
imensfon~

hytheUSe

Godunov's

:er-Ver!ag,

Euler ana

1-1537-0

emational

1ations on

I ..__ = -
-

ELl\EVIER Applied Numerical Mathematics 16 (1994) 129-156

VLUGR3:

~ APPLIED
~NUMERICAL

MATHEMATICS

a vectorizable adaptive grid solver for PDEs in 3D,
Part I: Algorithmic aspects and applications *

J.G. Blom*, J.G. Verwer
CW/, P.O. Box 94079, 1090 GB, Amsterdam, Netherlands

This paper is dedicated to Professor Robert Vichnevetsky to honor him on the occasion of his 65th birthday

Abstract

This paper describes an adaptive-grid finite-difference solver for time-dependent three-dimensional systems
of partial differential equations. The robustness and the efficiency of the solver is illustrated by the application
of the code to three example problems. The performance of the solver is measured both for vector and scalar
processors.

Keywords: Software; Application in physical sciences; Partial differential equations; Method of Lines; Adaptive-grid
methods; Nonsymmetric sparse linear systems; Iterative solvers; Vectorization

1. Introduction

To solve time-dependent partial differential equations (PDEs) often a straightforward Method of
Lines (MoL) approach is used. The PDE is discretized in space and the resulting system of ordinary
differential equations (ODEs) or differential-algebraic equations (DAEs) is solved in time with a
robust "off the shelf' solver. The spatial grid used can be either uniform or nonuniform but the
location of the grid points is invariable for the time interval. For problems with steep and moving
fronts this can be an inefficient approach since too many grid points are needed in areas where
the solution has at any time large spatial gradients. For this reason many attempts have been made
to develop adaptive-grid methods, where the grid is adjusted to the solution either dynamically or

*This work was supported by Cray Research, Inc., under grant CRG 93.03, via the Stichting Nationale Computerfaciliteiten
(National Computing Facilities Foundation, NCF).
•Corresponding author. E-mail: gollum@cwi.nl.

0168-9274/94/507.00 © 1994 Elsevier Science B.V. All rights reserved
SSDJ 0168-9274(94) 0004 7-6

130 J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156

statically (e.g., after each time step). This introduces of course a certain amount of overhead but
when the use of implicit time integrators is profitable or when the number of PDE components is
very large such solvers can be more efficient in two dimensions. Often the standard approach will no
longer be feasible in three dimensions. The inefficiency of the computations is one reason but it is
even more important that the physical memory of most computers will not be large enough to contain
the solution values at all grid points plus the work space needed for the solution of the nonlinear
system.

In previous work [16-18,22,19,23,15] an adaptive-grid finite-difference method to solve time­
dependent two-dimensional systems of PDEs was developed. This method couples Local Uniform
Grid Refinement (LUGR) with an implicit ODE solver and proved to be robust and efficient for
the target problem class. The code VLUGR2 [3] is a vectorized implementation of this method based
on the research code MOORKOP [13] by Trompert. In this paper we describe the algorithmic aspects
of VLUGR3 which is the extension of VLUGR2 to the three-dimensional case (see also [5]) . This
vectorizable adaptive-grid finite-difference code has been designed to solve initial-boundary-value
problems for systems that fit in the following master equation

F(t, X, y, Z, U, Ut> Ux, Uy, Uz, Uxx• Uyy• Uzz• Uxy• Uxz• Uyz) = 0,
(x, y, Z) E fl, t > to,

(1)

where the solution u may be a vector and the domain nan arbitrary domain with a possibly disjunct
"brick" structure, i.e., a domain that can be described by right-angled polyhedrons. The boundary
conditions belonging to system (1) are fonnulated as

B(t, X, y, Z, U, U1 , Ux, Uy, Uz) = 0, (x, y, z) E an, t > to, (2)

nd the initial conditions satisfy

u(to,x,y,z) =Uo(x,y,z), (x,y,z) E flUafl. (3)

The paper is an extension of report [2] , where some first test results were discussed. There the
nonlinear systems were solved with modified Newton and the linear systems with BiCGStab [20]
with ILU preconditioning. Since the test results in [2] indicated that memory demands could be a
bottleneck for some problems, we added to our code a matrix-free implementation of the Newton
process with linear system solver GCRO [12]. As preconditioner we use in this case a simple
(block-)diagonal scaling.

To evaluate the robustness and the efficiency of the adaptive-grid algorithm in 3D as well as
the efficiency of the implementation and its performance on a vector processor, we tested the code
extensively on a set of three example evolutionary problems in 3D with various solution characteristics,
viz.,

• Burgers' equation with an exact solution representing a wave moving skew through the unit
cube,

• a rotating sphere problem described by a system of two advection-reaction equations, and
• a model for the simulation of pollution in ground-water flow.

The paper is organized as follows. In Section 2 we give an outline of the Local Uniform Grid
Refinement method as implemented in VLUGR3 and the choices made in the code with respect to

:ad but
1ents is
will no
ut it is
:ontain
nline.ar

~ time­
·niform
ent for
I based
aspects
) . This
y-value

{1)

lisjunct
undary

(2)

(3)

ere the
) [20]
d be a
~ewton

simple

veil as
e code
. ristics,

1e unit

d

0. Grid
>ect to

J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156 131

the refinement strategy and the time-integration strategy including the solution of the (non)linear
systems. For a more detailed discussion on the subject of the implementation of the code and how
to use it we refer to the companion paper [5]. Section 3 contains the test results for the three
example problems. In this section we also look into the robustness of the code on the basis of
some numerical experiments. In Section 4 we discuss the (vector) performance of the solver for the
example problems. Finally, Section 5 contains a summary of our findings.

