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An iteration scheme is descibed to solve the implicit relations that result from the application 
of an implicit integration method to an initial value problem (IVP). In this iteration scheme 
the amount of implicitness is still free so as to comprise a large variety of methods, running 
from fully explicit (functional iteration) to fully implicit (Newton's method). In the 
intermediate variants (the so-called Jacobi-type methods), the influence of the Jacobian 
matrix of the problem is gradually increased. Special emphasis is placed on the 'stage
value-Jacobi' iteration which uses only the diagonal of the Jacobian matrix. Therefore, the 
convergence of this method crucially depends on the diagonally dominance of the Jacobian. 
Another characteristic of this scheme is that it allows for massive parallelism: for a d
dimensional IVP, d uncoupled systems of dimensions have to be solved, where sis the 
number of stages in the underlying implicit method (e.g., an s-stage Runge-Kutta method). 
Hence, on a parallel architecture with d processors (d>>l), we may expect an efficient 
process (for high-dimensional problems). 
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1. Introduction 
We shall be concerned with parallel predictor-corrector iteration of implicit step-by-step methods 

for solving initial value problems (IVPs). For a wide class of functional equations, including ordinary 
differential equations (ODEs), Volterra integral equations (VIEs), Volterra integro-differential equations 
(VIDEs), delay-differential equations (DDEs), etc., these step-by-step methods (referred to as corrector 
equations) can be represented in the form: 

(1.1) 
Y "'Fn(h, Uo. U1, ..• , Un)+ hv(M®I)Gn(Y), Un+!= Hn(h. Uo, U1, .•. , Un, Y), 

Y :"' (Y1T. Y2T •... , Y ,T)T, Un:= (Un1T. Un2T, ... , UnrT)T, n = 0, l, 2, ...• 

Here, h is the stepsize, v is the order of the IVP, M is an s-by-s matrix characterizing the corrector, Un 
and Y present an r-dimensional and s-dimensional block vector of numerical approximations to the 
exact solution of the !VP. If the IVP has dimension d, then Un and Y are vectors in rd-dimensional 
and sd-dimensional vector spaces, respectively, and Fn, Gn and Hn are functions depending both on 
the IVP and the step-by-step method. Furthermore, M®I denotes the direct product of the matrices M 
and I. In each step, the block vectors (Uo, U1, ... , Un} are the input vectors, Un+l is the output 

225 



226 

vector, and Y is the internal stage v~ctor. We; s~all. say that the c.o~ector method_ has s internal stages 
and r output points. The representauon (1.1) 1s sumlar to the parttt10ned general lmear method (GLM) 
format introduced in [ 5]. 

On sequential computers, multi-stage corrector eq_uations are sel~om used in predictor-corrector 
iteration methods because of the increased computauonal complexity if s > 1. However, parallel 
computers have changed the scene. A number of papers [15, 9, ~ 1, 2, 3, 4, 14, 16] discuss the parallel 
aspects of functional iteration of Runge-Kuna-type correctors m the case of first-order and second
order, nonstiff ODEs and show that the sequentil.l[ costs can be ~educed to such ~ extent that they are 
at least competitive with, but often superi.or to, the !Jest .sc:<l!lenn~ codes. For snff ODEs and VIEs, it 
has been shown in [10, 7] that so-called diagonally 1mpl1C1t 1te~non of Runge-Kuna-type correctors is 
suitable for implementation on parallel computers (see also Secuon 2 of the present paper). In [8], these 
functional and diagonally implicit iteration methods are discussed for solving the general class of 
correctors defined by (1.1) and preconditioning techniques for accelerating their convergence are 
studied. 

In this paper, we consider a!lothe~ app~oach to accelerating th~ convergence o~ paral]el iteration 
methods, which leads us to Jacobi-type 1teranon methods. For nonstiff problems, we mvesogate Jacobi 
iteration methods that are implicit m the s stage values Yiq (i = 1, ... , s) corresponding to the qth 
component of the stage vectors Yi, and we show that its computational costs per step are hardly hi&her 
than those of function iteration. This type of Jacobi iteration will be called stage-value-Jacobi iteranon. 
It turns out that diagonal dominancy of the Jacobian of the function Gn plays a crucial role in the rate of 
convergence of stage-value-Jacobi iteration. This is not surprising, because, as is well known 
diagonal dominancy also plays an important role in classical (pomt-)Jacobi iteration. For example, w~ 
have the following classical theorem, the proof of which can be found in Collatz [ 6]: 

Theorem 1.1. Let the matrix A in the linear system Ax= b be irreducibly diagonally dominant. Then 
the point-Jacobi iteration method 

Xn+I = Xn- o·I [Axn · b), n = 0, l, ... 

converges for any starting vector xo. [] 

For linear problems, we shall derive a safe estimate for the convergence factor of stage-value
Jacobi iteration and it will be shown that for IVPs with strontilY diagonally dominant Jacobian matrix 
we obtain fast convergence, in spite of the modest degree of implicitness of the method. For a numbe; 
of numerical examples, we compare its efficiency with that of function iteration and we test the 
reliability of the convergence factor estimate. 

