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Unconditionally stable integration of Maxwell's
equations

ABSTRACT
Numerical integration of Maxwell's equations is often based on explicit methods accepting a
stability step size restriction. In literature evidence is given that there is also a need for
unconditionally stable methods, as exemplified by the successful alternating direction implicit-
finite difference time domain scheme. In this paper we discuss unconditionally stable integration
for a general semi-discrete Maxwell system allowing non-Cartesian space grids as encountered
in finite element discretizations. Such grids exclude the alternating direction implicit approach.
Particular attention is given to the second-order trapezoidal rule implemented with
preconditioned conjugate gradient iteration and to second-order exponential integration using
Krylov subspace iteration for evaluating the arising phi-functions. A three-space dimensional
test problem is used for numerical assessment and comparison with an economical second-
order implicit-explicit integrator. We further pay attention to the Chebyshev series expansion for
computing the exponential operator for skew-symmetric matrices.
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Abstract

Numerical integration of Maxwell’s equations is often based on explicit methods accepting
a stability step size restriction. In literature evidence is given that there is also a need for
unconditionally stable methods, as exemplified by the successful alternating direction im-
plicit – finite difference time domain scheme. In this paper we discuss unconditionally stable
integration for a general semi-discrete Maxwell system allowing non-Cartesian space grids as
encountered in finite element discretizations. Such grids exclude the alternating direction im-
plicit approach. Particular attention is given to the second-order trapezoidal rule implemented
with preconditioned conjugate gradient iteration and to second-order exponential integration
using Krylov subspace iteration for evaluating the arising ϕ-functions. A three-space dimen-
sional test problem is used for numerical assessment and comparison with an economical
second-order implicit-explicit integrator. We further pay attention to the Chebyshev series
expansion for computing the exponential operator for skew-symmetric matrices.

2000 Mathematics Subject Classification: Primary: 65L05, 65L20, 65M12, 65M20.
1998 ACM Computing Classification System: G.1.7, G.1.8.
Keywords and Phrases: Maxwell’s equations, Implicit integration, Exponential integration,
Conjugate gradient iteration, Krylov subspace iteration, Chebyshev expansion.

1 Introduction

Maxwell’s equations from electromagnetism model interrelations between electric and magnetic
fields. The equations form a time-dependent system of six first-order partial differential equations
(PDEs). The equations appear in different forms, such as in the compact curl notation

∂tB = −∇× E ,

ε∂tE = ∇× (µ−1)B − σE − JE .
(1.1)

Here B and E represent the magnetic and electric field, repectively. JE is a given source term
representing electric current density and ε, µ and σ are (tensor) coefficients representing, respec-
tively, dielectric permittivity, magnetic permeability and conductivity. The equations are posed
in a three-dimensional spatial domain and provided with appropriate boundary conditions. If
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the equations are posed in domains without conductors, the damping term −σE is absent. If in
addition the source JE is taken zero we have a prime example of a conservative wave equation
system.

Numerical methods for time-dependent PDEs are often derived in two stages (the method
of lines approach). First, the spatial operators are discretized on an appropriate grid covering
the spatial domain, together with the accompanying boundary conditions. This leads to a time-
continuous, semi-discrete problem in the form of an initial-value problem for a system of ordinary
differential equations (ODEs). Second, a numerical integration method for this ODE system is
chosen, which turns the semi-discrete solution into the desired fully discrete solution on the chosen
space-time grid. In this paper we focus on the second numerical integration stage, as in [6]. While
in [6] the focus was on methods treating the curl terms explicitly, here we address the question
whether fully implicit and exponential time integration eliminating any temporal step size stability
restriction can be feasible and efficient.

As in [6] we start from the general space-discretized Maxwell problem
(

Mu 0
0 Mv

)(
u′

v′

)
=

(
0 −K

KT −S

)(
u
v

)
+

(
ju

jv

)
, (1.2)

where u = u(t) and v = v(t) are the unknown vector (grid) functions approximating the values of
the magnetic flux B and electric field E, respectively. The matrices K and KT approximate the
curl operator and the matrix S is associated with the dissipative conduction term. Throughout S
can be assumed symmetric positive semi-definite. Mu and Mv are symmetric positive definite mass
matrices possibly arising from a spatial finite element or compact finite difference discretization.
The functions ju(t) and jv(t) are source terms. Typically, jv represents the given source current JE ,
but ju and jv may also contain boundary data. We do allow u and v to have different dimensions
which can occur with certain finite-element methods, see e.g. [39], and assume u ∈ Rm, v ∈ Rn

with n > m and Mu ∈ Rm×m,Mv ∈ Rn×n, K ∈ Rm×n, S ∈ Rn×n. The ODE system (1.2) is
generic in the sense that spatial discretization of (H, E)-formulations of the Maxwell equations
also lead to this form, see Section 4 of [6].

We allow the space grids underlying (1.2) to be non-Cartesian. This has an important con-
sequence in that it excludes the well-known unconditionally stable alternating direction implicit-
finite difference time domain method attributed to [50, 51], see also [13, 17, 20, 35] and references
therein. We will instead focus on conventional fully implicit integration (Section 3) and on expo-
nential integration (Sections 4 and 5). This means that we need efficient solvers from the field of
numerical linear algebra. For solving the systems of linear algebraic equations arising with im-
plicit integrators we will use the conjugate gradient (CG) iterative method with preconditioning
(Section 3). For exponential integration we will consider Krylov subspace iteration (Section 4)
and a Chebyshev series expansion (Section 5). Both for the theory behind CG and Krylov itera-
tion we refer to the text books [42, 48]. Seminal papers on Krylov subspace iteration for matrix
functions are [14, 15, 22, 28, 40, 47]. The Chebyshev method is due to [45] and was recommended
for Maxwell’s equations in [12].

2 Stability and conservation properties

To begin with, we recall from [6] some stability and conservation properties of the semi-discrete
system (1.2). Let w ∈ Rn+m denote the solution vector composed by u ∈ Rm and v ∈ Rn. A
natural norm for establishing stability and conservation is the inner-product norm

‖w‖2 = ‖u‖2Mu
+ ‖v‖2Mv

, ‖u‖2Mu
= 〈Muu, u〉 , ‖v‖2Mv

= 〈Mvv, v〉 , (2.1)

where 〈· , ·〉 denotes the L2 inner product. As S is symmetric positive semi-definite, for the
homogeneous part of (1.2) follows

d

dt
‖w‖2 = −2〈Sv, v〉 6 0 , (2.2)
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showing stability in the L2 sense and (energy) conservation for a zero matrix S. It is desirable
that integration methods respect these properties, either exactly or to sufficiently high accuracy.

For the purpose of analysis a formulation without mass matrices equivalent to (1.2) is obtained
as follows. Introduce the Cholesky factorizations LMuLT

Mu
= Mu and LMvLT

Mv
= Mv. Then

(
ũ′

ṽ′

)
=

(
0 −K̃

K̃T −S̃

)(
ũ
ṽ

)
+

(
j̃u

j̃v

)
, (2.3)

where ũ = LT
Mu

u, ṽ = LT
Mv

v and

K̃ = L−1
Mu

KL−T
Mv

, S̃ = L−1
Mv

SL−T
Mv

j̃u = L−1
Mu

ju , j̃v = L−1
Mv

jv . (2.4)

Next introduce the transformed inner-product norm

‖w̃‖22 = ‖ũ‖22 + ‖ṽ‖22 , ‖ũ‖22 = 〈ũ, ũ〉 , ‖ṽ‖22 = 〈ṽ, ṽ〉 , (2.5)

for the vector w̃ composed of ũ and ṽ. For the homogeneous part of (2.3) then follows immediately

d

dt
‖w̃‖22 = −2〈S̃ṽ, ṽ〉 6 0 , (2.6)

while the norm is preserved under the transformation, that is, ‖w̃‖2 = ‖w‖ and 〈S̃ṽ, ṽ〉 = 〈Sv, v〉.
We note that the transformed system is introduced for analysis purposes only and that our nu-
merical methods will be applied to system (1.2).

