
WSSIAA 2(1993) pp. 225-238
@World Scientific Publishing Company

Parallel Jacobi Iteration in Implicit Step-by-Step Methods

P.J. van derHouwen & B.P. Sommeijer
CWI

Post box 4079, 1009 AB Amsterdam, The Netherlands

An iteration scheme is descibed to solve the implicit relations that result from the application
of an implicit integration method to an initial value problem (IVP). In this iteration scheme
the amount of implicitness is still free so as to comprise a large variety of methods, running
from fully explicit (functional iteration) to fully implicit (Newton's method). In the
intermediate variants (the so-called Jacobi-type methods), the influence of the Jacobian
matrix of the problem is gradually increased. Special emphasis is placed on the 'stage
value-Jacobi' iteration which uses only the diagonal of the Jacobian matrix. Therefore, the
convergence of this method crucially depends on the diagonally dominance of the Jacobian.
Another characteristic of this scheme is that it allows for massive parallelism: for a d
dimensional IVP, d uncoupled systems of dimensions have to be solved, where sis the
number of stages in the underlying implicit method (e.g., an s-stage Runge-Kutta method).
Hence, on a parallel architecture with d processors (d>>l), we may expect an efficient
process (for high-dimensional problems).

1980 Mathematical Subject Classification: 65Ml0, 65M20
Key Words' and Phrases: numerical analysis, stability, parallelism.

1. Introduction
We shall be concerned with parallel predictor-corrector iteration of implicit step-by-step methods

for solving initial value problems (IVPs). For a wide class of functional equations, including ordinary
differential equations (ODEs), Volterra integral equations (VIEs), Volterra integro-differential equations
(VIDEs), delay-differential equations (DDEs), etc., these step-by-step methods (referred to as corrector
equations) can be represented in the form:

(1.1)
Y "'Fn(h, Uo. U1, ..• , Un)+ hv(M®I)Gn(Y), Un+!= Hn(h. Uo, U1, .•. , Un, Y),

Y :"' (Y1T. Y2T •... , Y ,T)T, Un:= (Un1T. Un2T, ... , UnrT)T, n = 0, l, 2, ...•

Here, h is the stepsize, v is the order of the IVP, M is an s-by-s matrix characterizing the corrector, Un
and Y present an r-dimensional and s-dimensional block vector of numerical approximations to the
exact solution of the !VP. If the IVP has dimension d, then Un and Y are vectors in rd-dimensional
and sd-dimensional vector spaces, respectively, and Fn, Gn and Hn are functions depending both on
the IVP and the step-by-step method. Furthermore, M®I denotes the direct product of the matrices M
and I. In each step, the block vectors (Uo, U1, ... , Un} are the input vectors, Un+l is the output

225

226

vector, and Y is the internal stage v~ctor. We; s~all. say that the c.o~ector method_ has s internal stages
and r output points. The representauon (1.1) 1s sumlar to the parttt10ned general lmear method (GLM)
format introduced in [5].

On sequential computers, multi-stage corrector eq_uations are sel~om used in predictor-corrector
iteration methods because of the increased computauonal complexity if s > 1. However, parallel
computers have changed the scene. A number of papers [15, 9, ~ 1, 2, 3, 4, 14, 16] discuss the parallel
aspects of functional iteration of Runge-Kuna-type correctors m the case of first-order and second
order, nonstiff ODEs and show that the sequentil.l[costs can be ~educed to such ~ extent that they are
at least competitive with, but often superi.or to, the !Jest .sc:<l!lenn~ codes. For snff ODEs and VIEs, it
has been shown in [10, 7] that so-called diagonally 1mpl1C1t 1te~non of Runge-Kuna-type correctors is
suitable for implementation on parallel computers (see also Secuon 2 of the present paper). In [8], these
functional and diagonally implicit iteration methods are discussed for solving the general class of
correctors defined by (1.1) and preconditioning techniques for accelerating their convergence are
studied.

In this paper, we consider a!lothe~ app~oach to accelerating th~ convergence o~ paral]el iteration
methods, which leads us to Jacobi-type 1teranon methods. For nonstiff problems, we mvesogate Jacobi
iteration methods that are implicit m the s stage values Yiq (i = 1, ... , s) corresponding to the qth
component of the stage vectors Yi, and we show that its computational costs per step are hardly hi&her
than those of function iteration. This type of Jacobi iteration will be called stage-value-Jacobi iteranon.
It turns out that diagonal dominancy of the Jacobian of the function Gn plays a crucial role in the rate of
convergence of stage-value-Jacobi iteration. This is not surprising, because, as is well known
diagonal dominancy also plays an important role in classical (pomt-)Jacobi iteration. For example, w~
have the following classical theorem, the proof of which can be found in Collatz [6]:

Theorem 1.1. Let the matrix A in the linear system Ax= b be irreducibly diagonally dominant. Then
the point-Jacobi iteration method

Xn+I = Xn- o·I [Axn · b), n = 0, l, ...

converges for any starting vector xo. []

For linear problems, we shall derive a safe estimate for the convergence factor of stage-value
Jacobi iteration and it will be shown that for IVPs with strontilY diagonally dominant Jacobian matrix
we obtain fast convergence, in spite of the modest degree of implicitness of the method. For a numbe;
of numerical examples, we compare its efficiency with that of function iteration and we test the
reliability of the convergence factor estimate.