2. The algorithm

2.1. Local Uniform Grid Refinement

There are two reasons to adapt a spatial grid in time to the solution. The first is to speed up the
computations since the PDE is evaluated in significantly less points than what would have been the
case if one uses a fixed grid. The second reason is to restrict the amount of memory needed. Naturally
both goals should be reached without sacrificing overall accuracy.

The advantage of static regridding, and especially of Local Uniform Grid Refinement, is that it
is robust and conceptually very simple. The domain is covered by a uniform coarse base grid and
nested finer uniform subgrids are recursively created in regions with high spatial activity. So all grids
consist of one or more disjunct sets of interconnected grid cells, all having the same size. When a
grid of a specific refinement level has been created the corresponding initial boundary value problem
is solved on the current time interval.

In short, an implicit solver based on the LUGR method can be described by

(0) Start with the coarse base grid, the initial solution and an initial time step.
(1) Solve the initial-boundary-value problem on the current grid with the current time step.
(2) If the required resolution in space is not yet reached:

(a) Determine at the forward time level a new embedded grid of the next finer grid level.
(b) Get solution values at previous time level(s) on the new grid.
(c) Interpolate internal boundary values from the old grid at the forward time.
(d) Get initial values for the Newton process at the forward time.
(e) Goto (1) .

(3) Inject fine grid solution values in coinciding coarser grid nodes.
(4) Estimate the error in the time integration. If the time error is acceptable:

(a) Advance the time level.
(5) Determine the new step size, goto (1) with the coarse base grid as the current grid .

Where interpolation is needed to obtain solution values, linear interpolation is used.
The virtue of an LUGR method lies in the fact that one reaches the accuracy of a fine mesh with

considerably less computational effort and memory requirements, since the fine subgrids cover only
part of the domain. A necessity for the good functioning of an LUGR method is that the refinement
strategy takes care that fine subgrids are created timely and at the correct places. In [17, 18,22,23]
the refinement strategy is based on a comprehensive error analysis of both the space discretization
and the interpolation. Here we use a more simple strategy because the class of equations (1)-(3) is
too general for the error analysis to be valid. The refinement strategy is the same as in VLUGR2, i.e.,

132 J.G. Blom, J.G. Venver/Applied Numerical Mathematics 16 (1994) 129-156

based on a curvature monitor.
For each grid point (i, j, k) the space monitor is determined by

SPCMON(i, j, k)

:= max SPCTOL(ic) · (\6.x2 • u~x(i, j, k) \ + [6.y2 • u~/i, j, k) [+ \6.z 2 • u~~ (i, j, k) I), (4)
ic=l,NPDE ··

where Lix, Liy, and b.z are the grid width in the x-, they- and the z-direction respectively, and

. SPCWGT(ic)
SPCTOL(zc) := ()

UMAX ic · TOLS
(5)

The variables on the right-hand side of (5) are user-specified quantities. Specifically, 0 ~ SPCWGT ~ 1
is a weighting factor for the relative importance of a PDE component on the space monitor, UMAX
the approximate maximum absolute value for each component, and TOLS the space tolerance. The
second-order derivatives in (4) are approximated by second-order finite differences at the internal
domain and first-order at the boundaries.

A next level of refinement is created if

max SPCMON(i, j, k) > TOLWGT.
(i,j,k)

(6)

TOLWGT acts as a bar against fluctuations of the number of grid levels in subsequent time steps: if the
next level of refinement existed at the previous time level TOLWGT = 0.9, otherwise TDLWGT = 1.0.

If a next level of refinement is required, then all grid points with

SPCMON(i,j,k) > ~ (7)

are flagged together with their 26 direct neighbors. A cell with at least one flagged comer is divided
in 8 equal subcells, so we do not apply semi-refinement, i.e., refinement in only one direction parallel
to an axis. The next grid level will contain all these refined cells.

2.2. Discretizing the PDE

In VLUGR3 standard second-order finite differences are used for the spatial discretization, central
on the internal domain and one-sided at the boundaries. Due to the mixed derivatives we thus deal
with a 19 point coupled grid stencil.

As time integrator we use the second-order two-step implicit BDF method with variable step sizes

with

1+2a 1
ao = 1 +a Lit'

(1 +a) 2 1
a, = - 1 +a Lit'

ll:'2 1
a2 = 1 +a Lit;

(8a)

(Sb)
Lit

a=--.
Lltold

In the first time step we apply as usual Backward Euler (a= 0 in (8)). Like in DASPK [8], we
use for all error measurements in the time integration a weighted root-mean-square norm

(9)

J.C. Blom, J.C. Verwer/ Applied Numerical Mathematics 16 (1994) 129-156

where W is a diagonal matrix defined by

W = 1/VN diag(w1, •• ., wN).

133

(10)

The time integration is controlled by the solution monitor value in time which is computed at each
existing grid level

TIMMON(level) := llM urllw, (11)

where t::..t is the current time step size, u1 is approximated by first-order finite differences and the
entries w; of the diagonal matrix W from (10) are defined by

with

W;pr.ic = TIMWGT(ic) / (ABSTOL(ic) + IU~P;Jcl · RELTOL(ic)),
ipt E fl, ic = 1, NPDE,

ABSTOL(ic) = 0.01 · TOLT · UMAX(ic), RELTOL(ic) = TOLT.