2 . Parallel iteration methods 
We shall study iterative methods for solving the stage vector equation on parallel computers. Let 

us write the stage vector equation in ( 1.1) in the form 

(2.1) Rn(h. Y) := Y · Fn(h, Uo, U1, ... , Un) - hv(M®I)Gn(Y) = 0, 

and consider Jacobi-type iteration methods of the form 

(2.2) Iq(YU>. hVQGn(YU·l) + lq(YU) - yU·ll))) = Iq(YU·l) - hvQGn(YU·ll) - PRn(h. yU·ll)), q = !, ... ,k, 

where the iteration index j runs from 1 to m. Here, P and Q are real, nonzero sd-by-sd matrices, and 
f~:>r a given value of q, Iq is an sd-by-sd diagonal matrix of which the diagonal entries are either 1 or 0 
(1fQ = 0, then (2.2) becomes fully explicit and reduces to functional iteration). 
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Each iteration in (2.2) requires itself the application of an iteratioi;i pr~ess for com2uting .Y<D. 
This iteration process will be called the inner iteration method an~ the .ite~uon method (2.2) wi!l be 
called the outer iteration method. It will be assumed that the inner tterauon is defined by the modified 
Newton method. . 

P may be considered as a preconditioning matrix and the matrices Q. and Iq _detenmne the degree 
of implicitness of the iteration scheme. It will be assumed that the mamx obtained b)'. sumrrung all 
matrices lo equals the identity matrix I, so that all components of the stage vecto.r ~ 1~erated. Each 
iteration of the iteration method (2.2) requires the solution of a set of k uncoupled, 1mphc1t subsystems 
of dimension Trace(Iq). Hence, it can be efficiently implemented on a k-proc'?ssor computei:. . 

There are various obvious options for choosing the 'partitioning' ~atnces Iq. De~otmg the ~mt 
vector (with only unit entries) and the qth unit vector bye and eq, respecuvely, both havmg dimension 
sd, we recognize the following special cases: 

Point-Jacobi: 
Stage-value-Jacobi: 
Stage-vector-Jacobi: 
Newton: 

k=sd 
k=d 
k =S 
k=l 

Trace(!q) = l 
Trace(;_j) = s 
Trace(lq) = d 
Trace(Iq) = sd 

Iqe =ea_ 
!cje = e®eq 
Iqe = eq®~ 
Iq =I, 

where q = 1, ... , k. The most simple option is point-Jacobi iteration. It has opt.i1:nal p_arallelism in the 
sense that k is as large as possible. The next simple option is stage-value-Jacobi Jterauon. It allows for 
massive parallelism for large systems (k =d).The qth processor iterates on the s stage values Yjq (1 = 
1, ... , s) corresponding to the qth component of the stage vectors Yj. so that per step each proci:ssor 
has to solve m systems of equat10ns of equal dimensions. However, 111 actual computations, the major 
part of the computat!onal effoi;t per step pef processor usually goes into th~ eva_luation of ms 
components of the residual funcuon Rn(h, YQ- )i. A disadvantage of stage-value Herauon may be the 
~r load b:iJan.cing if the col"!lputationaI complexity of the components of. ti!e res.idual function vary 
widely. This disadvantage disappears in the case of stage-vector-Jacobi iteration, where the qth 
processor iterates on the d components Y qi (i = 1, ... , d) of the qth stage vector Y g. Now the systems 
of equations have dimension d, so that for larger dimensions d the major pan onhe computational 
effort per step per processor consists of solving these d-dimensional systems. For IVPs originating 
from ODEs and VIEs, this iteration method has been analysed in the case where P = I and Q = 001 
with Dan s-by-s matrix (cf. [10, 7] where this type of iteration was called diagonally implicit iteration). 
It was shown that the sets of equations are of comparable computational complexity, so that we have 
more or less equal load balancing of the .Processors. Stage-vector-Jacobi iteration has the additional 
advantage of using the full Jacobian matnx of the IVP in the inner iteration which enables us to solve 
stiff systems efficiently. The disadvantage is the low number of processors that can efficiently be 
employed (k = s). At the end of the scale, we have Newton iteration with k = l and hence no intrinsic 
parallelism. 

In a more sophisticated partitioning approach, the matrices ~g are chosen such that sets of 
strongly coupled equations are taken together on one processor. However, this requires precise 
info~tion on the !VP to be solv<;<l. an.d can only be analysed for specific classes of problems. 

l'.ma!ly, we remark that the iteration scheme (2.2) can be generalized by allowmg the matrii< M 
occ~mns m the residual function Rn. to depend on the partitioning index q. This enables us to adapt 
the Iteration method _and t~e corrector to the particular subsystem to be iterated. However, in this paper, 
we confine our cons1dera11ons to constant M. 