If in (1.1) the conductivity coefficient σ and the permittivity coefficient ε are constant scalars
instead of space-dependent tensors (3 × 3 matrices), then the matrices Mv and S from (1.2) can
be assumed identical up to a constant, implying that the matrix S̃ introduced in (2.3) becomes
the constant diagonal matrix

S̃ = αI, α =
σ

ε
. (2.7)

This enables the derivation of a two-by-two system for the sake of further analysis. Introduce the
singular-value decomposition K̃ = UΣV T where U ∈ Rm×m and V ∈ Rn×n are orthogonal and Σ
is a diagonal m× n matrix with nonnegative diagonal entries s1, . . . , sm satisfying

s1 > s2 > · · · > sr > sr+1 = · · · = sm = 0 . (2.8)

Here r 6 m is the (row) rank of K̃ and the si are the singular values of the matrix K̃ (the square
roots of the eigenvalues of K̃K̃T ). The transformed variables and source terms

ū(t) = UT ũ(t) , v̄(t) = V T ṽ(t) , j̄u(t) = UT j̃u(t) , j̄v(t) = V T j̃v(t) , (2.9)

satisfy the equivalent ODE system
(

ū′

v̄′

)
=

(
0 −Σ

ΣT −αI

)(
ū
v̄

)
+

(
j̄u

j̄v

)
, (2.10)

where I is the n × n identity matrix. Note that the matrix transformation induced by (2.9)
is a similarity transformation, so that the matrices of systems (2.3) and (2.10) have the same
eigenvalues. Further, ‖w̃‖22 = ‖ū‖22 + ‖v̄‖22 due to the orthogonality of U and V . Thus, if (2.7)
applies, the stability of a time integration method may be studied for the homogeneous part of
(2.10), provided also the method is invariant under the transformations leading to (2.10).

Since the matrix Σ is diagonal, (2.10) decouples into r two-by-two systems
(

û′

v̂′

)
=

(
0 −s
s −α

)(
û
v̂

)
+

(
ĵu

ĵv

)
, (2.11)

3



with s = sk > 0, k = 1, . . . , r and n + m− 2r two-by-two systems
(

û′

v̂′

)
=

(
0 0
0 −α

)(
û
v̂

)
+

(
ĵu

ĵv

)
. (2.12)

From the viewpoint of time integration, the first elementary two-by-two system (2.11) is canonical
for Maxwell equation systems of which the conductivity coefficient σ and the permittivity coeffi-
cient ε are constant scalars. For stability analysis we may neglect the source terms, arriving at
the two-by-two test model

(
û′

v̂′

)
=

(
0 −s
s −α

)(
û
v̂

)
, s > 0 , α > 0 . (2.13)

Stability for this test model is equivalent to stability for (2.10), which in turn is equivalent to
stability for the original semi-discrete Maxwell system (1.2), provided the conductivity coefficient
σ and the permittivity coefficient ε are constant scalars. The eigenvalues of (2.13) are (−α ±√

α2 − 4s2)/2. Assuming sufficiently small and large singular values sk in (2.8), the spectra of
(2.3) and (2.10) thus are cross-shaped with real eigenvalues between −α and 0 and complex
eigenvalues with real part −α/2 and imaginary parts ±

√
4s2

k − α2/2.

3 Implicit integration

We will examine fully implicit time stepping for (1.2) for the second-order implicit trapezoidal rule
(ITR). This method has the right stability and conservation properties for Maxwell’s equations
and shares the numerical algebra challenge with many other implicit methods, such as diagonally-
implicit Runge-Kutta methods. So numerical algebra conclusions drawn for ITR are also valid for
related higher-order methods. In this paper we focus on second-order methods because the order
of the spatial discretization scheme for the 3D example problem used for testing is also limited
to two. Before discussing ITR we first recall an economical second-order implicit-explicit method
called CO2 (COmposition 2nd-order) in [6] which serves as a reference method.

3.1 The implicit-explicit method CO2

Method CO2 is given by

Mu

un+1/2 − un

τ
= − 1

2Kvn + 1
2ju(tn) ,

Mv
vn+1 − vn

τ
= KT un+1/2 − 1

2S(vn + vn+1) + 1
2 (jv(tn) + jv(tn+1)) ,

Mu

un+1 − un+1/2

τ
= − 1

2Kvn+1 + 1
2ju(tn+1) .

(3.1)

Like ITR this method is a one-step method stepping from (un, vn) to (un+1, vn+1) with step size
τ . Here un denotes the approximation to the exact solution u(tn), etc., and τ = tn+1 − tn. The
subindex n should not be confused with the length of the vector v in (1.2). CO2 is symmetric
and treats the curl terms explicitly and the conduction term implicitly. Of practical importance
is that the third-stage derivative computation can be copied to the first stage at the next time
step to save computational work. Per time step this method thus is very economical. Apart from
the mass matrices (see Remark 3.1), the method requires a single explicit evaluation of the full
derivative per integration step which is the least possible.

In contrast to ITR method (3.1) is not unconditionally stable and a sharp step size bound for
stability for the general system (1.2) is not known up to now. However, for Maxwell problems for
which (2.7) holds stability can be concluded from the 2 × 2-model (2.11). Let zs = τsmax. The
resulting step size bound is then valid for (1.2) and is given by

zs < 2 if α = 0 and otherwise zs 6 2 . (3.2)
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Hence the conduction puts no limit on τ . Recall that α = 0 in the absence of conduction and
that smax here is to be taken as the maximal square root of the eigenvalues of K̃K̃T . Because
K approximates the first-order curl operator these eigenvalues are proportional to h−2 where h
represents a minimal spatial grid size. So for time stepping stability a relation τ ∼ h for h → 0 is
required. On fine space grids and long time intervals this may lead to large amounts of time steps.

It is this observation which underlies the question whether implicit or exponential integration
is feasible and competitive so as to enhance time stepping efficiency. For the derivation and further
discussion of this method we refer to [6] where it was called CO2 as it is of second order and based
on COmposition of a certain partitioned Euler rule. One of the results in [6] states that the second
order behavior is maintained in the presence of time-dependent boundary conditions (stiff source
terms). A similar result will be proven in the appendix (Section A.2) for the exponential integrator
EK2 derived in Section 5. Finally, with regard to time stepping CO2 bears a close resemblance
to the popular time-staggered Yee-scheme [49] and as such is a natural candidate for a reference
method.