(12)

(13)

Note that the time monitor is first-order although the used time-integration method is second-order.
The reason is that an estimator based on interpolated solution values for one time level and computed
solution values for another, leads readily to unnecessarily small time steps (cf. [16]). This is also the
reason to exclude the boundary points in (11). The variables TIMWGT and TOLT are the user specified
analogues of the variables in (5).

An integration step is rejected and redone at all grid levels if

max TIMMON(level) > 1.0.
level

(14)

A new step size is computed such that the prediction of the monitor at the next time point is 0.5, i.e.,

0.5
Atnew := ·At.

max1evel TIMM ON (level)
(15)

If the step was accepted the increase in step size is restricted to a factor 2 and if the time step was
rejected the decrease is restricted to a factor 4. Finally, the step size is restricted to a user specified
minimum and maximum value and adjusted such that the rest of the integration interval is an integer
number times At.

2.3. Solving the nonlinear system

Since we use an implicit time-integration method, at each time step a large system of nonlinear
algebraic equations has to be solved. This is done using Newton's method in combination with a
preconditioned iterative linear system solver. In our experiments this combination was more robust and
most of the times less expensive than nonlinear Krylov solvers like, e.g., Nonlinear Orthomin [1 O] or
so-called hybrid Krylov methods in which it is tried to speed up the convergence of the Newton process
using information from the linear Krylov solver (see [9]). VLUGR3 offers two implementations of
the Newton process: one where the Jacobian matrix

G= oF
au

(16)

134 J.G. Blom, J.G. Ve1Wer/Applied Numerical Mathematics 16 (1994) 129-156

is computed and stored once for each grid level and each time step, and a matrix-free variant. In
the latter the matrix-vector product Gv required in the linear system solver is approximated by a
difference quotient. Note that the first option results in a modified Newton process, whereas the
second option leads to a true Newton process. So the latter can have a better convergence behavior
if the matrix-vector product is well enough approximated. Also note that in contrast to the common
practice in MoL it is not possible to "freeze" the Jacobian and/ or the preconditioner for a number of
time steps, since the location and number of grid points of the refined grids can change every time
step.

The linear system solvers are described in Section 2.4 and the approximation of the Jacobian and
the matrix-vector product Gv in Section 2.5. Here we discuss some of the strategies implemented in
the Newton procedure. Roughly spoken we have followed the approach as used in DASSL [7, pp.
123-124] and DASPK [8]. When solving the nonlinear system

(17)

which is the fully discretized form of (1) and (2), Newton generates linear systems of the form

GcCkl = -F(U<kl). (18)

These systems are solved with an arbitrary linear system solver and the solution is updated

u<k+l) = u<k) + c(k). (19)

The Newton process is continued until the iteration error II U - u<k> II w is sufficiently small. For the
Newton process and the underlying linear solvers the entries w; of the diagonal matrix Win (10) are
defined by

W;pr,ic = 1.0/(ATOL(ic) + IU;~%.1 · RTOL(ic)),

ipt E fl, ic = 1, NPDE,

with

ATOL(ic) = 0.01 · TOL · UMAX(ic), RTOL(ic) = TOL.

The user-set space and time tolerances TOLS and TOLT are buried in the tolerance

TOL = 0.1 min(TOLT2, TOLS).

Assuming convergence of the Newton process the inequality

llV - u<k>llw::::;: -1 P llV(kl - u<k-1)11.,.,
-p

holds, where p is the convergence rate which is in actual computation approximated by

~ (k) - w (ll u<kl - u(k-l) II) 112

p ~ P - llVCk-tl - u<k-2lllw

This leads to the stopping criterion for the Newton iteration

(k)

P 11u(k) - u<k-l) II < TDLNEW =I o 1 - p(k) w ••

(20)

(21)

(22)

(23)

(24)

(25)

J. G. Blom, J. G. Verwer/ Applied Numerical Mathematics J 6 (J 994) 129-156 135

~ote that we use the square of the user-defined time tolerance TOLT because the BDF formula (8)
1s second-order and the time monitor is first-order.

If during the Newton iteration p<k> > 0.9 or if the maximum number of iterations is exceeded a new
Jacobian and/ or preconditioner is computed, once, and the iteration is restarted. If the Newton ~rocess
does not con~erge with the new .Jacobian/ preconditioner the time step is redone with t:. t = t:.t / 4.

~n. ~xtra d1~ficulty, when solvmg nonlinear systems arising from the LUGR method, is to provide
an m1tial solution. If one employs the Method of Lines on a single grid fixed in time the solution of
the previous time level is in general a good initial estimate. In any case, if tlt - O it is the solution.
This is not the case with LUGR methods, however. The solution values injected from a finer grid are
in general not a solution of the PDE system discretized on a coarser grid. So, even when t:.t - O it is
still possible that the injected values on the previous time level are not a good initial estimate. This
obviously is an exceptional situation, but for the nonlinear ground-water-flow problems we indeed
experienced some serious problems with the convergence of the Newton process. So for the sake of
robustness we also save the not-injected solution values, i.e., the solution values actually computed
at the coarser grid and use these as initial estimate with interpolated values where a grid point at the
previous time did not exist.