2.1. The iteration error 
In order to analyse the behaviour of the iteration error y(j) - Y we consider the error equation 

associated with (2.2) in the case where On is linear in Y, satisfying the relation 

(2.3) Gn(V) - Gn(W) = (!®Jn) [V - W]. 

with ~nth~ d-by-d Jacobian matrix of On (evaluated at tn). Omitting in Jn the step index n, the inner
outer lteratlon method reduces to the recursion 
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(2.4) lq [! - llVQ(J®J)lq] [y(j). y(j-1)] = - lq PRn(h. y(j-l)), 

from which we deduce the iteration error equation 

(2.5) lq (1-hvQ(l®J)lq)[YG). Y] = lq (!-P+ b"P(M®J) -hVQ(I®J)lq] (y(j-l) - Y]. 

The combined effect of the iteration process for q = 1, 2, ... , k can be studied by considering the 
summed recursions given by 

k 

(2.6) [I - hvs] [YGl-Y] = [1-P-hv(s. P(M®J))] [YG-1). y], S := L lqQ(I®J)Iq 
q=l 

(recall that the summing the matrices Iq was assumed to yield the identity matrix). The matrix S can be 
expressed as 

k (Q11J ... Q1,J} ·-(Qu ··· Q1, l 
(2.7) S:=Llq ..... Iq. Q.- ..... , 

q=I Q,1J ... Q.,J Q,1 ... Q,, 

where the Qij are d-by-d matrices. In the cases of stage-vector-Jacobi iteration (Ioe = eq®e~. point
Jacobi iteranon (Iqe = eq), and stage-value-Jacobi iteration (Iqe = e®eq), we respec~vely obtain 

~ {~' Q:l ·{~' ,] ·-G:: ::J 
where Sii. := diag (QjjJ). From these representations it follows that stage-vector-Jacobi iteration does 
not split The Jacobian matrix, while the diagonal operation in the point-Jacobi and stage-value-Jacobi 
iteranon methods will in general not preserve the complete Jacobian. 

In the remainder of this paper, we restrict our considerations to point-Jacobi iteration and stage
value-Jacobi iteration without preconditioning (P =I). 

3. Jacobi iteration versus functional iteration 
In this section, we discuss various aspects of Jacobi iteration with 

(3.1) P=I, Q=M®I. 

Assuming that the Jacobian ofGn(YG)) at tn is given by I®Jn (cf. (2.3)) and solving (2.2) for y(j) by 
just one Newton iteration, we obtain 

(3.2) Iq(l - bV(M®Jn)lq) ( y(j). y(j-l)j = - IqRn(h, y(j-1)), q = !, ... , d; j = !, ... , m. 

This equation shows that for point- and stage-value-Jacobi iteration methods only diagonal entries of 
~e Jacobian_ matriX; of the JYP ente~ into the itera~on process, so. that sti~f systems can only be solved 
1f the Jacobian Jn 1s sufficiently diagonally dominant. Hence, m practtce, one should consider the 
meth?cts using point- and stage-value-Jacobi iteration as rwnstiff so1vers. This immediately raises the 
questton whether Jacobi iteration has any advantage over (explicit) functional iteration obtained for P = 
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I and Q = 0. Let us first compare the computational costs of the two type of methods when 
implemented with some stepsize and iteration error sttategy. 

3.1. Computational costs. Denoting the total number of steps in the integrationvYrocess by N and 
the number of steps where we need a new LU-decomposition of the matrix I - Iqh (M®Jn)Iq by 0N, 
we conclude that the major costs of the stage-value-Jacobi iteration method are: 

N 
mN 
mN 
0N 
d0N 
mdN 

evaluations of the sd components of y(O) 
evaluations of the sd components of the residual function Rn 
estimates of the sd components of the iteration error 
evaluations of the d diagonal entries of Jn. 
LU-decompositions of s-by-s matrices of the form I - Iqh V(M®Jn)Iq 
backward/forward substitutions by s-by-s matrices. 

Here, m should be interpreted as the averaged number of iterations over all N steps. To the iteration 
costs listed above, we have to add the costs of 

N 
in (1.1) 

N 

evaluations of the rd components of the function Hn defining the step point formula 

estimates of the rd components of the truncation error associated with Un+ 1 

These costs have intrinsic parallelism of degree at least d, so that d processors can efficiently be 
employed. 

Suppose that the evaluation of one (block)component of Rn and Hn, and the evaluation of the 
diagonal entries of Jn require FR. fH, and FJ..floating-point operations (flops), respectively, and let us 
assume that F;R_ also contains the costs of YlU) and iteration error costs, and that truncation error costs 
are included m FH. Then, the total number of flops _per processor per step t"CqUired by functional 
iteration and stage-value-Jacobi iteration are given 5y FFI := msFR+ rFH and FsvJ := mSFR + 0FJ + 
29sj/3 + 2ms2 + rFH, respectively. Thus, 

~ = 1 + 9F1 + 29s3/3 + 2ms2 < 1 + 9Fr + 29s3/3 + 2ms2 
FFI msFR + rFH msFR 

In general, FJ < FR, so that we find 

~ < ms + 9 + k 9s + 3m = 1 + k 9s + 3m 
FFI ms 3m FR 3m FR 

This costs-increase factor changes per step and per processor because the value of FR usually varies 
with t (e.g., in the case of Volterra equauons) and with the components of Rn. It is larger as FR is 
smaller. On the other hand, the run time per processor per step is largest for the processor to which the 
most expensive components of the residual function are ass1gxied. Hence, the relevant costs-increase 
factor is bounded by 1 + s(l + 0s/3m)/max(FR). In most applications, this factor is only marginally 
larger than 1. 