2 . Parallel iteration methods
We shall study iterative methods for solving the stage vector equation on parallel computers. Let

us write the stage vector equation in (1.1) in the form

(2.1) Rn(h. Y) := Y · Fn(h, Uo, U1, ... , Un) - hv(M®I)Gn(Y) = 0,

and consider Jacobi-type iteration methods of the form

(2.2) Iq(YU>. hVQGn(YU·l) + lq(YU) - yU·ll))) = Iq(YU·l) - hvQGn(YU·ll) - PRn(h. yU·ll)), q = !, ... ,k,

where the iteration index j runs from 1 to m. Here, P and Q are real, nonzero sd-by-sd matrices, and
f~:>r a given value of q, Iq is an sd-by-sd diagonal matrix of which the diagonal entries are either 1 or 0
(1fQ = 0, then (2.2) becomes fully explicit and reduces to functional iteration).

227

Each iteration in (2.2) requires itself the application of an iteratioi;i pr~ess for com2uting .Y<D.
This iteration process will be called the inner iteration method an~ the .ite~uon method (2.2) wi!l be
called the outer iteration method. It will be assumed that the inner tterauon is defined by the modified
Newton method. .

P may be considered as a preconditioning matrix and the matrices Q. and Iq _detenmne the degree
of implicitness of the iteration scheme. It will be assumed that the mamx obtained b)'. sumrrung all
matrices lo equals the identity matrix I, so that all components of the stage vecto.r ~ 1~erated. Each
iteration of the iteration method (2.2) requires the solution of a set of k uncoupled, 1mphc1t subsystems
of dimension Trace(Iq). Hence, it can be efficiently implemented on a k-proc'?ssor computei:. .

There are various obvious options for choosing the 'partitioning' ~atnces Iq. De~otmg the ~mt
vector (with only unit entries) and the qth unit vector bye and eq, respecuvely, both havmg dimension
sd, we recognize the following special cases:

Point-Jacobi:
Stage-value-Jacobi:
Stage-vector-Jacobi:
Newton:

k=sd
k=d
k =S
k=l

Trace(!q) = l
Trace(;_j) = s
Trace(lq) = d
Trace(Iq) = sd

Iqe =ea_
!cje = e®eq
Iqe = eq®~
Iq =I,

where q = 1, ... , k. The most simple option is point-Jacobi iteration. It has opt.i1:nal p_arallelism in the
sense that k is as large as possible. The next simple option is stage-value-Jacobi Jterauon. It allows for
massive parallelism for large systems (k =d).The qth processor iterates on the s stage values Yjq (1 =
1, ... , s) corresponding to the qth component of the stage vectors Yj. so that per step each proci:ssor
has to solve m systems of equat10ns of equal dimensions. However, 111 actual computations, the major
part of the computat!onal effoi;t per step pef processor usually goes into th~ eva_luation of ms
components of the residual funcuon Rn(h, YQ-)i. A disadvantage of stage-value Herauon may be the
~r load b:iJan.cing if the col"!lputationaI complexity of the components of. ti!e res.idual function vary
widely. This disadvantage disappears in the case of stage-vector-Jacobi iteration, where the qth
processor iterates on the d components Y qi (i = 1, ... , d) of the qth stage vector Y g. Now the systems
of equations have dimension d, so that for larger dimensions d the major pan onhe computational
effort per step per processor consists of solving these d-dimensional systems. For IVPs originating
from ODEs and VIEs, this iteration method has been analysed in the case where P = I and Q = 001
with Dan s-by-s matrix (cf. [10, 7] where this type of iteration was called diagonally implicit iteration).
It was shown that the sets of equations are of comparable computational complexity, so that we have
more or less equal load balancing of the .Processors. Stage-vector-Jacobi iteration has the additional
advantage of using the full Jacobian matnx of the IVP in the inner iteration which enables us to solve
stiff systems efficiently. The disadvantage is the low number of processors that can efficiently be
employed (k = s). At the end of the scale, we have Newton iteration with k = l and hence no intrinsic
parallelism.

In a more sophisticated partitioning approach, the matrices ~g are chosen such that sets of
strongly coupled equations are taken together on one processor. However, this requires precise
info~tion on the !VP to be solv<;<l. an.d can only be analysed for specific classes of problems.

l'.ma!ly, we remark that the iteration scheme (2.2) can be generalized by allowmg the matrii< M
occ~mns m the residual function Rn. to depend on the partitioning index q. This enables us to adapt
the Iteration method _and t~e corrector to the particular subsystem to be iterated. However, in this paper,
we confine our cons1dera11ons to constant M.

2.1. The iteration error
In order to analyse the behaviour of the iteration error y(j) - Y we consider the error equation

associated with (2.2) in the case where On is linear in Y, satisfying the relation

(2.3) Gn(V) - Gn(W) = (!®Jn) [V - W].

with ~nth~ d-by-d Jacobian matrix of On (evaluated at tn). Omitting in Jn the step index n, the inner
outer lteratlon method reduces to the recursion

228

(2.4) lq [! - llVQ(J®J)lq] [y(j). y(j-1)] = - lq PRn(h. y(j-l)),

from which we deduce the iteration error equation

(2.5) lq (1-hvQ(l®J)lq)[YG). Y] = lq (!-P+ b"P(M®J) -hVQ(I®J)lq] (y(j-l) - Y].