2.4. Solving the linear system

The Conjugate Gradient method is for symmetric systems an ideal iterative solver. It has the
minimal residual property, i.e., the solution vector in the current Krylov subspace is chosen such that
the residual vector is orthogonal to the subspace and it can be efficiently implemented using a three­
term recurrency. Krylov solvers for nonsymmetric systems can roughly be divided in two groups. In
the first the minimal residual property is maintained at the cost of a more expensive computational
process (GCR, ORTHOMIN, GMRES). In the second the three-term recurrency is maintained and a
nonoptimal descent algorithm results (BiCG, CGS, BiCGStab).

In VLUGR3 we implemented two Krylov solvers to solve the linear system (18). If the Jacobian
matrix G and its ILU decomposition are available we use BiCGStab [20]. BiCGStab is a cheap
solver (in memory and in CPU time) that appeared to be robust enough when combined with the
ILU preconditioner. In the second case the matrix-vector multiplication Gv required in the linear
system solver is approximated by a difference quotient (see (35)). For this matrix-free variant a
comparably robust, standard preconditioner that does not make explicit use of the matrix G does not
exist. Moreover, the matrix-vector multiplication can be rather expensive for some PDEs. Therefore
we chose for this variant GMRES to have an optimal convergence behavior and so a minimal number
of matrix-vector multiplications. As preconditioner we use (block-)diagonal scaling (see below in
Section 2.6). However, in some cases the number of iterations and thus the number of storage
required can be very large. To restrict the amount of storage one can of course restart the GMRES
process after a certain number of iterations. However it is more profitable to use a recursive version
of GCR in which the inner GMRES loop generates a better preconditioner and the outer GCR loop
solves a well-preconditioned system. In VLUGR2 [3] we used GMRESR [21] and we reported some
stagnations. In [12] a remedy is given against these stagnations. The idea is that the new Krylov
basis vectors in the inner loop should not only be orthogonal to the previous ones but also to the
corrections on the approximate solution already computed in the outer loop. This leads to the GCRO
algorithm which is per iteration slightly more expensive than GMRESR (extra orthogonalizations)

--~

136 J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156

but which in general uses less iterations and so less matrix-vector multiplications than GMRESR. A
second reason not to use BiCGStab in the matrix-free variant was that in our experience BiCGStab
was more sensitive to the inaccuracies induced by the approximation of Gv by a difference quotient
than GMRES-like Krylov solvers, possibly because GMRES orthogonalizes the Krylov base after the
matrix-vector multiplication.

It is not necessary to solve the linear system (18) up to machine precision (cf. [6,19]) . The
stopping criterion we use in our code is

TOLLSS = TDLNEW/ (10 · 2NIT), (26)

where NIT is the current Newton-iteration index and P - 1 is the preconditioner in use. In the case
of GCRO we take the maximum of llD-1rOlllw and llP- 1rUlllw, where Dis the (block-)diagonal
preconditioner and P is obtained by the inner GMRES iterations. The inner GMRES iterations are
stopped if the two-norm of the (weighted diagonally scaled) residual is less than TOLLSS and if a
relative improvement of the residual of 0.01 was reached. Note that if P is a good approximation
of G, then p- 1rcll is a good approximation of the contribution to the Newton correction cCkl of the
correction x< 1l - xO-ll on the linear solution.

2.5. The matrix-vector product Gv

Approximation of the Jacobian
If we use modified Newton+BiCGStab to solve the nonlinear system the Jacobian is computed

by numerical differencing. The matrix G, resulting from a second-order central discretization on the
internal domain and second-order one-sided differences on the boundaries, consists of 19 diagonal
blocks per rowblock. The storage and the matrix-vector multiplication are implemented analogously
to the 2D case (cf. [3]) . So G is stored in block 19-diagonal storage mode, i.e., in an array
G (NPTS, NPDE, NPDE, -9 : 9). The placing of the 3 grid points coupled in x-direction is known. The
actual placing of the grid points corresponding with the 8 lower diagonals is given in the array
LLDG (NPTS, -9: -2) and for the 8 upper diagonals in LUDG (NPTS, 2: 9). If the matrix is stored in
this way, the matrix-vector product can be vectorized very efficiently.

The Jacobian

G = oF(t,x, y, Z, U, Ur, Un Uy, Uz, Uxx> UYY' uzz• Uxy• UXZ• Uyz)
au

(27)

is approximated by numerical differencing. To save residual evaluations we have made use of the
identity

aF aF(-, U, U1,.)
au= au

aF(.,Ux,.) aux oF(-,Uy,.) au.v aF(-,Uz,-) auz
+ aux . au + auy . au + auz . au

a F(., Uxx,.) aUxx a F(" Uyy") aUyy a F(., Uzz,.) a Uzz
+ ·-+ ·-+ ·-

auxx au aUyy JU auzz au

aF(.,Uxy,·) aUxy aF(.,Uw·) aUxz oF(.,Uyz,·) aUyz
+ ·-+ ·--+ ·-.

aUxy au aUxz au aUyz au
(28)

J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156 137

The implementation of (28) is very simple and vectorizes well. If we approximate the partial
derivatives of F in the right-hand side of (28) by numerical differencing, the perturbation is only
local to a grid point and therefore the Jacobian can be obtained by 10 residual evaluations. A further
advantage of this implementation is that different space or time discretizations only lead to different
multiplying factors in (28). The way to compute the partial derivative of F with respect to U is
copied from DASSL [7, p. 124]

aF(·, U, Ur.·) F(·, U + '1, U1 + a0'1, ·) - F(·, U, U1,.) au ~ ~ , (29)

where

L1ipt,ic = Juround. sign(at utipt,ic) . max(IUipt,icl. IA.t utipt,icl• ATOL(ic)). (30)