For example, using an s-stage Gauss-Legendre corrector and iterating until the order of the 
corrector is reached leads to m = 2s-1 iterations per step. Hence, stage-value-I acobi iteration is about a 
factor 1 + s/max{FR} more expensive than functional iteration. 

In the case of point-Jacobi iteration, we have similar costs, except for the LU-decompositions 
and backward/ forward substitutions which are negligible because only scalarly implicit relations are 
involved. As a consequence, the main costs have parallelism of degree Sd. We find 

FpJ = I + 0FJ < I + 9 
FFJ msFR + rFH ~ ' 
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so that point-Jacobi increases the computational costs only marginally. . 
Summarizing, we conclude that point-Jacobi and stage-value-Jacobi are generally not much more 

expensive than functional iteration. 

3.2. The convergence factor. Next, we consider the convergence of the Jacobi method (3.2). The 
error equation corresponding to (3.2) reads 

(3.3) y(j) • Y = Z (y(j-1) _ Y), Z := hv (I - hVK®J0)"1 (M®J - K®Jo). Jo:= diag {J), 

where for functional iteration, point-Jacobi and stage-value-Jacobi we have K = 0, K = diag (M) and 
K = M, respectively. We shall call Z the iteration matrix and its spectral radius p(Z) the convergence 
factor of the iteration method. The expression (3.3) shows that we always have convergence (i.e., p(Z) 
< l) if h is sufficiently small. 

For functional iteration the iteration matrix reduces to 

so that we have convergence factor 

(3.4) p(Z) = hVp{M)p(J). 

For Jacobi iteration, it is convenient to factorize Z according to 

(3.5) Z := Z1Z2, Z1 := (hVK®Jo) (I - hvK®J0 )"1, Z2 := K·1M®J0 -1J - I, 

where K and Jo are assumed to be nonsingular. This representation shows that, unlike functional 
iteration, Jacobi iteration has a bou1ded iteration matrix Z for all h and J, provided that the entries of 
the 'diagonally-scaled'-Jacobian JO" J are bounded. Furthermore, the matrix Zt can be partitioned into 
a matrix w~h diagonal blocks CijJp, whereas the blocks in the partitioning of Z2 contains the full 
matrix Jo· J. Therefore, the matnx Zz will largely determine the convergence behaviour of the 
iteration process. 

The convergence wil be faster as the magnitude (in some sense) of the iteration matrix Z = Z1Z2 
is smaller. We shall estimate the magnitude of this matrix by the quantity p(ZJ)p(Z2). The following 
theorem presents an easy estimate for p(ZJ)p(Zz) and specifies a few cases where p(ZJ)p(Z2) 
provides an estimate for the convergence factor p(Z). In this theorem, it is convenient to use the 
m!nimal ".al~e of the real parts of the eigenvalues of a matrix A. Denoting the spectrum of A by o(A), 
tins quannty is defined by 

(3.6) µ(A):= min [Re( a): Cl E o(A) ]. 

Theorem 3.2. Let 

(3.7) o(Jo) e R", o(K) e c+, E(h) := hvp{K)p(Jo) p(K-IM®Jo-IJ - I) 

-../I + 2hYµ(K)µ(-Jo) + h2vp(K)2p(Jo)2 

Then the following assertions hold: 

(a) 

(b) 

(c) 

Arbitrary K, Mand J0 

KM=MK, Jo=ol 

K = M, Jo= ol 

=> 

=> 

=> 

p(Z1)p{Z2) s E(h). 

p(Z) S P<Z1)p(Z2) S E(h). 

p(Z) = p(Z1)p(Z2) S E(h). 



(d) 

(e) 

K = M, Re (a(K)) = µ(K), 10 =81 => 

K=ld, J0 =81 => 

p(Z) = p(Z1)t)(ZV = E(h). 

p(Z) = p(Z1)t)(ZV = E(h). 
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Proof. Let Kand 5 denote the eigenvalues of K and Jo, respectively. From the definition of Zl and 
z2 it then follows that 

(3.8) P(Zl) ~/7A\ bYhc81 p(Z2) bYIK81 p(Zp 
"'~"' = max1<11 = max1<11 -;::========='-