Remark 3.1 The mass matrices naturally give rise to implicitness such that we encounter at
each integration step one inversion of Mu and Mv + 1

2τS. Systems with mass matrices can be
(approximately) solved in an efficient way. This can be achieved either by fast solvers (sparse
direct or preconditioned iterative) or by special mass lumping techniques. For mass lumping of
the finite-element discretization used in Section 3.5, see e.g. [2, 19]. For keeping our assessments
as general as possible we will use the original non-lumped form. Throughout this paper (so also
for the other integration methods) we will use sparse Cholesky factorization to realize the mass
matrix inversions. For constant τ the factorization should only be carried out once at the start of
the integration leaving only sparse forward-backward substitutions during the time stepping. 3

3.2 The implicit trapezoidal rule ITR

Denote (1.2) by
Mw′ = Aw + g(t) , (3.3)

where

w =
(

u
v

)
, M =

(
Mu 0
0 Mv

)
, A =

(
0 −K

KT −S

)
, g(t) =

(
ju

jv

)
. (3.4)

ITR then reads
M

wn+1 − wn

τ/2
= Awn+1 + Awn + g(tn) + g(tn+1) . (3.5)

This classical implicit method mimics the stability and conservation property (2.2). That is, for
zero sources,

‖wn+1‖2 − ‖wn‖2
τ

= −2〈S vn+1 + vn

2
,
vn+1 + vn

2
〉 , ∀τ > 0 . (3.6)

Hence (3.5) is unconditionally stable (and conservative for zero S). Like for CO2 the method
is second-order consistent, also for stiff source terms emanating from time-dependent boundary
functions. From that perspective the method is ideal, however at the costs of solving each time
step the linear system

(M − 1
2τA)wn+1 = (M + 1

2τA)wn + 1
2τg(tn) + 1

2τg(tn+1) (3.7)

for the matrix

M − 1
2τA =

(
Mu

1
2τK

− 1
2τKT Mv + 1

2τS

)
. (3.8)

Sparse LU-decomposition will become too costly in memory for large-scale 3D simulations. We
therefore focus on iteration whereby we rewrite (Schur complement) the linear system (3.7) to an
equivalent form which is significantly more amenable for iterative solution.
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Let ru, rv denote the righthand sides of (3.7) belonging to u, v. Suppressing the time index
n + 1 in un+1, vn+1 this system then reads

Muu + 1
2τKv = ru ,

− 1
2τKT u + Mvv + 1

2τSv = rv .
(3.9)

Since the mass matrix Mu is symmetric positive definite, we can multiply the first equation from
left by 1

2τKT M−1
u . Then adding the two equations yields the equivalent system

Muu + 1
2τKv = ru ,

Mv = rv + 1
2τKT M−1

u ru ,
(3.10)

wherein u has been eliminated from the second equation. The n× n-matrix M is given by

M = Mv +
1
2
τS +

1
4
τ2KT M−1

u K . (3.11)

So we can first solve v from the second equation and subsequently u from the first. Hereby we
assume that the three inversions for Mu are carried out through sparse Cholesky decomposition,
entirely similar as for method CO2. Of main interest is that M is symmetric positive definite
which calls for the iterative conjugate gradient (CG) method.

3.3 CG convergence

Let us first assess the convergence of the CG method. For this purpose we employ the transfor-
mation underlying system (2.3) which can be shown to be equivalent to Cholesky factorization
preconditioning with the mass matrix Mv, see also Section 3.4. The counterpart of (3.10) then
reads

ũ + 1
2τK̃ṽ = r̃u ,

M̃ṽ = r̃v ,
(3.12)

with the straightforward definition of the new righthand sides and

M̃ = I +
1
2
τ S̃ +

1
4
τ2K̃T K̃ . (3.13)

CG is a natural choice as it optimal in the following sense [48]: for any initial guess ṽ0 it computes
iterants ṽi which satisfy the polynomial relation 1)

ṽi − ṽ = Pi(M̃) (ṽ0 − ṽ) , (3.14)

such that in the M̃-norm the iteration error ‖ṽi − ṽ‖M̃ is minimal over the set of all polynomials
Pi of degree i satisfying Pi(0) = 1. This iteration error satisfies the well-known bound

‖ṽi − ṽ‖M̃ 6 2
(√

κ− 1√
κ + 1

)i

‖ṽ0 − ṽ‖M̃ , (3.15)

where κ is the spectral condition number of M̃, that is, κ = λmax/λmin being the quotient of
the maximal and minimal eigenvalue of M̃. This upper bound does not reflect the celebrated
superlinear convergence [44] of CG which makes it a truly successful solver. However, the bound
does provide a rough assessment of the potential of the combination ITR-CG in relation to CO2.
Hereby it is noted that in good approximation a single CG iteration with matrix M is cost wise
equal to a single CO2 step.

Would S̃ and K̃T K̃ commute, the condition number can be derived directly from the spectra
of S̃ and K̃T K̃. In the general case commutation will be rare. Therefore we next assume that we

1) The subindex i should not be confused with the subindex n used to denote a time level tn.
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do have a Maxwell problem for which condition (2.7) holds. Then we have commutation and the
eigenvalues λ of M̃ are given by

λ = 1 +
1
2
τα +

1
4
τ2s2 , (3.16)

where s2 is an eigenvalue of K̃T K̃ the square root of which also features in (2.11). Hence

λmin = 1 +
1
2
τα +

1
4
τ2s2

min , λmax = 1 +
1
2
τα +

1
4
τ2s2

max . (3.17)

Regarding ITR we are only interested in step sizes τ such that zs = τsmax À 2 because otherwise
method CO2 will be more efficient, see the step size bound (3.2). Since smax is proportional to
h which represents the minimal spatial grid size, we then may neglect the contribution τα and
approximate κ by

κ ≈ 1 +
1
4
z2
s , (3.18)

showing that one CG iteration reduces the initial iteration error in the M̃-norm by

ν(zs) ≈

√
1 + 1

4z2
s − 1

√
1 + 1

4z2
s + 1

∼ 1− 4
zs
∼ e−

4
zs , zs →∞ . (3.19)

Unfortunately, this reduction factor is by far too low for ITR implemented with CG to become
a competitive method. To see this the following argument suffices. For zs À 2 the number of
CG iterations for an overall reduction factor ε is approximately j = − 1

4zsln(ε). Because each
iteration is in good approximation as expensive as a single integration step with method CO2,
we can afford j steps with CO2 with step size τ/j provided we have stability of CO2, that is, if
zs/j 6 2. Inserting j this appears to hold for all ε 6 e−2 ≈ 10−1. When iterating with CG an
error reduction of the initial error by a factor ten is of course quite poor and we can conclude
that the computational effort is better spent in applying CO2 with a step size τ/j. This will lead
to a notable smaller time stepping error for comparable effort since ITR and CO2 are both of
second order. Clearly, ITR will not be competitive to CO2 unless superlinear CG-convergence,
not reflected by (3.15), takes place and/or CG is applied with a more efficient preconditioner.

3.4 CG implementation

CG was implemented for the following reformulation of the ITR scheme (3.7):
(

Mu
τ
2K

τ
2KT −(Mv + τ

2S)

)(
∆u

∆v

)
=

(
bu

bv

)
, (3.20)

where (
bu

bv

)
=

(
0 −τK

−τKT τS

) (
un

vn

)
+

τ

2

(
ju(tn) + ju(tn+1)
−jv(tn)− jv(tn+1)

)
, (3.21)

and un+1 = un +∆u, vn+1 = vn +∆v. Hereby the saddle point system was treated with the Schur
complement as described above. Writing (3.7) in this form is beneficious since this makes the zero
vector a natural initial guess for the iteration process and saves one matrix-vector multiplication
which is otherwise needed for the initial residual.2)

For an efficient usage it is important to choose a proper stopping criterion for CG. Too many
iterations would mean a waste of effort, whereas too few might cause loss of stability3). Using, for

2) Other initial vectors can be considered to assure that each Krylov iterate has truly second-order temporal
consistency [4].