The combined effect of the iteration process for q = 1, 2, ... , k can be studied by considering the
summed recursions given by

k

(2.6) [I - hvs] [YGl-Y] = [1-P-hv(s. P(M®J))] [YG-1). y], S := L lqQ(I®J)Iq
q=l

(recall that the summing the matrices Iq was assumed to yield the identity matrix). The matrix S can be
expressed as

k (Q11J ... Q1,J} ·-(Qu ··· Q1, l
(2.7) S:=Llq Iq. Q.- ,

q=I Q,1J ... Q.,J Q,1 ... Q,,

where the Qij are d-by-d matrices. In the cases of stage-vector-Jacobi iteration (Ioe = eq®e~. point
Jacobi iteranon (Iqe = eq), and stage-value-Jacobi iteration (Iqe = e®eq), we respec~vely obtain

~ {~' Q:l ·{~' ,] ·-G:: ::J
where Sii. := diag (QjjJ). From these representations it follows that stage-vector-Jacobi iteration does
not split The Jacobian matrix, while the diagonal operation in the point-Jacobi and stage-value-Jacobi
iteranon methods will in general not preserve the complete Jacobian.

In the remainder of this paper, we restrict our considerations to point-Jacobi iteration and stage
value-Jacobi iteration without preconditioning (P =I).

3. Jacobi iteration versus functional iteration
In this section, we discuss various aspects of Jacobi iteration with

(3.1) P=I, Q=M®I.

Assuming that the Jacobian ofGn(YG)) at tn is given by I®Jn (cf. (2.3)) and solving (2.2) for y(j) by
just one Newton iteration, we obtain

(3.2) Iq(l - bV(M®Jn)lq) (y(j). y(j-l)j = - IqRn(h, y(j-1)), q = !, ... , d; j = !, ... , m.

This equation shows that for point- and stage-value-Jacobi iteration methods only diagonal entries of
~e Jacobian_ matriX; of the JYP ente~ into the itera~on process, so. that sti~f systems can only be solved
1f the Jacobian Jn 1s sufficiently diagonally dominant. Hence, m practtce, one should consider the
meth?cts using point- and stage-value-Jacobi iteration as rwnstiff so1vers. This immediately raises the
questton whether Jacobi iteration has any advantage over (explicit) functional iteration obtained for P =

229

I and Q = 0. Let us first compare the computational costs of the two type of methods when
implemented with some stepsize and iteration error sttategy.

3.1. Computational costs. Denoting the total number of steps in the integrationvYrocess by N and
the number of steps where we need a new LU-decomposition of the matrix I - Iqh (M®Jn)Iq by 0N,
we conclude that the major costs of the stage-value-Jacobi iteration method are:

N
mN
mN
0N
d0N
mdN

evaluations of the sd components of y(O)
evaluations of the sd components of the residual function Rn
estimates of the sd components of the iteration error
evaluations of the d diagonal entries of Jn.
LU-decompositions of s-by-s matrices of the form I - Iqh V(M®Jn)Iq
backward/forward substitutions by s-by-s matrices.

Here, m should be interpreted as the averaged number of iterations over all N steps. To the iteration
costs listed above, we have to add the costs of

N
in (1.1)

N

evaluations of the rd components of the function Hn defining the step point formula

estimates of the rd components of the truncation error associated with Un+ 1

These costs have intrinsic parallelism of degree at least d, so that d processors can efficiently be
employed.

Suppose that the evaluation of one (block)component of Rn and Hn, and the evaluation of the
diagonal entries of Jn require FR. fH, and FJ..floating-point operations (flops), respectively, and let us
assume that F;R_ also contains the costs of YlU) and iteration error costs, and that truncation error costs
are included m FH. Then, the total number of flops _per processor per step t"CqUired by functional
iteration and stage-value-Jacobi iteration are given 5y FFI := msFR+ rFH and FsvJ := mSFR + 0FJ +
29sj/3 + 2ms2 + rFH, respectively. Thus,

~ = 1 + 9F1 + 29s3/3 + 2ms2 < 1 + 9Fr + 29s3/3 + 2ms2
FFI msFR + rFH msFR

In general, FJ < FR, so that we find

~ < ms + 9 + k 9s + 3m = 1 + k 9s + 3m
FFI ms 3m FR 3m FR

This costs-increase factor changes per step and per processor because the value of FR usually varies
with t (e.g., in the case of Volterra equauons) and with the components of Rn. It is larger as FR is
smaller. On the other hand, the run time per processor per step is largest for the processor to which the
most expensive components of the residual function are ass1gxied. Hence, the relevant costs-increase
factor is bounded by 1 + s(l + 0s/3m)/max(FR). In most applications, this factor is only marginally
larger than 1.

For example, using an s-stage Gauss-Legendre corrector and iterating until the order of the
corrector is reached leads to m = 2s-1 iterations per step. Hence, stage-value-I acobi iteration is about a
factor 1 + s/max{FR} more expensive than functional iteration.