I 1 - hv1<8I Vi +2h"Re(-1e8)+h2vlK812 

-;:::::==h=V=IK=~=p=(Zi==)=====s; maxd 
VI + 2hYµ(K)µ(-J0 ) + h2Vl1e8J2 

Since the righthand side in this inequality is an increasing function of hc:SI, we obtain the result (a). The 
conv.ergence factor p(~) is bou~ded by p(Z1)p~Z2) ifZl !llld Z2 commute, or t:quivalently, if the 
matnces K®Jo and K- M®Jn- J commute. This happens 1f both Kand M, and Jo and J commute. 
The condition on Jl) and J implies that the Jacobian matrix J has constant diagonal entries, to obtain the 
result (b ). Thirdly, if also K = M, then Z becomes the direct 2roduct of the matrices Z 1 and Z2, so that 
we have i>(Z) = p(Zl)p(Z'.2), leadinz to (c).The assertions (d) and (e) follow by observing that in these 
cases we have strict equality in (3.H). [] 

In the case of stage-value-Jacobi iteration (K = M), the estimate E(h) reduces to 

(3.7') 
E(h) := bYp(M) p(Jp) p(Jo·IJ -1) 

....; 1 + 2hYµ(M)µ(-Jp) + h2Yp(M)2p(Jp)2 

showing that, independent of the particular corrector used, fast conver~ence can be exoected when 
applied to IVPs possessing strongly diagonal dominant Jacobian matnces, i.e., p(Jo_.IJ - I) << 1. 
Therefore, from now on, we concentrate on stage-value-Jacobi iteration. For future reference, we list 
in Table 3.1 the radius p(M) and the minimal real part µ(M) of the spectrum of the matrices M of 
Gauss-Legendre correctors. 

Table 3.1. Values of p(M) and µ(M) for s-stage Gauss-Legendre correctors. 
------------------------... --------------.. ----------------------------

s = 2 s=3 s=4 s=5 s=6 

p(M) 0.289 0.216 0.166 0.133 0.115 
µ(M) 0.250 0.143 0.092 0.064 0.048 

3.3. Transformation to constant diagonal entries in the Jacobian 
In general, the Jacobian J will have variable diagonal entries, so that the condition Jo= oI in 

Theorem 3.2 (b) - (e) is not satisfied and consequently the estimate E(h) is not necessarily an upper 
bound for the convergence factor p(Z). In order to gain some apriori insight into the true convergence 
factors for problems with nonconstant diagonal entries in the Jacobian, we may try to transform the 
problem into a problem with constant diagonal entries in its Jacobian. If the integration method applied 
to the original and transformed problems show a comparable convergence behaviour of the iteration 
process, then the convergence factor corresponding to the transformed problem is indicative for the 
convergence factor corresponding to the origmal problem. We illustrate tliis for the IVP for ODEs. Let 
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the ODE be given by y'(t) = f(y(t)), and define z(t) = Ty(t) wi!1f T a constant nonsingular d~by-d 
matrix. In terms of z(t), we have the ODE z'(t) = g(z(t)) := Tf(T"" z(t)) with Jacobian matrix Trr-1~ 
where J = J(y) denotes the Jacobian of the originalfght hand side funcnon f. SuPJl<!se that we can find 
a maoix T such that at y = y(llJ) the matrix TIT'" has constant diagonal entries o. Then, instead of 
integrating the equation y'(t) = f(y(t)) from tn to tn+ l. we can integrate the equation z'(t) = ~(z(t)) over 
this mterval, while satisfying the condition of constant diagonal entries. The iteration matnx defining 
the iteration process for the transformed problem is given by 

(3.9) Z := Z1Z2, Z1 := (hvK®lll) (I· bVK@.51)"1, Z2 := K·IM®ll-1TJT""1 ·I. 

A comparison of the iteration matrices defined by (3.5) and (3.8) reveals that they are rather similar 
indicating that we can expect comparable convergence behaviour. We shall call the iteration method 
with iteration matrix (3.9) the transformed iteration method. 

Let us consider the case of triangular transformation matrices T. In order to construct such a 
transformation matrix T, we write T = L 1 D, where L is soictly lower triangular and D is diagonal. To 
obtain constant diagonal enoies I) in TIT" , we have to satisfy the relation 

(3.10) diag((L + D) J (L + D)-1) =Ill. 

Given the matrix L and o, this equation presents a system of d equations for the d diagonal entries of 
D. 

Theorem 3.3 presents an extremely simple transformation that can be used for deriving apriori 
estimates for the convergence factor in cases wbere the Jacobian contains at least one row with nonzero 
off-diagonal elements. 

Theorem 3.3. Let J be an d-by-d matrix with entries aij and let T be the triangular matrix defined by 

(

d1000 ... J 
ldzOO ..• 

T := 1 0 dJ 0 ... , d; := ll ~'!ii , ll := Trac:(J) , i = 2, •.. , d. 

I 0 0 <4 .. . 
. . . . .. . 

If dt. a1i and I) - ajj do not vanish for i = 2, ...• d, then diag (T.JT-1) = ol. 