For the other partial derivatives we use

for p = x, y, z, xx, yy, zz, xy, xz, yz. (31)

The main difficulty in the numerical computation of the partial derivatives is the choice of the
perturbation vector ~P' and especially to decide when the value to be perturbed should be considered
zero. We chose the perturbation

L1Pipr,ic = Juround · max(IUPipr,icl' ATOL(ic) ·facp),

where

1
facx = 2A.x'

1
faCxx = A.x2'

1
facxy = 4AxAy'

(32)

and other combinations analogously. So ATOL/2Ax is considered to be the noise value for Ux if ATOL
is the noise value for U. Finally, the "magic tricks"

(33)

and

'1 = (U + '1) - U (34)

have been applied to ensure that the perturbed value has the same sign as the original one and that
the perturbed value is a true machine number. Note that in (30) the former is not necessarily true. If
the PDE is, e.g., undefined for negative values of U this can occasionally be a source of difficulties.

This way of computing a Jacobian was sufficiently accurate for the problems we solved with the
code. However, if for a specific problem Newton failures would occur more often than time step
failures, it could be worthwhile to store the exact partial derivatives instead of the approximated ones.

Approximation of Gv
The matrix-vector multiplication Gv required in the linear system solvers can be approximated by

a difference quotient

G(U)v = F(U + uv) - F(U).
u

(35)

138 J.G. Blom, J.G. Verwer/ Applied Numerical Mathematics 16 (1994) 129-156

The problem here of course is how to choose <r so that the vector U is appropriately perturbed. One
approach is a generalization of the way the matrix elements in the Jacobian are approximated (cf.
[9]) . This results in

Juround . . T I T I I . T -I I <r= () ·s1gn(MUv)·max(Uv,MUvl,ATOLv),
v,v

(36)

where

ATOL= (ATOL(l), ... ,ATOL(NPDE), ... ,ATOL(l), ... ,ATOL(NPDE))T

and lvl = (!vii, ... , JvNJ). However this is not very robust if the components of the solution differ in
orders of magnitude. Therefore we adopted the approach proposed in [8], i.e., we solve

(37)

This has the advantage that the matrix-vector multiplications needed in GMRES are of the form Ax
with A = wv-1cw- 1 and llxJb = 1. So in the G(U)v approximation llvllw = JIWvll2 = 1. Since
the Newton correction is assumed small with respect to the solution and the required tolerance if
JJcJI,.. = 1, this approach means that also the vector vis assumed small with respect to the solution U.
So we can take <T = 1.0 in the difference quotient (35).

In the outer GCR loop we have to scale the multiplying vector with its two-norm before the
matrix-vector multiplication is executed. However, the two-norm of this vector is needed for the error
estimation, so the overhead is low.

2.6. Preconditioning

In our first linear solver BiCGStab is combined with a standard ILU type preconditioner, i.e.,
only those entries of the decomposition are computed that correspond with nonzero entries in the
Jacobian. For the boundaries we use in the ILU preconditioner first-order discretization to maintain
the 19-block diagonal structure. The ILU preconditioning is vectorized using a variant of the hyper­
plane method [1] . For the two-dimensional case this is described in [4]. The extension to 30 is
straightforward. This linear solver is in our experience robust and rather efficient with respect to the
number of iterations needed. Moreover, in contrast to the 20 case the vector performance of the ILU
preconditioning is satisfactorily in 30. A disadvantage of our first linear solver is the huge amount
of memory needed, especially if the number of PDE components is large.

As preconditioner in our second linear solver we offer the choice between diagonal scaling and
block-diagonal scaling. The latter should be used in case the coupling between the PDE compo­
nents is such that the main diagonal is not a good enough approximation for the Jacobian. The
(block-)diagonal preconditioner is computed analogously as the main (block-)diagonal entries of
the Jacobian. Since the mixed derivatives have no influence on the main diagonal, 7 (or 7 · NPDE)
residual evaluations are required to compute the preconditioner. Optionally, the contributions of the
first-order derivatives at the boundaries can be neglected. We then can compute the (block-)diagonal
of the Jacobian with only 4 (or 4 · NPDE) residual evaluations.

I
1

J.G. Blom, J.C. Verwer/Applied Numerical Mathematics 16 (1994) 129-156 139

3. Numerical experiments

In this section we discuss the test results obtained with VLUGR3 for three example problems, viz.,
(I) Burgers' equation, a model for nonlinear convection-diffusion phenomena, (II) a system of
coupled advection-reaction equations, and (III) a transport problem in ground-water flow. The main
issue is to evaluate the robustness of the LUGR method. To that aim we consider for both nonlinear
equation solvers the accuracy of the solution and the integration history for the example problems.
The results are presented in tables and for the problem without reference solution (III) also in plots.
Typical grid refinement behavior is also displayed in plots for all problems. In the description of the
experiments the following notation is used:

• STEPS: number of successful time steps,
• JACS: number of Jacobian and/ or preconditioner evaluations,
• NIT: number of Newton iterations,
• LSIT i: number of linear-solver iterations in the ith Newton iteration.
For all problems we set the space and time tolerance TOLS == TOLT == 0.1. The weight factors

SPCWGT and TDLWGT are set to 1 for all components. For problems I and II UMAX is also set to
1 for all components. For our first linear solver BiCGStab+ILU the maximum number of linear
iterations was set at 100, which was never reached. In our second solver, GCRO+(block-)diagonal
preconditioning, we imposed a maximum of 20 inner GMRES iterations and 5 outer GCR iterations.
We allowed also one restart. The maximum for the number of inner iterations was often reached
but the linear solver as a whole only occasionally failed using diagonal scaling and never using the
block-diagonal preconditioner.