In the case of point-Jacobi iteration, we have similar costs, except for the LU-decompositions
and backward/ forward substitutions which are negligible because only scalarly implicit relations are
involved. As a consequence, the main costs have parallelism of degree Sd. We find

FpJ = I + 0FJ < I + 9
FFJ msFR + rFH ~ '

230

so that point-Jacobi increases the computational costs only marginally. .
Summarizing, we conclude that point-Jacobi and stage-value-Jacobi are generally not much more

expensive than functional iteration.

3.2. The convergence factor. Next, we consider the convergence of the Jacobi method (3.2). The
error equation corresponding to (3.2) reads

(3.3) y(j) • Y = Z (y(j-1) _ Y), Z := hv (I - hVK®J0)"1 (M®J - K®Jo). Jo:= diag {J),

where for functional iteration, point-Jacobi and stage-value-Jacobi we have K = 0, K = diag (M) and
K = M, respectively. We shall call Z the iteration matrix and its spectral radius p(Z) the convergence
factor of the iteration method. The expression (3.3) shows that we always have convergence (i.e., p(Z)
< l) if h is sufficiently small.

For functional iteration the iteration matrix reduces to

so that we have convergence factor

(3.4) p(Z) = hVp{M)p(J).

For Jacobi iteration, it is convenient to factorize Z according to

(3.5) Z := Z1Z2, Z1 := (hVK®Jo) (I - hvK®J0)"1, Z2 := K·1M®J0 -1J - I,

where K and Jo are assumed to be nonsingular. This representation shows that, unlike functional
iteration, Jacobi iteration has a bou1ded iteration matrix Z for all h and J, provided that the entries of
the 'diagonally-scaled'-Jacobian JO" J are bounded. Furthermore, the matrix Zt can be partitioned into
a matrix w~h diagonal blocks CijJp, whereas the blocks in the partitioning of Z2 contains the full
matrix Jo· J. Therefore, the matnx Zz will largely determine the convergence behaviour of the
iteration process.

The convergence wil be faster as the magnitude (in some sense) of the iteration matrix Z = Z1Z2
is smaller. We shall estimate the magnitude of this matrix by the quantity p(ZJ)p(Z2). The following
theorem presents an easy estimate for p(ZJ)p(Zz) and specifies a few cases where p(ZJ)p(Z2)
provides an estimate for the convergence factor p(Z). In this theorem, it is convenient to use the
m!nimal ".al~e of the real parts of the eigenvalues of a matrix A. Denoting the spectrum of A by o(A),
tins quannty is defined by

(3.6) µ(A):= min [Re(a): Cl E o(A)].

Theorem 3.2. Let

(3.7) o(Jo) e R", o(K) e c+, E(h) := hvp{K)p(Jo) p(K-IM®Jo-IJ - I)

-../I + 2hYµ(K)µ(-Jo) + h2vp(K)2p(Jo)2

Then the following assertions hold:

(a)

(b)

(c)

Arbitrary K, Mand J0

KM=MK, Jo=ol

K = M, Jo= ol

=>

=>

=>

p(Z1)p{Z2) s E(h).

p(Z) S P<Z1)p(Z2) S E(h).

p(Z) = p(Z1)p(Z2) S E(h).

(d)

(e)

K = M, Re (a(K)) = µ(K), 10 =81 =>

K=ld, J0 =81 =>

p(Z) = p(Z1)t)(ZV = E(h).

p(Z) = p(Z1)t)(ZV = E(h).

231

Proof. Let Kand 5 denote the eigenvalues of K and Jo, respectively. From the definition of Zl and
z2 it then follows that

(3.8) P(Zl) ~/7A\ bYhc81 p(Z2) bYIK81 p(Zp
"'~"' = max1<11 = max1<11 -;::========='-

I 1 - hv1<8I Vi +2h"Re(-1e8)+h2vlK812

-;:::::==h=V=IK=~=p=(Zi==)=====s; maxd
VI + 2hYµ(K)µ(-J0) + h2Vl1e8J2

Since the righthand side in this inequality is an increasing function of hc:SI, we obtain the result (a). The
conv.ergence factor p(~) is bou~ded by p(Z1)p~Z2) ifZl !llld Z2 commute, or t:quivalently, if the
matnces K®Jo and K- M®Jn- J commute. This happens 1f both Kand M, and Jo and J commute.
The condition on Jl) and J implies that the Jacobian matrix J has constant diagonal entries, to obtain the
result (b). Thirdly, if also K = M, then Z becomes the direct 2roduct of the matrices Z 1 and Z2, so that
we have i>(Z) = p(Zl)p(Z'.2), leadinz to (c).The assertions (d) and (e) follow by observing that in these
cases we have strict equality in (3.H). []

In the case of stage-value-Jacobi iteration (K = M), the estimate E(h) reduces to

(3.7')
E(h) := bYp(M) p(Jp) p(Jo·IJ -1)

....; 1 + 2hYµ(M)µ(-Jp) + h2Yp(M)2p(Jp)2

showing that, independent of the particular corrector used, fast conver~ence can be exoected when
applied to IVPs possessing strongly diagonal dominant Jacobian matnces, i.e., p(Jo_.IJ - I) << 1.
Therefore, from now on, we concentrate on stage-value-Jacobi iteration. For future reference, we list
in Table 3.1 the radius p(M) and the minimal real part µ(M) of the spectrum of the matrices M of
Gauss-Legendre correctors.