3)An alternative approach for the iterative linear system solution in implicit time integration is to use a fixed
number of iterations per time step and to control stability of the approximate implicit scheme by adjusting the
time step size [4, 5]
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convenience, the same notation for ∆u and ∆v, solving system (3.7) approximately with residual
rcg effectively means that the found ∆v is a solution of the perturbed linear system

M∆v =
τ

2
KT M−1

u bu − bv − rcg , (3.22)

where M is defined in (3.11) and the approximate solution ∆u, ∆v of (3.20) satisfies
(

Mu
τ
2K

τ
2KT −(Mv + τ

2S)

)(
∆u

∆v

)
=

(
bu

bv

)
+

(
0

rcg

)
. (3.23)

We stop CG as soon as for a certain constant δ 4)

‖rcg‖2 6 τ ‖τ

2
KT M−1

u bu − bv‖2 δ , (3.24)

which means that the inexact ITR-CG scheme (3.23) can be seen as a perturbed form of the exact
ITR scheme (3.20) where the perturbations are kept bounded. The purpose of this inequality is
to enforce rcg to be a fraction of the local truncation error of ITR for component v which we
aim by means of an educated guess for δ. Note that rcg just becomes the local truncation error
upon substitution of the exact ODE solution. Choosing δ too large implies of course loss of ITR
accuracy, whereas a too small δ wastes matvecs. We will give actual values of δ when we report
our test results.

For the CG solution of the Schur complement system with the matrix M we have used two
preconditioners. The first one is the sparse Cholesky factorization of the mass matrix Mv, the
second is the incomplete Cholesky (IC) factorization with the drop tolerance ε = 10−6 [32, 41]
applied to the matrix

Mv +
τ

2
S +

τ2

4
KT K (3.25)

obtained from M by deleting M−1
u . The mass matrix preconditioner is readily available and as

argued earlier, for ITR the costs of one mass matrix preconditioned CG iteration are roughly the
same as the costs of one time step with CO2. This is because one CG iteration requires just one
matvec with the preconditioned matrix (and several vector updates).

The IC(ε) preconditioner requires significant set up time. For example, for the fourth grid of
Table 3.1 given in Section 3.5 the preparation cost required a CPU time sufficient for performing
90 to 100 matvecs with the preconditioned matrix M. An attractive property of the IC(ε) pre-
conditioner compared to the mass matrix preconditioner is a higher level of sparsity. For example,
for ε = 10−6 the sparsity is at least twice as large as for the Cholesky factors of the mass matrix.
During integration the IC(ε) preconditioner therefore is slightly cheaper due to the higher level
of sparsity. In our experiments we found little differences between numbers of iterations for the
mass matrix and IC(ε) preconditioner. We therefore will report only iteration numbers for the
first one. Note that the eigenvalues of the mass-matrix preconditioned M are given by (3.16) if
we do have a Maxwell problem for which condition (2.7) holds.

3.5 Comparing ITR and CO2

In this section we compare the fully implicit integrator ITR, equipped with the above described
preconditioned CG implementation, to method CO2.

3.5.1 A 3D Maxwell test problem

The comparison is based on tests with a three-dimensional (3D) Maxwell problem we earlier used
in [6]. This problem is given in the (H, E) formulation

µ∂tH = −∇× E ,

ε∂tE = ∇×H − σE − J,
(3.26)

4) Here and in the remainder ‖ · ‖2 denotes the discrete inner product (L2) norm.
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Table 3.1: Grid parameters and time step size information for CO2.

number longest shortest CO2 time step CO2 time
grid of edges edge hmax edge hmin restriction step used
1 105 0.828 0.375 0.47 0.2
2 660 0.661 0.142 0.18 0.1
3 4632 0.359 0.0709 0.079 0.05
4 34608 0.250 0.0063 0.028 0.025
5 85308 0.118 0.0139 0.014 0.0125

with independent variables (x, y, z) ∈ Ω ⊂ R3, t ∈ [0, T ], and initial and boundary conditions

E|t=0 = E0(x, y, z), H|t=0 = H0(x, y, z), (3.27a)

(~n× E)|∂Ω = Ebc, (~n×H)|∂Ω = Hbc . (3.27b)

The coefficients µ, ε and σ are taken constant in time and space and ~n denotes the outward unit
normal vector to the boundary ∂Ω. The boundary functions Ebc and Hbc vary in space and time.
Specifically, Ω = [0, 1]3 and T = 10 and we choose the source current J = J(x, y, z, t) such that
the Maxwell system (3.26) allows a specific exact solution

E(x, y, z, t) = α(t)Estat(x, y, z), H(x, y, z, t) = β(t)Hstat(x, y, z), (3.28)

where the scalar functions α, β and the vector functions Estat, Hstat satisfy µβ′(t) = −α(t) and
Hstat = ∇× Estat. The source function J is then defined as

J(x, y, z, t) = −(εα′(t) + σα(t)) Estat(x, y, z) + β(t)∇×Hstat(x, y, z) , (3.29)

and to satisfy (3.28) we choose

Estat(x, y, z) =




sin πy sin πz
sin πx sin πz
sin πx sin πy


 , Hstat(x, y, z) =




sinπx(cos πy − cosπz)
sinπy(cos πz − cosπx)
sinπz(cos πx− cosπy)


 ,

α(t) =
3∑

k=1

cosωkt , β(t) = − 1
µ

3∑

k=1

sinωkt

ωk
,

(3.30)

with ω1 = 1, ω2 = 1/2, ω3 = 1/3. Further, we take µ = 1, ε = 1 and either σ = 0 or σ = 60π (this
corresponds with values encountered in real applications).

This 3D Maxwell problem is spatially discretized with first-order, first-type Nédélec edge finite
elements on tetrahedral unstructured grids [34, 36, 37]. Although it is formulated with H and E
as primary variables, the resulting semi-discrete system belongs to class (1.2). In [6] we observed
first-order spatial convergence for E and second order for H. We have used the grids numbered
four and five listed in Table 3.1 which displays grid parameters and step size information for CO2.
To save space we refer to [6] and references therein for a more complete description of this test
problem and its spatial discretization.

3.5.2 Test results

Table 3.2 reports computational costs in terms of matvecs for CO2 and ITR-CG for the fourth
and fifth grid mentioned in Table 3.1. Two cases are distinguished, the zero conduction coefficient
σ = 0 and the nonzero conduction coefficient σ = 60π, see Section 3.5.1. For both cases we have
chosen δ = 0.05 in the stopping criterion (3.24) and step sizes τ for ITR-CG much larger than the
limit step size of CO2. For the chosen values the temporal errors remain smaller than the spatial
ones, justifying the use of ITR-CG with respect to the full discretization error.
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Table 3.2: Computational costs of CO2 (applied with maximal τ) versus the costs of ITR-CG (applied with
different τ); stopping criterion parameter δ = 0.05.