To assess the local-refinement efficiency, i.e., to compare the LUGR code with a standard Mol
approach on a (non)uniform fixed grid one should take into account two points, viz., use of memo!)
and computational efficiency. When solving the linear systems with BiCGStab and ILU precondi­
tioning the amount of memory is dominated by the two arrays needed to store the Jacobian and
the preconditioner. Both take up 19 · NPDE · NPTS · NPDE floating-point words, where NPTS is the
actual number of points in the grid. The matrix-free variant requires a number of vectors of length
NPTS · NPDE. Since the memory requisite is in both cases determined by the number of grid points, the
LUGR method will be readily more efficient in its memory use. It is more difficult to compare the
efficiency with respect to the computational effort. Assuming that the overall accuracy is the same, a
first approximation would be to compare the number of grid points at the finest uniform grid with the
total number of grid points used over all grid levels. However one should keep in mind two things.
First, it is in general cheaper to solve two systems of N equations than one of order 2N. Second,
the LUGR method requires extra computations for the local refinement: the determination of a new
grid and the transfer of solution values between two grid levels. These overhead costs are especially
significant if the number of PDE components and the number of (non) linear iterations is small. The
LUGR method could be implemented computationally more efficient by adding pointers between the
grid structures at different levels but that would be less efficient in memory. Another option is to
"freeze" a specific series of nested grids for a few time steps. A disadvantage of this approach is that
it obscures the conceptual simplicity and probably decreases the robustness of the method.

In this section we discuss the robustness and the local-refinement efficiency of the LUGR method.
The vector performance and CPU time for all three example problems will be discussed in the next
section. Our experiments were done on a Cray Y-MP with a memory limit of 52 Mword.

140 J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156

3.1. Problem I: Burgers' equation

This model, a simple 3D analogue of the Navier-Stok.es equations, has a nonlinear convection term
combined with a small diffusion term

Ur + UUx + VUy + WUz = ellu,

Vr + UVx + VVy + WVz = e!l.v,

Wt+ UWx + VWy + WWz = e!l.w.

(38)

We determined an exact solution for (38) representing a wave front moving skew through a unit
cube. Using the Cole-Hopf transformation (see, e.g., [24, p. 97])

u = -2e 'Px,
<p

v=-2e'Py,
cp

w = -2e 'Pz
cp '

system (38) is transformed into

IPr = ellcp.

An exact solution representing a single shock is given by (cf. [24, p. 110])

f - (Cj1X + Cj2Y + Cj3Z (c]1 + c]2 + CJ3)t)
; - exp - 2 + 4 . · e e

(39)

(40)

(41)

The center of the shock is where f 1 = f 2• We choose this center in the most unfavorable way for our
grid refinement strategy, i.e., a plane skew through the cube

x - y - z = -~t.
This is obtained for c11 = l and c;1 = ~ giving as exact solution for (38)

u = !1 +~Ji = 1 - ~. 1
j 1 +Ji 2 1 +exp[(-x+y+z - ~t)/(4e)]'

u = w = ~ - u.

Substituting u and w from (43b) into (38) we get the scalar PDE

u1 + UUx + (~ - u) (uy + u2) = eti..u.

(42)

(43a)

(43b)

(44)

The domain is the unit cube. The initial solution and the Dirichlet boundary conditions are given by
the exact solution (43). We discuss the results for both the scalar PDE (44) and the coupled system
(38) on the time interval [0, 1].

3.1.1. Numerical results for Problem l(a)
Our first test problem is the scalar Burgers' equation for a Reynolds number of 500 (e = 0.002).

Starting on a base grid with t.x = ti..y = ti..z = fa we allow a maximum of four grid levels resulting in
a finest cell width of io. After 92 time steps the endpoint was reached using at each grid level 184
Newton iterations. Since Dirichlet boundary conditions are prescribed we can compute the diagonal­
scaling preconditioner in our second linear solver with only four residual evaluations. The accuracy

J.G. Blom, J.G. Verwerl Applied Numerical Mathematics 16 (1994) 129-156 141

Fig. 1. Grid for Problem I(a) at t = 1.0. Slices at x = 0.5, y = 0.5, and z = 0.5.

Table 1
Integration history for Problem I(a)