Proof. Substitution of L + D = T and 

(L + D)"l = ,...1 = . (d1d2)·l (d2)·1 0 ... 0 [ 

(d1)-I 0 0 ... 0 J 
- (d1d3)•1 0 {d3)"l .•. 0 

. . ..... 
into (3.9) yields the following system for the diagonal entries di: 

n 

an - L a1j (dj}-1 = ll; B!i{d;)"l + aii = ll, i = 2, .•• , d. 
j=2 
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Choosing 8 = Trace(J)/d, this system is solved by di = a Ii/(8-aji), i = 2, ... , d, leaving d 1 free. (] 

4. Numerical experiments 
In this section, 'f".e reP.Ort numerical comparisons of results obtained by functional iteration and 

by stage-value-Jacob11teranon for IVPs for first-order ODEs y'(t) = f(t, y(t)). In our experiments, we 
uSed the fourth-order Gauss-Legendre corrector, so that the residual function occumng in (3.2) is 
given by 

1 ( 3 3.2-./3) Rn(h. Y) = Y - Yne - h(M®I) f(et,, +eh, Y), M = 12 . 
3+2-./3 3 

We used the simple 'last step value' Diedictor y(O) = eyn. In order to 'tune' the arguments off, we set 
c = O in the computation of Rn(h, YCU)), and c = Me otherwise. 

In particular, we check the relevance of the estimate E(h) defined by (3.7) as an indicator for 
convergence of the iteration method. For functional iteration and stage-value-Jacobi iteration the 
estimates E(h) are respectively given by 

(4.1) EFI(h) = 0.29hp(J), Esv1(h) = 0·29hp(Jo)p(Jo·l 1 - I) 
..J 1 + 0.5hµ(-J 0 ) + 0.084h2p(J0 )2 

4.1. Effect of the constant-diagonal-transformation 
Firstly, we compare the convergence of functional iteration and of stage-value-Jacobi iteration for 

the untransformed and transformed problem. Consider the linear problem 

(4.2) ~ = Jy(l) + v, y(O) = 0, J := (~ -~ ~ ) , v := (-
11), 0 s t s T. 

1 1 -1(2 2 

At t = T = 5, the solution is a:eproximately given by y(5) = (41.529764, 18.516263, 51.537861)T. 
The rapid incre~e of the ~olunon values is caused by a Jl?Sitive eigenvalue of the Jacobian ~trix J 
(they are approximately given by -2.19, -2 and +-0.69). Since p(J) "' 2.2, p(Jo) = 2 and p(Jo- J • I) 
"' 1.9, the estimates E(h) for functional iteration and stage-value-Jacobi iteration are given by 

(43a) EFI(h) = 0.64h, EsvJ(h) = .,) 1.lh 2 
1 + 0.25h + 0.336h 

Next we consider the transfonned version of (4.1). According to Theorem 3.3, we define the 
matrices 

T:= (~ :5 ~ )· T"l := (-;/6 5~6 ~ ) , 
1 0 -3(2 2/3 0 -2/3 

so that we can transform (4.2) to the constant-Jacobian-diagonal-fonn: 

( 
-7/6 5/6 -4/6 ) 

(4.4) ~ = TJT"lz(t) + Tv, z(O) = 0, TJT"l = 49/30 -7/6 -22/15 , 0 S l ST. 

-11/12 -5/12 -7/6 
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We now have p(Jo) = 7/6 and p(Jo-lJ - I)= p(-(6/7)Trr-l -1) = p(-(6fi)J -1) = 1.59. Denoting the 
estimate E(h) for transformed stage-value iteranon by ETSVJ(h), we find 

(4.3b) ETSvJ(h) := 0.54h 
VI + 0.58h + O. llh2 

We integrate (4.2) and (4.4) from t = 0 until t = 5 using stepsizes h =TIN wi~ N = 1, •.. , 5. In 
the case (4.4), the numerical solution YN at t = 5 is obtai~ed by tlie ~ack transformanon YN = T-IZN. 
For the two-point Gauss-Legendre corrector, Table 4.2 hsts the esnmates E(h) defined by (4.2) and 
(4.4), and the numbers of correct significant decimal digits ll at the endpoint defined by (devision is 
meant componentwise) 

Ii!fil.:.m II ) 6 := - log10 ( II Y(IN) - . 

These results show that direct and transformed stage-value-Jacobi iteration perform similarly but for 
transformed stage-value-Jacobi iteration the estimate ETSVJ(h) is a much better predictor for the actual 
performance of the iteration process than the estimate ESVJ(h) corresponding to direct stage-value
Jacobi iteration. Furthermore, the convergence region of stage-value-Jacobi is considerably larl?ier than 
that of functional iteration. However, if the functional iteration method does converge, then us true 
convergence factor seems to be smaller than that of stage-value-Jacobi. 

Table 4.2. Correct significant decimal didits ll for problem (4.1) and (4.3) at t = T = 5 
obtained for the two-point auss-Legendre corrector(* indicates ll < 0) . 