σ = 0 σ = 0 σ = 60π σ = 60π
τ # matvecs total # # matvecs total #

per t.step matvecs per t.step matvecs
grid 4 CO2 0.025 1 400 1 400

ITR/mass 0.0625 4.94 790 2.00 320
ITR/mass 0.125 8.99 719 2.01 161
ITR/mass 0.25 15.95 638 2.98 119
ITR/mass 0.5 25.4 508 3.85 77
ITR/mass 1.0 29.6 296 4.60 46

grid 5 CO2 0.0125 1 800 1 800
ITR/mass 0.25 31.52 1261 5.3 212
ITR/mass 0.5 47.5 950 6.65 133
ITR/mass 1.0 57.8 578 7.6 76

Our first observation is that the number of CG iterations per ITR time step grows only
sublinearly with the time step size τ , in particular for σ = 60π. For this reason ITR can be-
come faster than CO2 for sufficiently large τ if δ is chosen properly (which appears to hold for
δ = 0.05). Taking δ ten times smaller results for the fourth grid and σ = 0 in the matvec sequence
(1088, 1020, 945, 827, 668), showing a greater expense than CO2 for the larger step sizes. Likewise,
for σ = 60π we find the sequence (345, 250, 158, 117, 69), showing only a small expense growth for
δ ten times smaller. As anticipated, the numbers increase as the grid gets finer. However, as the
grid gets finer, the maximum allowable time step for CO2 does decrease too. This is also the case
on the finest fifth grid even though it is more uniform than the fourth one, see Table 3.1.

Our second observation concerning Table 3.2 is that the number of CG iterations per time step
for σ = 60π is significantly smaller than for σ = 0. The reason is that for the current test problem
Mv and S are identical up to a constant, see Section 2. Hence, for growing σ, the eigenvalues of
the mass-preconditioned matrix M given by (3.16) get more clustered around 1 + ατ/2 and the
condition number λmax/λmin decreases.

Note that in the ITR scheme one needs to repeatedly solve the linear system (3.20) where
the matrix remains the same and only the right-hand side changes per time step. This suggests
that computational effort can be saved by reusing the information generated by CG. One possible
way of doing this is Method 2 of [18] which essentially consists of storing an orthonormal basis
spanning the successive CG-solutions and starting every new CG process with a projection on
the stored subspace. As evidenced in [18], Method 2 can lead to a significant saving in the total
number of iterations. We have tested the method for this problem but have not observed any
improvement. This is because the right-hand side of (3.20) changes quite significantly from one
time step to another, thus making the projection procedure futile.

For δ = 0.05, σ = 0 and the fourth grid, Figure 3.1 shows the time evolution of full (space
and time) errors in ‖ · ‖2 for CO2 and ITR. We see that the errors are comparable and more
or less independent of τ which illustrates that the spatial error dominates. This is the sort of
situation where implicit time stepping can be competitive. Our test with σ = 0 (undamped case)
shows no distinct advantage when counting numbers of matvecs. On the other hand, the test with
σ = 60π is no doubt promising and warrants further investigation with a more sophisticated CG
implementation, finer space grids and more test examples including variable conduction.
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Figure 3.1: The full L2 error (left E-field, right H-field) versus time for CO2 and ITR on the fourth grid,
σ = 0, δ = 0.05. ITR uses the mass matrix preconditioner. The costs for these runs are 400 matvecs for CO2
and 371 for ITR with τ = 0.25 and 299 for ITR with τ = 1.0 (see Table 3.2).

4 Exponential integration

The implicit trapezoidal rule ITR is a conventional method in the sense that it is a representative
of the Runge-Kutta and linear multistep methods. The so-called exponential integration methods
form another class being built on linearization and direct use of accurate, unconditionally stable
approximations to the exponential operator. For this reason they are of potential interest to the
Maxwell equations. Exponential integrators do have a long history [9, 21, 26, 29, 31, 38, 46] and
have undergone a revival during the last decade, see e.g. [3, 8, 10, 23, 25, 33]. An important reason
for this revival is the availability of the Krylov subspace iteration technique for approximating the
exponential and the so-called derived ϕ-functions. In this section we will also use Krylov subspace
iteration.

4.1 The exponential integrator EK2

For formulating our exponential integrator we rewrite the semi-discrete system (1.2) as

w′ = F (t, w) , F (t, w) = Jw + f(t) , (4.1)

where J = M−1A and f(t) = M−1g(t) and w, M, A and g(t) are defined as in (3.3). For this ODE
system we consider the second-order exponential integrator

wn+1 = wn + τϕ1(τJ)F (tn, wn) + τϕ2(τJ) (f(tn+1)− f(tn)) , (4.2)

where ϕ1(z) = (ez − 1)/z and ϕ2(z) = (ϕ1(z) − 1)/z. This second-order method follows from
linearly interpolating f over [tn, tn+1] in the variation of constants formula

w(tn+1) = eτJw(tn) +
∫ τ

0

e(τ−s)Jf(tn + s)ds (4.3)

and subsequently computing the resulting integrals analytically. The earliest papers we know of
where this interpolating approach with exact, analytic computation of integrals has been used
are [9] and [31]. In the recent literature this approach is sometimes called exponential time
differencing, see e.g. [10]. A second-order method closely related to (4.2) where f ′ is used reads

wn+1 = wn + τϕ1(τJ)F (tn, wn) + τ2ϕ2(τJ)f ′(tn) . (4.4)

This method belongs to a class of exponential Runge-Kutta-Rosenbrock methods [7, 25].
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In the literature many formulas of higher order are proposed. Here we restrict ourselves to
using the second-order method (4.2) because we wish to compare to the second-order method CO2
and the spatial discretization of our test example does not exceed order two either. Per integration
step this method requires the approximation of two vectors ϕ(τJ)b representing ϕ1(τJ)F (tn, wn)
and ϕ2(τJ) (f(tn+1)− f(tn)) for which we use Krylov subspace iteration, similar as in [23] and [25]
and in related work on exponential integration. In the remainder of the paper we will refer to
(4.2) as method EK2 (Exponential Krylov 2nd-order). More background information on EK2
supporting its choice in the current investigation is given in the Appendix of this paper.

4.2 Krylov subspace iteration

Let e1 be the first unit vector in Rn+m (n+m is the dimension of the matrix J). Krylov subspace
iteration for ϕ(τJ)b computes an approximation d ≈ ϕ(τJ)b through

d = Vk ϕ(τHk) e1 · ‖b‖ , (4.5)

where Vk = [v1, . . . , vk] is the (n + m)× k matrix containing the Arnoldi (or Lanczos) basis of the
k-th Krylov subspace with respect to τJ and b and Hk is an k × k upper Hessenberg matrix. So
ϕ(τHk) replaces ϕ(τJ) which explains the success of this method as long as k ¿ n + m, because
then ϕ(τHk) is relatively cheap to compute, e.g. through the Schur decomposition. The costs of
building d mainly consists of k matrix-vector multiplications with τJ within the Arnoldi process.
Hereby it is noted that one such multiplication costs about the same as one single integration step
with method CO2. So when comparing EK2 to CO2 with regard to CPU time, the latter can be
applied with a k times smaller step size.

A practical drawback is that matrix Vk must be kept in storage before d can be formed. Hence
if n + m is large as is the case in large-scale 3D simulations, the storage requirement for k vectors
of dimension n + m can be substantial. For example, a worst-case estimate for skew-symmetric
matrices with uniformly distributed eigenvalues says that k can get as large as ‖τJ‖ before the
iteration error starts to decay [22]. It is obvious that this may require too much storage if we
allow ‖τJ‖ À 1 which after all is the main purpose of using an exponential integrator like EK2.
Fortunately, in applications one often obtains convergence for k substantially smaller than ‖τJ‖.
If not one can split the time interval in subintervals and use restarts, although at the expense of
additional work (the software package from [43] does this automatically). For the theory behind
Krylov subspace iteration for matrix functions we refer to the research monograph [48] and to the
seminal papers [14, 15, 22, 28, 40, 47] and references therein.