Table 3.1. Values of p(M) and µ(M) for s-stage Gauss-Legendre correctors.
------------------------... --------------.. ----------------------------

s = 2 s=3 s=4 s=5 s=6

p(M) 0.289 0.216 0.166 0.133 0.115
µ(M) 0.250 0.143 0.092 0.064 0.048

3.3. Transformation to constant diagonal entries in the Jacobian
In general, the Jacobian J will have variable diagonal entries, so that the condition Jo= oI in

Theorem 3.2 (b) - (e) is not satisfied and consequently the estimate E(h) is not necessarily an upper
bound for the convergence factor p(Z). In order to gain some apriori insight into the true convergence
factors for problems with nonconstant diagonal entries in the Jacobian, we may try to transform the
problem into a problem with constant diagonal entries in its Jacobian. If the integration method applied
to the original and transformed problems show a comparable convergence behaviour of the iteration
process, then the convergence factor corresponding to the transformed problem is indicative for the
convergence factor corresponding to the origmal problem. We illustrate tliis for the IVP for ODEs. Let

232

the ODE be given by y'(t) = f(y(t)), and define z(t) = Ty(t) wi!1f T a constant nonsingular d~by-d
matrix. In terms of z(t), we have the ODE z'(t) = g(z(t)) := Tf(T"" z(t)) with Jacobian matrix Trr-1~
where J = J(y) denotes the Jacobian of the originalfght hand side funcnon f. SuPJl<!se that we can find
a maoix T such that at y = y(llJ) the matrix TIT'" has constant diagonal entries o. Then, instead of
integrating the equation y'(t) = f(y(t)) from tn to tn+ l. we can integrate the equation z'(t) = ~(z(t)) over
this mterval, while satisfying the condition of constant diagonal entries. The iteration matnx defining
the iteration process for the transformed problem is given by

(3.9) Z := Z1Z2, Z1 := (hvK®lll) (I· bVK@.51)"1, Z2 := K·IM®ll-1TJT""1 ·I.

A comparison of the iteration matrices defined by (3.5) and (3.8) reveals that they are rather similar
indicating that we can expect comparable convergence behaviour. We shall call the iteration method
with iteration matrix (3.9) the transformed iteration method.

Let us consider the case of triangular transformation matrices T. In order to construct such a
transformation matrix T, we write T = L 1 D, where L is soictly lower triangular and D is diagonal. To
obtain constant diagonal enoies I) in TIT" , we have to satisfy the relation

(3.10) diag((L + D) J (L + D)-1) =Ill.

Given the matrix L and o, this equation presents a system of d equations for the d diagonal entries of
D.

Theorem 3.3 presents an extremely simple transformation that can be used for deriving apriori
estimates for the convergence factor in cases wbere the Jacobian contains at least one row with nonzero
off-diagonal elements.

Theorem 3.3. Let J be an d-by-d matrix with entries aij and let T be the triangular matrix defined by

(

d1000 ... J
ldzOO ..•

T := 1 0 dJ 0 ... , d; := ll ~'!ii , ll := Trac:(J) , i = 2, •.. , d.

I 0 0 <4 .. .
.

If dt. a1i and I) - ajj do not vanish for i = 2, ...• d, then diag (T.JT-1) = ol.

Proof. Substitution of L + D = T and

(L + D)"l = ,...1 = . (d1d2)·l (d2)·1 0 ... 0 [

(d1)-I 0 0 ... 0 J
- (d1d3)•1 0 {d3)"l .•. 0

.
into (3.9) yields the following system for the diagonal entries di:

n

an - L a1j (dj}-1 = ll; B!i{d;)"l + aii = ll, i = 2, .•• , d.
j=2

233

Choosing 8 = Trace(J)/d, this system is solved by di = a Ii/(8-aji), i = 2, ... , d, leaving d 1 free. (]

4. Numerical experiments
In this section, 'f".e reP.Ort numerical comparisons of results obtained by functional iteration and

by stage-value-Jacob11teranon for IVPs for first-order ODEs y'(t) = f(t, y(t)). In our experiments, we
uSed the fourth-order Gauss-Legendre corrector, so that the residual function occumng in (3.2) is
given by

1 (3 3.2-./3) Rn(h. Y) = Y - Yne - h(M®I) f(et,, +eh, Y), M = 12 .
3+2-./3 3

We used the simple 'last step value' Diedictor y(O) = eyn. In order to 'tune' the arguments off, we set
c = O in the computation of Rn(h, YCU)), and c = Me otherwise.

In particular, we check the relevance of the estimate E(h) defined by (3.7) as an indicator for
convergence of the iteration method. For functional iteration and stage-value-Jacobi iteration the
estimates E(h) are respectively given by

(4.1) EFI(h) = 0.29hp(J), Esv1(h) = 0·29hp(Jo)p(Jo·l 1 - I)
..J 1 + 0.5hµ(-J 0) + 0.084h2p(J0)2

4.1. Effect of the constant-diagonal-transformation
Firstly, we compare the convergence of functional iteration and of stage-value-Jacobi iteration for

the untransformed and transformed problem. Consider the linear problem

(4.2) ~ = Jy(l) + v, y(O) = 0, J := (~ -~ ~) , v := (-
11), 0 s t s T.