.............. ....... .. -- .... ------------------------------------ ........................... -- ---- .................... --------- .............. 
Iteration mode T/h E(h) m=2 m=3 m=4 m=5 ... m=lO 

.. .......... -....... -............................................. -- .............................................................. --- .. --- .. -----·------ ---.. -- ......... 
Functional iteration 3 1.1 * * 0.8 0.8 0.2 

4 .80 0.5 1.2 2.7 2.7 2.6 
5 .64 1.5 2.4 3.0 3.0 2.9 

Direct 1 1.7 0.1 0.2 0.3 0.4 1.5 
stage-value iteration 2 1.4 0.4 0.6 0.8 1.2 1.6 

3 1.2 0.6 0.9 1.4 2.0 2.1 
4 1.0 0.8 1.3 1.8 2.6 2.6 
5 .88 1.0 1.5 2.2 3.2 3.0 

Transformed I 1.04 * 0.1 0.1 0.3 1.4 
stage-value iteration 2 .76 0.3 0.5 0.7 1.0 2.3 

3 .59 0.5 0.8 1.2 1.6 2.4 
4 .49 0.7 1.1 1.6 2.3 2.7 
5 .41 0.9 1.4 2.0 2.9 3.0 

............... -.... --- ..... --...................................... -------- ........................................... -...... "' ...... -.. -- ........ ----.... -.... .. 
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4.2. Widely spaced diagonal entries 
Our next teSt problem is a system of 10 nonlinear equations: 

(

-1 y2(t) 0 ... 0 0 0 J 
YJ(l) -2 YJ(l) ... 0 0 0 

~ =A [y(t) - e sin(t)] + e cos(t), A:= 
0
• • • • Ost s T, 

0 0 ... yg(l) -~ YJ~t) , 

0 0 0 ... 0 y9(l) -10 

(4.5) 

with exact solution y(t) = e sin(t). The problem is constructed such that the diagonal entries of its 
Jacobian are widely varying, so that the constant-diagonal condition occurring in Theorem 3.2 is far 
from being satisfied- Along the solution, the Jacobian of (4.5) is given by the matrix A, so that using 
Gerschgonn's disk theorem, we have for p(J) and p(Jo- lJ - I) the estimates -10 + lsin(t)I and lsin(t)f, 
respecuvely. Hence, the diagonal dominance of the Jacobian depends on t, resulting in intervals of 
strong, weak: or no diagonal dominancy. The estimates E(h) are given by 

EFI(h)=3.19h, EsyJ(h)= 2·9h 
..JI + O.Sh + 8.4h2 

Table 4.3 lists the number of correct decimal digits, defined by 

T 
A:=-log1o(llyN-Y(T)ll..), N:= h. 

These results clearly demonstrate the superior convergence behaviour of stage-value-Jacobi iteration. 

Table 4.3. Correct decimal digits for problem (4.5) at t = T = 5 obtained 
by two-point Gauss-Legendre corrector (* indicates divergence). 

Iteration mode h E(h)S m=l m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=lO ------------------------------·---------------------------------------------------------- .. ·---·--
Functional iteration 1(2 1.6 * * * * * 

1/4 0.80 * 2.1 1.5 4.5 2.3 1.9 2.3 2.1 2.7 4.7 
1/8 0.40 2.1 2.9 3.4 5.9 4.3 4.4 4.8 5.1 6.1 5.9 

Stage-value-Jacobi 1 0.92 0.6 1.0 1.6 2.0 2.0 
1(2 0.79 1.1 2.5 3.1 4.1 4.1 
1/4 0_56 2.8 3.6 4.7 4.7 
1/8 0.33 3.0 4.3 6.1 5.8 5.9 5.9 

4.3. Reaction-diffusion equations 
In order to see the effect of stage-value-Jacobi iteration in the case of a large system, we consider 

the two-dimensional reaction-diffusion equation 

(4.6a) 
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defined on the unit square. Here £ is a small parameter and A denotes the Laplacian in the spatial 
variables x1 and x2. We selected a problem froril combustion theory for which f(u) is defined as 

(4.6b) f(u) := D(l +a- u) exp(- ~ }, D := Rexj<I>) . 

Details about this model can be found in [12). The temperature u(t, x1, x2) is subject to the initial and 
boundary conditions 

(4.6c) u(O,x1,x2) .. t, ~=0 atx1=0, x2=0, u=l atx1=l, x2= I. 

Semidiscretization of (4.6a) on a uniform 2rid of width Ax, using symmetric second-order differences 
and incorporating the boundary conditions leads to a system of ODEs 

(4.6') ~ = E(6x)"2Ay(t) • f{y(t)), 

where f(y) has to be understood componentwise. For this problem we have 

J = e(6x)"2A - diag(Of(y(t))/ay) and Jo=· diag(4E(6x)"2e + of(y(t))/dy ). 

In our test, we selected the following parameter values: R = 5, S = I 0, a = 1 (see also [ 1 ]). 
Furthermore, £was set to J0-3 and Ax= 1/40, resulting in a set of 1600 ODEs. The effect of this 
parameter choice is that the solution u increases from u = 1 (at t = 0) to the 'steady state' u "' 2 at t = 
0.5, the endpoint of the integration interval. 