4.3 Krylov implementation

Like for CG we need a proper stopping criterion for the Arnoldi process. Consider the step with
(4.2) from tn to tn+1 starting in wn and write in short

wn+1 = wn + τΦ1 + τΦ2 . (4.6)

We stop after k1, k2 iterations for Φ1, Φ2 approximating wn+1 by

ŵn+1 = wn + τΦ(k1)
1 + τΦ(k2)

2 . (4.7)

Ideally, ‖wn+1 − ŵn+1‖ is smaller than the unknown local truncation error for wn+1 which we
represent by the quantity τ‖wn‖δ for a certain constant δ. So we require

‖wn+1 − ŵn+1‖ 6 τ‖wn‖ δ , (4.8)

which holds if
‖Φi − Φ(ki)

i ‖ 6 1
2
‖wn‖ δ , i = 1, 2 . (4.9)
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The number of iterations ki, i = 1, 2, is now chosen as follows. We assume for i = 1, 2 separately
that (4.9) is satisfied if, in the L2 norm, pδ times in succession

‖Φ(ki)
i − Φ(ki−1)

i ‖2 6 1
2
‖wn‖2 δ , (4.10)

where pδ is an integer we can choose. Like for ITR we use constant τ and have not implemented
a local error estimator. So also here we make an educated guess for δ and assume that (4.10)
works properly. In our experiments this turned out to be the case, even with pδ = 1 which we
have chosen henceforth. In our tests all occurring matrix functions ϕ(τHk) have been computed
exactly using the exponential operator. Finally we note that Φ2 = O(τ) because of the difference
f(tn+1)− f(tn). This means that normally this term will require less Krylov subspace iterations
than the first one which is confirmed in the experiments.

4.4 Comparing EK2 and CO2

We have repeated the experiments of Section 3.5.2 with ITR replaced by EK2, again focusing on
the comparison to method CO2 in terms of workload expressed in matvecs. For the chosen step
size range the spatial error again dominates (so Figure 3.1 also applies to EK2) justifying our focus
on workload without referring to the temporal errors. Workload is found in Table 4.1 for δ = 10−3

and pδ = 1, see (4.10). The σ = 0 test indicates that for problems without damping EK2 will
be more costly in matvecs when compared to CO2, let alone the much larger memory demand.
Lowering or increasing δ will not change much for the larger step sizes. For example, for σ = 0 and
grid 4 we find for δ = 10−2 and δ = 10−4 the total matvec sequences (1900, 1457, 1222, 1132, 1075)
and (2942, 2043, 1592, 1363, 1230).

The σ = 60π test is much more favorable for EK2. We see that for step sizes far away from
the critical CO2 limit method EK2 becomes competitive in terms of matvecs, similar to what we
have observed for ITR. For EK2 however the gain is less substantial and given the large memory
demand this method will likely not to be of great practical interest when it comes to truly large-
scale computations. A positive point of EK2 is that for the range of step sizes used its temporal
error behavior turned out to be very good. Of course, would the temporal error dominate, method
CO2 will be hard to beat as it is optimally efficient (just one matvec per time step).

Table 4.1: Computational costs of CO2 (applied with maximal τ) versus the costs of EK2 (applied with
different τ); stopping criterion parameters δ = 10−3, pδ = 1.

σ = 0 σ = 0 σ = 60π σ = 60π
τ # matvecs total # # matvecs total #

per t.step matvecs per t.step matvecs
grid 4 CO2 0.025 1 400 1 400

EK2 0.0625 14.93 2388 11.48 1836
EK2 0.125 21.96 1757 13.7 1096
EK2 0.25 35.45 1418 16.35 654
EK2 0.5 62.2 1252 21.55 431
EK2 1.0 116 1160 29.6 296

grid 5 CO2 0.0125 1 800 1 800
EK2 0.25 61.88 2475 25.88 1035
EK2 0.5 116.5 2330 37.10 742
EK2 1.0 196.8 1968 53 530
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5 Chebyshev series expansion

In the remainder of the paper we assume that in (1.2) no damping due to conduction is active
and that there are no sources.5) This poses the task of approximating exponents of huge skew-
symmetric matrices. An elegant approximation method for this task proposed in [45] is based on a
Chebyshev series expansion. Unlike Krylov subspace iteration this method requires a fixed amount
of storage (only four arrays) and hence can be a nice alternative to Krylov subspace iteration in
skew-symmetric cases where storage becomes a genuine problem. In [45] the series expansion was
proposed and analyzed as a spectral method in time for hyperbolic equations. Two application
papers are [30] and [12] devoted to, respectively, the Schrödinger and Maxwell equations. In [24]
the series expansion is reported to be less efficient than Krylov for a quantum-classical molecular
dynamics computation. In this section we will present another comparison between the Krylov
and Chebyshev method.

Chebyshev series expansion seems less known than Krylov subspace iteration. We therefore
first review it following [45]. Consider system (3.3) and assume S = 0 and a zero source function
g. Its skew-symmetric transformed counterpart (cf. (2.3)) then reads

w̃′ = Ãw̃ , Ã =
(

0 −K̃

K̃T 0

)
. (5.1)

We will review the Chebyshev method for this transformed system. The method rests on the
Chebyshev series expansions 9.1.44 and 9.1.45 for the trigonometric functions given in [1]. For ez

these expansions combine for z ∈ iR to

ez = J0(R) + 2
∞∑

k=1

Jk(R)Qk(z/R) , (5.2)

where R > |z| is a constant, Jk is the Bessel function of order k and Qk(z̃) = ikTk(−iz̃), z̃ = z/R
with Tk the k-th degree Chebyshev polynomial of the first kind. From the Chebyshev recursion
Tk+1(x) = 2xTk(x)− Tk−1(x), T0(x) = 1, T1(x) = x follows

Qk+1(z̃) = 2z̃ Qk(z̃) + Qk−1(z̃) , Q0(z̃) = 1 , Q1(z̃) = z̃ , (5.3)

showing that Qk(z̃) = Qk(z/R) is a k-th degree polynomial with real coefficients. Truncating (5.2)
to N terms yields the polynomial approximation

ez ≈ PN (z) = J0(R) + 2
N∑

k=1

Jk(R) Qk(z/R) , (5.4)

which defines the expansion method for approximating exp(tÃ) (replace z by tÃ).
For a selected degree N the vector

w̃N (t) = PN (tÃ)w̃(0) (5.5)

defines the sought approximation to w̃(t) (no intermediate results are produced within the time
interval [0, t]). Apart from vector additions and Bessel function computations, computationally
this approximation amounts to N matrix-vector multiplications carried out in the matrix-valued
counterpart of recursion (5.3). Denote w̃k = Qk( t

R Ã)w̃(0). Then it follows directly that

w̃N (t) = J0(R) w̃(0) + 2
N∑

k=1

Jk(R) w̃k , (5.6)

where
w̃k+1 =

2t

R
Ã w̃k + w̃k−1 , w̃0 = w̃(0) , w̃1 =

t

R
Ã w̃0 . (5.7)

5) Time-independent sources can be included, see Remark 5.2. Unless noted otherwise we assume a zero source.
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With only four storage vectors w̃k needed to form w̃N (t), the method has very low storage re-
quirements as compared to Krylov subspace iteration.