1 1 -1(2 2

At t = T = 5, the solution is a:eproximately given by y(5) = (41.529764, 18.516263, 51.537861)T.
The rapid incre~e of the ~olunon values is caused by a Jl?Sitive eigenvalue of the Jacobian ~trix J
(they are approximately given by -2.19, -2 and +-0.69). Since p(J) "' 2.2, p(Jo) = 2 and p(Jo- J • I)
"' 1.9, the estimates E(h) for functional iteration and stage-value-Jacobi iteration are given by

(43a) EFI(h) = 0.64h, EsvJ(h) = .,) 1.lh 2
1 + 0.25h + 0.336h

Next we consider the transfonned version of (4.1). According to Theorem 3.3, we define the
matrices

T:= (~ :5 ~)· T"l := (-;/6 5~6 ~) ,
1 0 -3(2 2/3 0 -2/3

so that we can transform (4.2) to the constant-Jacobian-diagonal-fonn:

(
-7/6 5/6 -4/6)

(4.4) ~ = TJT"lz(t) + Tv, z(O) = 0, TJT"l = 49/30 -7/6 -22/15 , 0 S l ST.

-11/12 -5/12 -7/6

234

We now have p(Jo) = 7/6 and p(Jo-lJ - I)= p(-(6/7)Trr-l -1) = p(-(6fi)J -1) = 1.59. Denoting the
estimate E(h) for transformed stage-value iteranon by ETSVJ(h), we find

(4.3b) ETSvJ(h) := 0.54h
VI + 0.58h + O. llh2

We integrate (4.2) and (4.4) from t = 0 until t = 5 using stepsizes h =TIN wi~ N = 1, •.. , 5. In
the case (4.4), the numerical solution YN at t = 5 is obtai~ed by tlie ~ack transformanon YN = T-IZN.
For the two-point Gauss-Legendre corrector, Table 4.2 hsts the esnmates E(h) defined by (4.2) and
(4.4), and the numbers of correct significant decimal digits ll at the endpoint defined by (devision is
meant componentwise)

Ii!fil.:.m II) 6 := - log10 (II Y(IN) - .

These results show that direct and transformed stage-value-Jacobi iteration perform similarly but for
transformed stage-value-Jacobi iteration the estimate ETSVJ(h) is a much better predictor for the actual
performance of the iteration process than the estimate ESVJ(h) corresponding to direct stage-value
Jacobi iteration. Furthermore, the convergence region of stage-value-Jacobi is considerably larl?ier than
that of functional iteration. However, if the functional iteration method does converge, then us true
convergence factor seems to be smaller than that of stage-value-Jacobi.

Table 4.2. Correct significant decimal didits ll for problem (4.1) and (4.3) at t = T = 5
obtained for the two-point auss-Legendre corrector(* indicates ll < 0) .

.............. -- ------------------------------------ -- ---- ---------
Iteration mode T/h E(h) m=2 m=3 m=4 m=5 ... m=lO

.. -....... -... -- .. --- .. --- .. -----·------ ---.. --
Functional iteration 3 1.1 * * 0.8 0.8 0.2

4 .80 0.5 1.2 2.7 2.7 2.6
5 .64 1.5 2.4 3.0 3.0 2.9

Direct 1 1.7 0.1 0.2 0.3 0.4 1.5
stage-value iteration 2 1.4 0.4 0.6 0.8 1.2 1.6

3 1.2 0.6 0.9 1.4 2.0 2.1
4 1.0 0.8 1.3 1.8 2.6 2.6
5 .88 1.0 1.5 2.2 3.2 3.0

Transformed I 1.04 * 0.1 0.1 0.3 1.4
stage-value iteration 2 .76 0.3 0.5 0.7 1.0 2.3

3 .59 0.5 0.8 1.2 1.6 2.4
4 .49 0.7 1.1 1.6 2.3 2.7
5 .41 0.9 1.4 2.0 2.9 3.0

............... -.... --- --...................................... -------- ... -...... "' -.. -- ----.... -.... ..

235

4.2. Widely spaced diagonal entries
Our next teSt problem is a system of 10 nonlinear equations:

(

-1 y2(t) 0 ... 0 0 0 J
YJ(l) -2 YJ(l) ... 0 0 0

~ =A [y(t) - e sin(t)] + e cos(t), A:=
0
• • • • Ost s T,

0 0 ... yg(l) -~ YJ~t) ,

0 0 0 ... 0 y9(l) -10

(4.5)

with exact solution y(t) = e sin(t). The problem is constructed such that the diagonal entries of its
Jacobian are widely varying, so that the constant-diagonal condition occurring in Theorem 3.2 is far
from being satisfied- Along the solution, the Jacobian of (4.5) is given by the matrix A, so that using
Gerschgonn's disk theorem, we have for p(J) and p(Jo- lJ - I) the estimates -10 + lsin(t)I and lsin(t)f,
respecuvely. Hence, the diagonal dominance of the Jacobian depends on t, resulting in intervals of
strong, weak: or no diagonal dominancy. The estimates E(h) are given by

EFI(h)=3.19h, EsyJ(h)= 2·9h
..JI + O.Sh + 8.4h2

Table 4.3 lists the number of correct decimal digits, defined by

T
A:=-log1o(llyN-Y(T)ll..), N:= h.

