Szepesvari C (2010) Algorithms for reinforcement leagni@ynthesis Lectures on Atrtificial Intel-
ligence and Machine Learning 4(1):1-103

Szepesvari C, Smart WD (2004) Interpolation-based Qilegr In: Proceedings of the twenty-first
international conference on Machine learning (ICML 20@43M, p 100

Szita |, Lorincz A (2006) Learning tetris using the noispss-entropy method. Neural Computa-
tion 18(12):2936—2941

Taylor ME, Whiteson S, Stone P (2006) Comparing evolutiprenrd temporal difference methods
in a reinforcement learning domain. In: Proceedings of tthea®nual conference on Genetic
and evolutionary computation, ACM, p 1328

Tesauro G (1992) Practical issues in temporal differenaenieg. In: Lippman DS, Moody JE,
Touretzky DS (eds) Advances in Neural Information ProcesSystems 4, San Mateo, CA:
Morgan Kaufmann, pp 259-266

Tesauro G (1994) TD-Gammon, a self-teaching backgammargmg achieves master-level play.
Neural computation 6(2):215-219

Tesauro GJ (1995) Temporal difference learning and TD-Gamr@ommunications of the ACM
38:58-68

Thrun S, Schwartz A (1993) Issues in using function appratiom for reinforcement learning.
In: Mozer M, Smolensky P, Touretzky D, Elman J, Weigend A JeRi®ceedings of the 1993
Connectionist Models Summer School, Lawrence Erlbaunisétile, NJ

Touzet CF (1997) Neural reinforcement learning for behawisynthesis. Robotics and Au-
tonomous Systems 22(3/4):251-281

Tsitsiklis JN, Van Roy B (1996) An analysis of temporal-diince learning with function ap-
proximation. Tech. Rep. LIDS-P-2322, Cambridge,MA: MIThaoaatory for Information and
Decision Systems

Tsitsiklis IN, Van Roy B (1997) An analysis of temporal-diftnce learning with function approx-
imation. IEEE Transactions on Automatic Control 42(5):6690

van Hasselt HP (2010) Double Q-Learning. In: Advances inrblelmformation Processing Sys-
tems, The MIT Press, vol 23

van Hasselt HP (2011) Insights in reinforcement learnid Ehesis, Utrecht University

van Hasselt HP, Wiering MA (2007) Reinforcement learningantinuous action spaces. In: Pro-
ceedings of the IEEE International Symposium on Adaptived@yic Programming and Rein-
forcement Learning (ADPRL-07), pp 272-279

44 Hado van Hasselt

van Hasselt HP, Wiering MA (2009) Using continuous actioacgs to solve discrete problems.
In: Proceedings of the International Joint Conference oar&leNetworks (IJCNN 2009), pp
1149-1156

van Seijen H, van Hasselt HP, Whiteson S, Wiering MA (2009 éotretical and empirical analysis
of Expected Sarsa. In: Proceedings of the IEEE Interndt®ymaposium on Adaptive Dynamic
Programming and Reinforcement Learning, pp 177-184

Vapnik VN (1995) The nature of statistical learning the@pringer Verlag

Vrabie D, Pastravanu O, Abu-Khalaf M, Lewis F (2009) Adaptdptimal control for continuous-
time linear systems based on policy iteration. Automate@y477-484

Wang FY, Zhang H, Liu D (2009) Adaptive dynamic programmiigt introduction. Computa-
tional Intelligence Magazine, IEEE 4(2):39-47

Watkins CJCH (1989) Learning from delayed rewards. PhDishé&sng’s College, Cambridge,
England

Watkins CJCH, Dayan P (1992) Q-learning. Machine Learni2g 8-292

Werbos PJ (1974) Beyond regression: New tools for predictiod analysis in the behavioral
sciences. PhD thesis, Harvard University

Werbos PJ (1977) Advanced forecasting methods for glolgisararning and models of intelli-
gence. In: General Systems, vol XXII, pp 25-38

Werbos PJ (1989a) Backpropagation and neurocontrol: Aweand prospectus. In: IEEE/INNS
International Joint Conference on Neural Networks, Wagtoin, D. C., vol 1, pp 209-216

Werbos PJ (1989b) Neural networks for control and systemtiitgation. In: Proceedings of
IEEE/CDC Tampa, Florida

Werbos PJ (1990) Consistency of HDP applied to a simplessiafment learning problem. Neural
Networks 2:179-189

Werbos PJ (2002) Backpropagation through time: What it éoeshow to do it. Proceedings of
the IEEE 78(10):1550—1560

Whiteson S, Stone P (2006) Evolutionary function approxiamefor reinforcement learning. Jour-
nal of Machine Learning Research 7:877-917

Whitley D, Dominic S, Das R, Anderson CW (1993) Genetic reinément learning for neuro-
control problems. Machine Learning 13(2):259-284

Wieland AP (1991) Evolving neural network controllers farstable systems. In: International
Joint Conference on Neural Networks, IEEE, New York, Seatibl 2, pp 667-673

Wiering MA, van Hasselt HP (2009) The QV family compared tbestreinforcement learning
algorithms. In: Proceedings of the IEEE International Sgeipm on Adaptive Dynamic Pro-
gramming and Reinforcement Learning, pp 101-108

Wierstra D, Schaul T, Peters J, Schmidhuber J (2008) Naawalution strategies. In: IEEE
Congress on Evolutionary Computation (CEC-08), IEEE, pp133387

Williams RJ (1992) Simple statistical gradient-followidgorithms for connectionist reinforce-
ment learning. Machine Learning 8:229-256

Williams RJ, Zipser D (1989) A learning algorithm for coniadly running fully recurrent neural
networks. Neural computation 1(2):270-280

Wilson DR, Martinez TR (2003) The general inefficiency ofdbatraining for gradient descent
learning. Neural Networks 16(10):1429-1451

Zadeh L (1965) Fuzzy sets. Information and control 8(3):Z%8

Zhou C, Meng Q (2003) Dynamic balance of a biped robot usizgyfueinforcement learning
agents. Fuzzy Sets and Systems 134(1):169-187