BiCGStab+ILU GCRO+Diag

Level 2 3 4 2 3 4

STEPS 92 92 92 92 92 92 92 92

JACS 92 92 92 92 92 92 92 92

NIT 184 184 184 184 184 184 184 184

LSIT 1 92 92 92 92 730 908 1206 1760

LSIT 2 21 84 90 91 453 885 1225 1738

pts

t = 0.001 1331 5481 22041 100637 1331 5481 22041 100637

t = 0.6 1331 7233 33677 164617 1331 7233 33677 164617

t = 1.0 1331 6789 31229 145065 1331 6789 31229 145129

Uniform 1331 9261 68921 531441 1331 9261 68921 531441

and grid refinements were alike for both linear solvers. The maximum norm of the error at t = 1.0 was
0.07. In Fig. 1 we picture the grid at t = 1.0. We show plots of orthogonal slices through the middle
of the cube. As expected these slices are alike since the problem is symmetric in each coordinate
direction. In Table I we list the number of grid points used at each grid level for three different
times. The last row contains the number of points needed to reach the same level of refinement with a
uniform grid. For the lower grid levels there is not much gain in using the adaptive-grid method. This
is because the LUGR method creates a certain buffer in all directions around the wave resulting in
refinement almost everywhere for the lower grid levels. However, at the finest grid level the difference
in number of grid points is considerable. Predictably, the overhead of the LUGR method is for this
problem rather large since it is a scalar PDE and a very small number of iterations is needed to solve
the nonlinear system. Even in scalar mode for the BiCGStab solver about 25% of the CPU time is
spent in routines dealing with the refinement. For the GCRO solver this is less than 10%, but this
solver is less efficient for this problem especially in scalar mode. As can be seen from the results in
Table I the ILU preconditioner is optimal for this problem.

142 J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156

Table 2
Integration history for Problems l(b) and l(c)

Problem l(b) Problem l(c)

GCRO+Diag BiCGStab+ILU GCRO+Diag

Level 2 3 4 2 3 2 3

STEPS 78 78 78 78 36 36 36 36 36 36
JACS 78 78 78 78 36 36 36 36 36 36
NIT 156 156 157 217 72 72 88 72 72 78
LSIT l 659 842 1147 1790 36 36 36 377 533 894
LSIT 2 403 826 1148 1733 31 33 34 361 527 851
LSIT 3 1125 16 84

pts

t = 0.001 1331 5481 22041 100637 1331 5481 25277 1331 5481 25277
t = 0.6 1331 7233 35317 164593 1331 7853 37933 1331 7853 37933
t = 1.0 1331 6789 31229 152665 1331 7393 35141 1331 7393 35197
Uniform 1331 9261 68921 531441 1331 9261 68921 1331 9261 68921

3.1.2. Numerical results for Problem I(b)
The second test problem is the coupled system (38). To solve a system of three PDEs using four

refinement levels with a maximum number of points of approximately 170,000 the BiCGStab solver
requires more memory than available on the Cray. The transition layer of the solution is 0 (y'e) so a
cell width of io is already rather coarse for a Reynolds number of 500 using central finite differencing
especially since the transition layer is placed skew through the cube. Since three refinement levels is
too few to solve (38) with e = 0.002, we only used the matrix-free GCRO solver. The results are in
agreement with the scalar example. After 78 time steps the endpoint was reached and the maximum
norm of the error at t = 1.0 was again 0.07. The difference in the number of time steps is caused
by the fact that if the estimated time errors are slightly different this can result in a different time
step size for the rest of the interval since we adjust our step size such that the rest of the integration
interval is an integer number times lit. The refinements are equivalent with the picture shown in
Fig. 1. Also the number of grid points is alike (cf. Table 2). It should be mentioned that for the
finest grid the number of grid points changes a great deal from one time level to the next. E.g., for
the scalar Burgers' equation this number was 153133 at t = 0.99. It is obvious from the integration
history in Table 2 that the nonlinear system is harder to solve especially for the finer grid levels.

3.1.3. Numerical results for Problem I(c)
To compare the two nonlinear solvers we decreased the Reynolds number to 200 and solved (38)

with a maximum of 3 grid levels resulting in a finest cell width of :fo. After 36 time steps the endpoint
was reached· using about two Newton iterations per time step. The maximum norm of the error at
t = 1.0 was 0.06. Since the wave front is less sharp than in the previous example more grid points
are required on the finer grid levels (cf. Table 2) .

Predictably, the overhead is much smaller than for Problem I(a) approximately 1 % in scalar mode
and approximately 15% in vector mode for the BiCGStab solver. The linear solver BiCGStab+ILU

J.C. Blom, J.G. Verwer/ Applied Numerical Mathematics 16 (1994) 129-156 143

is again optimal with respect to the number of linear iterations needed but not in computational time.
The computation of the 19 · 3 block-diagonal Jacobian and its decomposition takes more time than
the extra linear iterations needed in the second solver using the simplest possible preconditioner, viz.,
diagonal-scaling that requires only four residual evaluations (see also Table 7 in Section 4.1). One
can see from the results in Table 2 that this is still an acceptable preconditioner although more linear
iterations per Newton iteration are required than in the scalar Problem I(a).

3.2. Problem II: rotating sphere problem

Our second example is the advection-reaction system

C1 + UCx + VCy + WCz = f(c), (45)

where u, v, and w are components of a velocity field in the x-, y-, and z-direction, respectively and
the reaction term f consists of the components

f1 = -k2C1C2 + k1C~,
Ji = -k1 c~ + k1c1 Cz.

(46)

If we set the constant sum of c1 and c2 to d, the solution of (45) with zero velocity is given by

() _ d k1(1- a)+ (k1 + k2)ae-dk21

C1 t - k1 + kz 1 - a + a e-dk21 (47)
Cz(t) = d - C1 (t),

with

(48)
dk2

For the parameters we selected k1 = 1000, k2 =1. As initial values we chose c1(0) = 0 and c2(0) = d,
so that a = -kif k1.

For the advection part we constructed an exact solution which represents a rotating sphere with
the highest solution value in its center along an ellipse on a skew plane y = z through the unit cube.
This rotation is obtained by choosing the velocities

r,; y+z 1
u = 211v ..c.(-2- - 2),

v = -7rv'2(x - !),
w= v.