These results clearly demonstrate the superior convergence behaviour of stage-value-Jacobi iteration.

Table 4.3. Correct decimal digits for problem (4.5) at t = T = 5 obtained
by two-point Gauss-Legendre corrector (* indicates divergence).

Iteration mode h E(h)S m=l m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=lO ------------------------------·-- .. ·---·--
Functional iteration 1(2 1.6 * * * * *

1/4 0.80 * 2.1 1.5 4.5 2.3 1.9 2.3 2.1 2.7 4.7
1/8 0.40 2.1 2.9 3.4 5.9 4.3 4.4 4.8 5.1 6.1 5.9

Stage-value-Jacobi 1 0.92 0.6 1.0 1.6 2.0 2.0
1(2 0.79 1.1 2.5 3.1 4.1 4.1
1/4 0_56 2.8 3.6 4.7 4.7
1/8 0.33 3.0 4.3 6.1 5.8 5.9 5.9

4.3. Reaction-diffusion equations
In order to see the effect of stage-value-Jacobi iteration in the case of a large system, we consider

the two-dimensional reaction-diffusion equation

(4.6a)

236

defined on the unit square. Here £ is a small parameter and A denotes the Laplacian in the spatial
variables x1 and x2. We selected a problem froril combustion theory for which f(u) is defined as

(4.6b) f(u) := D(l +a- u) exp(- ~ }, D := Rexj<I>) .

Details about this model can be found in [12). The temperature u(t, x1, x2) is subject to the initial and
boundary conditions

(4.6c) u(O,x1,x2) .. t, ~=0 atx1=0, x2=0, u=l atx1=l, x2= I.

Semidiscretization of (4.6a) on a uniform 2rid of width Ax, using symmetric second-order differences
and incorporating the boundary conditions leads to a system of ODEs

(4.6') ~ = E(6x)"2Ay(t) • f{y(t)),

where f(y) has to be understood componentwise. For this problem we have

J = e(6x)"2A - diag(Of(y(t))/ay) and Jo=· diag(4E(6x)"2e + of(y(t))/dy).

In our test, we selected the following parameter values: R = 5, S = I 0, a = 1 (see also [1]).
Furthermore, £was set to J0-3 and Ax= 1/40, resulting in a set of 1600 ODEs. The effect of this
parameter choice is that the solution u increases from u = 1 (at t = 0) to the 'steady state' u "' 2 at t =
0.5, the endpoint of the integration interval.

The main difficulty in this problem is caused by th~ reaction term which changes sign in the
interval of integration: af(u)fclu = Dexp(-ll/u)[(l +a- u)ll/u - l] is positive until u reaches the value u
= 1.71 (the so-Called 'igmnon' point where a reaction front is formed running to the outer Dirichlet
boundaries). For components liaving a value >1.71, af(clu is negative, ending at af(clu"' -74 for u
values close to the steady state. As a consequence of this behaviour, the elements of the ~trix JD are
small in some parts of the integration interval, resulting in large values of the factor p(JO- J - I). Once
the ignition point has been ftlched, at'(clu becomes negative, the diagonal dominance of the Jacobian is
re-estiblished and p(Jo· J - I) quickly decreases; at the end of the integration interval we have
p(Jo· J - n = 0.02. Hence, for this problem the estimate E(h) is only relevant in part of the integration
interval (we remark that the assumption a(JD) e IR: of Theorem 3.2 is even violated for some t
values). Nontheless, we have applied the algorithms to this problem, particularly because reaction
diffusion equations have great practical relevance. The results of this test are collected in Table 4.4.

Table 4.4. Correct decimal digits for problem (4.6') at t = T = 0.5 obtained
by two-point Gauss-Legendre corrector(* indicates divergence).

Iteration mode h m=l m=2 m=3 m=4 m=5 ... m=lO
----------··-----------·---------------------·-------------·--------------·----------------------

Functional iteration 1/10 * • * * *
1/20 0.5 -0.1 0.8 1.1 1.2 1.3
1/40 1.9 3.9 3.7 5.1 5.1
1/80 3.6 4.6 5.3 6.6 6.4

Stage-value-Jacobi 1/10 * 0.0 0.0 * 0.2 *
1/20 2.6 4.1 3.5 3.6
1/40 4.3 5.2 5.1
1/80 5.4 6.4 6.4

237

We see that stage-value-Jacobi shows a much better convergence behaviour than functional
iteration: 2 or 3 iterations are sufficient (for h :S 1/20), whereas functional iteration needs at least 4
iterations. Hence, in spite of the aforementioned deficiencies of the stage-value-Jacobi method for this
problem, it seems to possess a rather wide applicability.

4.4. Mildly stiff problems
Finally, we show that stage-value-Jacobi iteration can even be applied to mildly stiff problems.

Consider a test problem proposed by Kaps [13]:

d~(t) = _ (2 + e·l) YI (t) +E·l (yz(t))2,

(4.8)
dn(t)

ck = Yi (t) - Y2(1) {I + Y2(t)),

with exact solution Yl = exp(-2t) and Y2 = exp(-t) for all values of the parameter E. For this problem
we have

_ (·(2+e·l) 2e-ly2) _ (·(2+e·l) O)
J - • Jo -l - (1+2Y2) 0 - (1+2Y2) .