R must be taken greater than or equal to the spectral radius σ(tÃ) of tÃ. Then all imaginary
eigenvalues z of tÃ lie within the interval [−iR, iR] assuring that |Qk(z/R)| 6 1 for all eigenvalues
z while all solution modes are captured. Would one take R < σ(tÃ), huge errors will occur because
then |Qk(z/R)| À 1, k À 1 for eigenvalues which are not captured. The condition R > σ(tÃ)
can therefore be seen as a stability property. The expansion converges due to the fact that Jk(R)
converges to zero exponentially fast for k > N if N > R is sufficiently large, see formula 9.3.1
in [1]. So the working condition for the Chebyshev method reads

N > R > σ(tÃ) . (5.8)

With this condition the spectral norm accuracy of the truncation can be made arbitrarily small
at any time t by choosing N sufficiently large. If σ(tÃ) is small, say near one, this can also be
achieved with the Taylor expansion. However, computing the Taylor expansion for σ(tÃ) À 1 is
not stable and will not work.

In actual application N can be automatically adapted to the desired truncation accuracy as
follows. Suppose the aim is

‖w̃(t)− w̃N (t)‖ 6 tol , (5.9)

where tol is a given tolerance. Then estimate R > σ(tÃ) and execute (5.6) - (5.7) for NR = dRe.
Next continue the expansion for k = NR + 1, NR + 2, . . . until for a prescribed number ptol in
succession |Jk(R)| 6 tol .

Example 5.1 To illustrate this simple adaptive algorithm we present a numerical example us-
ing ptol = 3. The example is academic but instructive for our purpose. It is based on the
periodic advection problem ut + ux = 0 on the unit interval for the peaked initial function
u(x, 0) = (sin(πx))100 and second-order symmetric differences on a uniform grid with Ng = 500
nodes for spatial discretization. We then approximate the resulting semi-discrete solution w̃(t) =
exp(tÃ)w̃(0) at time t = 1. So we advect the grid function uh(x, 0) to the right over one time
unit. The spatial discretization error ‖uh(x, t)− w̃(t)‖2 at t = 1 is approximately equal to 1.5 10−1

(2.9 10−2 in the infinity norm).
We put R equal to the spectral radius σ(tÃ) = 500 and choose as tolerances tol = 10−3, . . . , 10−8.

Table 5.1 contains the values of N computed by the adaptive algorithm along with the error norms
‖w̃(t) − w̃N (t)‖2 which according to (5.9) are anticipated to be close to tol. The increase of N
and resulting decrease of the errors with tol can be seen to be almost perfect and in line with the
exponential decay property of the Bessel function. Because of the exponential decay a substantial
gain in temporal accuracy is obtained for just little more work (though redundant in view of the
spatial error). The good performance of the Chebyshev method is in line with experiences reported
in [12, 45].

tol 10−3 10−4 10−5 10−6 10−7 10−8

N 524 530 536 542 548 554
errors 2.7 10−3 3.6 10−4 3.6 10−5 3.1 10−6 2.2 10−7 1.3 10−8

Table 5.1: Example 5.1: numbers of Chebyshev expansion terms and errors ‖w̃(1)− w̃N (1)‖2.

Next, to elucidate the storage issue, we apply Krylov subspace iteration with a fixed, prescribed
number of iterations tabulated with N in Table 5.2. It is clear that for reaching an acceptable
accuracy, a substantial number of iterations is required. If storage would be limited, this limitation
can be overcome with a restart procedure as for example used in the solver EXPV [43]. But then
the total number of iterations can grow substantially and even considerably larger than σ(tÃ)
(confirmed by EXPV). In such a situation the Chebyshev method can readily offer a practical and
even faster alternative.
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N 50 100 150 200 250 300

errors 5.9 7.5 8.8 8.0 10−4 1.2 10−13 2.2 10−13

Table 5.2: Example 5.1: numbers of Krylov matvecs and errors ‖w̃(1)− w̃N (1)‖2.

Finally we note that, due to the structure of the matrix Ã and the chosen initial condition
u(x, 0) in this example, at t = 1 non-restarted Krylov subspace methods will require approximately
Ng/2 iterations (Ng being the number of grid points) to get a reasonably well approximation to
w̃(1). In this sense, the current test presents a worst-case scenario for the Krylov subspace methods.
A possible solution would be to apply preconditioning as proposed in [16]. With this technique
we get mesh independent convergence within 100 iterations. 3

Remark 5.2 In actual application we use the variable w of the original system (3.3) (with zero
S and g). This requires to back-transform all stages of the computation resulting in

wN (t) = PN (Bt)w(0) = J0(R)w(0) + 2
N∑

k=1

Jk(R)wk , (5.10)

where
wk+1 =

2t

R
Bwk + wk−1 , w0 = w(0) , w1 =

t

R
B w0 . (5.11)

where B = M−1A.
The Chebyshev method can be modified for approximating ϕ(z) = (ez − 1)/z which enables

us to include constant in time sources. Consider the system w′ = Bw + f with f constant. The
counterpart of (5.10) defining wN (t) ≈ w(t) = w(0) + tϕ(tB)w′(0) reads

wN (t) = w(0) + 2t
N∑

k=1

Jk(R) wk , (5.12)

where
wk+1 =

2t

R
Bwk + wk−1 +

2δk

R
w′(0) , w0 = 0 , w1 =

1
R

w′(0) . (5.13)

Herein δk = 1 for k even and δk = 0 for k odd. 3

6 Concluding remarks

Maxwell’s equations (1.1) provide a prime example of a damped wave equation system. After
spatial discretization such systems are commonly integrated in time by implicit-explicit methods
such as method CO2 defined by (3.1) which is prototypical for Maxwell’s equations. CO2 is
symmetric and thus of second order and requires just one derivative evaluation per time step
which makes it very economical. However, the step size is limited by stability which may turn out
restrictive, for example when the spatial error dominates for step sizes larger than the incurred
step size limit. In such cases implicit time stepping, for which no such limit exists, may come into
sight.

In the setting of the generic semi-discrete system (1.2) we have examined the feasibility of
implicit time stepping for three different techniques:
(i) The conventional integrator ITR (Implicit Trapezoidal Rule, see Section 3) combined with
preconditioned CG (Conjugate Gradient) iteration. Experiments with the 3D problem posed in
Section 3.5.1 indicate that in the absence of conduction (no damping) our ITR-CG implementa-
tion based on either Schur-complement mass-matrix or incomplete-Cholesky preconditioning falls
short. To truly become competitive with CO2 for problems without conduction more effective
preconditioners are needed. Whether these exist for the linear systems we are facing, is an open
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question. On the other hand, for our test problem with conduction the experiments were no doubt
promising for the ITR-CG implementation. This warrants further investigation to the effectiveness
of implicit time stepping for problems with conduction.
(ii) The exponential integrator EK2 (Exponential Krylov 2nd order, see Section 4) combined with
Arnoldi-based Krylov subspace iteration to deal with the ϕ functions. For this combination we
have reached similar conclusions as for ITR-CG. For conduction free problems CO2 remains the
method of choice, whereas with conduction EK2 can become competitive, but most likely not more
efficient than a well-designed ITR-CG implementation. Given, in addition, the substantial mem-
ory demand, we consider this method not promising for truly large-scale Maxwell computations.
(iii) The Chebyshev expansion method for computing exponents of huge skew-symmetric matri-
ces, see Section 5. This method is meant for conduction-free problems with constant source terms
when output is required just for a few single time points covering a long time span. The method
of choice for this task is Krylov-Arnoldi, except when memory restrictions occur due to too many
iterations. In such cases the Chebyshev method offers a practical alternative.
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A Appendix on the exponential integrator EK2

A.1 Connection with the Adams-Moulton method

EK2, that is method (4.2), can also be seen to belong to the class of (k + 1)-st order multistep
methods

wn+1 = R(τnJn)wn +
k∑

l=0

τnβl(τnJn) [w′n+1−l − Jnwn+1−l] , (A.1)

where F may be nonlinear in w, Jn is an arbitrary matrix, R(z) = ez +O(zk+2), z → 0 and
∑k

l=0 qj−1
l−1 βl(z) = ϕj(z) , j = 1, . . . , k + 1 ,

ϕ1(z) = (R(z)− 1)/z , ϕj+1(z) = (jϕj(z)− 1)/z , j = 1, . . . , k ,

ql = (tn−l − tn)/τn , τn = tn+1 − tn , l = −1, 0, . . . , k .