The main difficulty in this problem is caused by th~ reaction term which changes sign in the 
interval of integration: af(u)fclu = Dexp(-ll/u)[(l +a- u)ll/u - l] is positive until u reaches the value u 
= 1.71 (the so-Called 'igmnon' point where a reaction front is formed running to the outer Dirichlet 
boundaries). For components liaving a value >1.71, af(clu is negative, ending at af(clu"' -74 for u
values close to the steady state. As a consequence of this behaviour, the elements of the ~trix JD are 
small in some parts of the integration interval, resulting in large values of the factor p(JO- J - I). Once 
the ignition point has been ftlched, at'(clu becomes negative, the diagonal dominance of the Jacobian is 
re-estiblished and p(Jo· J - I) quickly decreases; at the end of the integration interval we have 
p(Jo· J - n = 0.02. Hence, for this problem the estimate E(h) is only relevant in part of the integration 
interval (we remark that the assumption a(JD) e IR: of Theorem 3.2 is even violated for some t
values). Nontheless, we have applied the algorithms to this problem, particularly because reaction
diffusion equations have great practical relevance. The results of this test are collected in Table 4.4. 

Table 4.4. Correct decimal digits for problem (4.6') at t = T = 0.5 obtained 
by two-point Gauss-Legendre corrector(* indicates divergence). 

Iteration mode h m=l m=2 m=3 m=4 m=5 ... m=lO 
----------··-----------·---------------------·-------------·--------------·----------------------

Functional iteration 1/10 * • * * * 
1/20 0.5 -0.1 0.8 1.1 1.2 1.3 
1/40 1.9 3.9 3.7 5.1 5.1 
1/80 3.6 4.6 5.3 6.6 6.4 

Stage-value-Jacobi 1/10 * 0.0 0.0 * 0.2 * 
1/20 2.6 4.1 3.5 3.6 
1/40 4.3 5.2 5.1 
1/80 5.4 6.4 6.4 
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We see that stage-value-Jacobi shows a much better convergence behaviour than functional 
iteration: 2 or 3 iterations are sufficient (for h :S 1/20), whereas functional iteration needs at least 4 
iterations. Hence, in spite of the aforementioned deficiencies of the stage-value-Jacobi method for this 
problem, it seems to possess a rather wide applicability. 

4.4. Mildly stiff problems 
Finally, we show that stage-value-Jacobi iteration can even be applied to mildly stiff problems. 

Consider a test problem proposed by Kaps [13]: 

d~(t) = _ (2 + e·l) YI (t) +E·l (yz(t))2, 

(4.8) 
dn(t) 

ck = Yi (t) - Y2(1) {I + Y2(t)), 

with exact solution Yl = exp(-2t) and Y2 = exp(-t) for all values of the parameter E. For this problem 
we have 

_ (·(2+e·l) 2e-ly2 ) _ (·(2+e·l) O ) 
J - • Jo -l - (1+2Y2) 0 - (1+2Y2) . 

Wr integrate th~ problem u1ing the two-point Ga~:;:Legendre corrector. For small Ewe have 
p(J) =E- , p(JD)"' i;- , and p(JO- J - I)"' (2y2f(l +2y2)) !L, leading to 

(4.9) Epp{h) = 0.29 (h/E), EsvJ(h) = 0.29{h/E)(2y2f(l+2yy)lf2 

...j I + 0.5h(1+2Y2) + 0.084{h/e)2 

For E = .01, Table 4.5 lists the numbers of correct decimal digits (in absolute sense) for various 
values of the stepsize h. As in the precedin~ example, the convergence region of stage-value-Jacobi is 
considerably larger than that of functional Iteration (assuming that the numerical approximation to Y2 
varies from l until exp(-!)"' 0.3?. the int~rval for E~VJ(h) is easily ~alculated and ~ven ~n the tabl1_}. 
Furthermore, although the Jacobian of thts problem is only weakly diagonally dominant (1.e., p(JD- J 
- I) is not much smaller than 1), the rate of convergence of the stage-value-Jacobi method appears to be 
substantially larger than that of functional iteration. 

Table 4.5. Correct decimal digits for problem (4.8) at t = I obtained by 
two-point Gauss-Legendre corrector for E = .01 (*indicates 6. < 0). 

h E(h) m=l m=2 m=3 m=4 ... m=IO 
...................... ----- ---- .............................................................................................. -............................................................... 

Functional iteratio~ 1/20 ~ 1.02 * * * * * 
1/40 0.73 * 1.9 4.1 7.3 7.0 

Stage-value-Jacobi 1/2 [0.65, 0.82] * * * 1.8 1.9 
1/5 [0.64, 0.80] * 1.9 0.8 3.3 3.2 

1/10 [0.61, 0.77] 0.0 3.2 2.4 4.9 4.6 
1/20 [0.53, 0.66] 1.5 3.9 3.8 6.1 5.9 
1/40 [0.38, 0.47] 2.3 4.7 5.0 7.3 7 .1 
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