Wr integrate th~ problem u1ing the two-point Ga~:;:Legendre corrector. For small Ewe have
p(J) =E- , p(JD)"' i;- , and p(JO- J - I)"' (2y2f(l +2y2)) !L, leading to

(4.9) Epp{h) = 0.29 (h/E), EsvJ(h) = 0.29{h/E)(2y2f(l+2yy)lf2

...j I + 0.5h(1+2Y2) + 0.084{h/e)2

For E = .01, Table 4.5 lists the numbers of correct decimal digits (in absolute sense) for various
values of the stepsize h. As in the precedin~ example, the convergence region of stage-value-Jacobi is
considerably larger than that of functional Iteration (assuming that the numerical approximation to Y2
varies from l until exp(-!)"' 0.3?. the int~rval for E~VJ(h) is easily ~alculated and ~ven ~n the tabl1_}.
Furthermore, although the Jacobian of thts problem is only weakly diagonally dominant (1.e., p(JD- J
- I) is not much smaller than 1), the rate of convergence of the stage-value-Jacobi method appears to be
substantially larger than that of functional iteration.

Table 4.5. Correct decimal digits for problem (4.8) at t = I obtained by
two-point Gauss-Legendre corrector for E = .01 (*indicates 6. < 0).

h E(h) m=l m=2 m=3 m=4 ... m=IO
...................... ----- ---- .. -...

Functional iteratio~ 1/20 ~ 1.02 * * * * *
1/40 0.73 * 1.9 4.1 7.3 7.0

Stage-value-Jacobi 1/2 [0.65, 0.82] * * * 1.8 1.9
1/5 [0.64, 0.80] * 1.9 0.8 3.3 3.2

1/10 [0.61, 0.77] 0.0 3.2 2.4 4.9 4.6
1/20 [0.53, 0.66] 1.5 3.9 3.8 6.1 5.9
1/40 [0.38, 0.47] 2.3 4.7 5.0 7.3 7 .1

238

References
[l] Adjerid, S. & Flaherty, J.E. (1988): A local refinement finite element method for two

dimensional parabolic systems, SIAM J. Sci. Stat Comput. 9, 792-811.
[2) Burrage, K. (1991): The error behaviour of a general class of predictor-corrector methods, Appl.

Numer. Math. 8, 201-216.
[3) Burrage, K. (1992): The search for the Holy Grail, or Predictor-Corrector methods for solving

ODEIVPs, to appear in Appl. Numer. Math..
[4) Burrage, K. (1993): Efficient block predictor-corrector methods with a small number of

iterations, to appear in J. Comp. Appl. Math.
[5) Burrage, K. & Butcher, J.C. (1980): Nonlinear stability of a general class of differential

equations methods, BIT 20, 185-203.
[6) Collatz, L. (1950): Ober die Konvergentzkriterien bei lterationsverfahren fur lineare

Gleichungssysteme, Math. Z. 53, 149-61.
[7) Crisci, M.R., Houwen, P.J. van der, Russo, E. & Vecchio, A. (1992): Stability of parallel

Volterra-Runge-Kutta methods, to appear in Appl. Numer. Math ..
[8] Houwen, P.J. van der (1993): Preconditioning in implicit initial value problem methods on

parallel computers, to appear in Advances in Comp. Math ...
[9) Houwen, P.J. van der & Sommeijer, B.P. (1990): Parallel iteration of high-order Runge-Kutta

methods with stepsize control, J. Comp. Appl. Math. 29, 111-127.
(10) Houwen, P.J. van der, & Sommeijer, B.P. (1991): Iterated Runge-Kutta methods on parallel

computers, SIAM J. Sci. Stat. Comput. 12, 1000-1028.
(11) Jackson, K.R. & Nf<)rsett, S.P. (1990): The potential for parallelism in Runge-Kutta methods,

Part I: RK fonnulas in standard form, Technical Report No. 239/90, Department of Computer
Science, University of Toronto.

(12) Kapila, A.K. (1983): Asymptotic treatment of chemically reacting systems, Pitman Advanced
Pub!. Company.

(13) Kaps, P. (1981): Rosenbrock-type methods, in: Numerical Methods for Stiff Initial Value
Problems, G. Dahlquist and R. Jeltsch, eds., Bericht nr. 9, Inst. fiir Geometric und Praktische
Mathematilc der RWTII Aachen, Aachen, Germany.

(14) Nguyen huu Cong (1993): Note on the performance of direct and indirect Runge-Kutta-Nystrt>m
methods, to appear in J. Comp. Appl. Math ..

[15) Nf/lrsett, S.P. & Simonsen, H.H. (1989): Aspects of parallel Runge-Kutta methods, in: A
Bellen, C.W. Gear and E Russo (Eds.): Numerical Methods for Ordinary Differential Equations,
Proceedings L'Aquila 1987, LNM 1386, Springer-Verlag, Berlin.

(16) Sommeijer, B.P. (1993): Explicit, high-order Runge-Kutta-Nystrom methods for parallel
computers, submitted for publication.