(A.2)

Putting k = 1, R(z) = ez, τn = τ and Jn = J , a simple calculation leads us to EK2. Method
(A.1) is a generalization of the classical, variable step size, Adams-Moulton method. The precise
formulation (A.1)-(A.2) stems from [26, 46]. An earlier closely related Adams-Bashforth paper
is [38]. As a further example we give the fixed-step fourth-order method from class (A.1) which
for system (4.1) can be written as

wn+1 = wn + τϕ1(τJ)F (tn, wn) + τϕ2(τJ) Dn,2 + τϕ3(τJ) Dn,3 + τϕ4(τJ) Dn,4 . (A.3)

Evaluating derivatives of f at t = tn, the Dn,j satisfy

Dn,2 = 1
3fn+1 + 1

2fn − fn−1 + 1
6fn−2 = τf (1) + 1

12τ4f (4) +O(τ5) ,

Dn,3 = 1
2fn+1 − fn + 1

2fn−1 = 1
2τ2f (2) + 1

24τ4f (4) +O(τ6) ,

Dn,4 = 1
6fn+1 − 1

2fn + 1
2fn−1 − 1

6fn−2 = 1
6τ3f (3) − 1

12τ4f (4) +O(τ5) .

(A.4)

So the Dn,j act as correction terms of decreasing size O(τ j−1) which can be exploited in computing
the vectors ϕj(τJ) Dn,j by means of the Krylov method.

A.2 Stiff source terms

The source function f(t) of (4.1) may grow without bound if the spatial grid is refined due to
contributions from time-dependent boundary functions (stiff source term). For Maxwell’s equa-
tions these contributions are proportional to h−1 for h → 0 where h is the spatial grid size. Stiff
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source terms may cause order reduction, that is, the actual order observed under simultaneous
space-time grid refinement can be smaller than the ODE order observed on a fixed space grid.
Assuming sufficient differentiability of the exact solution w(t) we will prove that method EK2 is
free from order reduction for any f(t) and any stable J with its spectrum in C− (so not necessarily
emanating from Maxwell’s equations).

First we expand the right-hand side of EK2 at t = tn for wn = w(tn). By eliminating f(tn)
and f(tn+1) through the relation f(t) = w′(t)− Jw(t) this yields

ŵn+1 = w + τϕ1w
′ + τϕ2

∑

j=1

1
j!

τ j
(
w(j+1) − Jw(j)

)
, (A.5)

where w = w(tn), etc., and ϕk = ϕk(τJ). Using the definition of ϕ2 we next eliminate the Jacobian
J from this expansion and reorder some terms. This yields

ŵn+1 = w + τw′ + (
1
2

+ ψ)τ2w′′ + S , (A.6)

where ψ = ϕ2 − 1
2ϕ1 and

S =
∑

j=3

(
1
j!

(I − ϕ1) +
1

(j − 1)!
ϕ2

)
τ jw(j) . (A.7)

In what follows remainder terms O(τp) are assumed independent of J and f implying proportion-
ality to only τp for τ → 0 and ‖J‖, ‖f‖ → ∞. The local truncation error δn = w(tn+1) − ŵn+1

thus can be expressed as
δn = −ψτ2w′′ − S +O(τ3) , (A.8)

where the term O(τ3) is fully determined by solution derivatives. Further, because J is stable,
the matrix functions ϕk featuring in S are bounded. This means that S = O(τ3) so that

δn = −ψτ2w′′ +O(τ3) . (A.9)

The matrix function ψ is also bounded implying δn = O(τ2). Consequently, when adding up
all preceding local errors towards the global error εn+1 = w(tn+1) − ŵn+1 in the standard way
through the recursion

εn+1 = eτJεn + δn , (A.10)

we will loose one power of τ and predict first-order instead of second-order convergence. We can
come around this non-optimal result by adopting the approach of Lemma II.2.3 from [27]. Write

δn = (I − eτJ )ξn +O(τ3) , ξn = −(I − eτJ)−1ψ(τJ)τ2w′′(tn) . (A.11)

Introducing ε̂n = εn − ξn we can write

ε̂n+1 = eτJ ε̂n + δ̂n , δ̂n = −(ξn+1 − ξn) +O(τ3) . (A.12)

Since J is a stable Jacobian, the matrix function featuring in ξn is bounded which implies that
ξn = O(τ2) and ξn+1 − ξn = O(τ3) giving δ̂n = O(τ3). Now we can add up all preceding lo-
cal errors in the standard way to conclude second-order convergence for method EK2. We here
tacitly assumed that ε0 = 0 so that ε̂0 = −ξ0 = O(τ2). This convergence result holds for any
stable Jacobian J and any source function f(t) eliminating the possibility of order reduction due
to contributions from time-dependent boundaries. With a slight change the proof is also valid for
the alternative method (4.4).

Example. We will illustrate the above convergence result for EK2 with a simple yet instructive
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numerical example. By way of contrast so as to emphasize that when it occurs order reduction
may work out badly, we will also apply the method

wn+1 = eτJ

(
wn +

1
2
τf(tn)

)
+

1
2
τf(tn+1) . (A.13)

This exponential integration method is obtained from the variation of constants formula (4.3) by
directly approximating the integral term with the quadrature trapezoidal rule, rather than first
interpolating and integrating the obtained terms analytically. The method can also be obtained
through time splitting. As an ODE method it is second-order consistent and even symmetric.
However, it suffers from order reduction. In fact, for τ → 0 and ‖J‖, ‖f‖ → ∞ it is not even
convergent which we will illustrate numerically. Also, unlike EK2, the method is not exact for
constant f .

We have integrated the 2× 2-system (Prothero-Robinson type model from stiff ODEs [11])

w′ =

(
0 −s

s 0

)
w + f(t) , f(t) = g′(t)−

(
0 −s

s 0

)
g(t) , g(t) = et

(
1
1

)
. (A.14)

Putting w(0) = [1, 1]T yields for any J the solution w(t) = [et, et]T , t > 0. So we can take s as
large as we wish to illustrate the order reduction phenomenon. Figure A.1 shows convergence
results for s = 10, τ = 1

52−j and s = 5 · 2j , τ = 1
52−j where j = 1, . . . , 10. So in the first case

‖τJ‖ → 0 and ‖τf‖ → 0 whereas in the second case ‖τJ‖ and ‖τf‖ are fixed and thus ‖J‖ and
‖f‖ are increasing. With the first case we test normal ODE convergence and with the second case
order reduction. We plot maximum absolute errors at t = 1 versus τ for EK2 (left plot) and (A.13)
(right plot). The dashed line is the exact order two line, + -marks refer to s fixed and o-marks to
increasing s. EK2 is shown to converge in the right manner for both cases whereas in both cases
(A.13) is much less accurate and in particular suffers from severe order reduction in the second
case even resulting in lack of convergence.
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Figure A.1: Maximum absolute errors at t = 1 for EK2 (left plot) and (A.13) (right plot). The dashed line
is the exact order two line, + -marks refer to s fixed and o-marks to increasing s.
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