The exact sphere solution for (45) with f = 0 is given by

exp(-80[(x - r(t))2 + (y - s(t))2 + (z - s(t))2])

with

r(t) = lC2+sin(21Tt)), s(t) = l (2 + t.J2cos(21Tt)).

(49)

(50)

(51)

144 J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156

Table 3
Integration history for Problem IT

BiCGStab+ILU GCRO+Block-Diag GCRO+Diag

Level 2 3 4 2 3 4 2 3 4

STEPS 335 335 335 335 335 335 335 335 343 343 343 343
JACS 335 335 335 335 335 335 335 335 348 348 347 345
NIT 670 670 670 671 670 670 670 671 695 693 691 688
LSIT 1 335 335 335 335 2575 2807 3397 4148 3312 4029 6612 6231
LSIT 2 16 26 37 45 1322 1404 1693 2431 1577 2130 3647 3274

Avg. # pts 1331 4500 13700 35800 1331 4500 13700 35800 1331 4500 13700 35800
Unifonn 1331 9261 68921 531441 1331 9261 68921 531441 1331 9261 68921 531441

Fig. 2. Grid for Problem II at t = 1.0. Slices at x = 0.5, y = 0.5, and z = 0.5.

Summarizing, our second test problem is given by (45) with the velocity field from (49) and the
reaction term f from (46). At the inflow boundaries we impose the exact solution. The solution is
given by (47) with d = d(x, y, z, t) defined by (50) and c1 (0) = 0, resulting in

1 - e-d(x,y.z.t)·t

c, (t) = d(x, y, z. t) .!QQl - e-d(x,y.z,t)·t'
1000

10-3
Cz(t) = d(x, y, Z, t) .!QQl - e-d(x,y,z,t)·r·

1000

(52)

In the short time interval [O, 0.01] the solution c2 decreases over 90%. For the rest of the time
interval, (45) is rather an advection problem with the extra difficulty that for negative solution values
(45) becomes unstable.

3.2.1. Numerical results for Problem II
For this test example we used a base grid with eleven points in each direction. A maximum of

four grid levels was allowed. The initial time step size was 0.00001.
In the first run we encountered instabilities due to negative solution values causing a break-down

of the run. We then adjusted the problem so that after every time step negative solution values were
replaced by zero. With this simple adjustment, resulting in the same error values at t = 0.5, the
endpoint was reached. The error at t = 1.0 was the same as obtained for the advection equation

~.---

J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156 145

(f = 0), viz., 0.17 for the first component (the maximum value was 0.83 instead of 1.0). The only
difference in integration history between the two runs with and without reaction term was the size of
the time steps used in the very first part of the time interval [0, 0.03]. The advection run used over
the whole interval step sizes of 0.003, whereas the run solving (45) used step sizes from 0.00001
increasing to 0.003 within [0,0.03]. The integration performance over the rest of the interval was the
same. In this case the efficiency gain in memory of the LUGR method is much larger than in the
previous case. This is as expected since the refinement area is now a sphere instead of a skew plane
(cf. Table 3). The plot in Fig. 2 of the grid at t = 1.0 shows that the sphere is approximated well by
the grid refinements.

As can be seen in Table 3 the ILU preconditioner again is optimal in terms of linear iterations
required. For the second linear solver, GCRO, we first used the simple diagonal scaling neglecting
the first-order derivatives at the outflow boundaries. For this solver the problem was a bit more
difficult. Newton failures occurred five times resulting in a first step size of 0.4E-7, but after the
initial problems there were no more Newton failures and the time step size again increased to 0.003
within [0,0.03] . We then run the problem with the block-diagonal preconditioner also neglecting the
first-order derivatives. Although both the computation of this preconditioner and the backsolves are
more expensive then the diagonal scaling it pays off. The integration history is as smooth as for
BiCGStab+ILU and much less linear iterations are needed. For more detailed information we refer
to Table 3.

3.3. Problem III: a 3D fluid-flow/salt-transport problem

We consider a model for an isothermal, single-phase, two-component saturated flow problem which
consists of two PDEs basic to ground-water flow: the continuity equation and the transport equation.
For the background of these equations we refer to [19] . We here present the model in non-conservative
form. As independent variables we have the pressure p and the salt mass fraction (I). The continuity
equation for the fluid and the salt transport equation are given by

np(f3a; + y~~) + V' · (pq) = 0,

np aw + pq. V' (J) + V'. (p]"') = 0, at

(53a)

(53b)

where n is the porosity parameter of the porous medium, /3 a compressibility coefficient, and y a salt
coefficient. Darcy's law gives the equation for the fluid velocity q = (qi> qz, q3) T

k
q = --(V'p - pg),

µ,
(54)

with g the acceleration of gravity vector and k the permeability coefficient of the porous medium.
The density p and the viscosity µ, obey the state equations

p = p0 exp[f3p + yw],

µ, = µ,0 • m(w), m((I)) = 1 + l.85w - 4.lw2 + 44.5(1)3,

(55)

(56)

146 J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156

where p0 is the reference density of fresh water and µ 0 a reference viscosity. The equation for the
salt-dispersion flux vector is given by Fick's law

J"' = -nD\Jw, (57)

with the dispersion tensor D for the solute salt defined as

nD = (nDmol +aTJqj)J + aLJ~JaT qqT, jqj = ~· (58)

The coefficients Dmoi. aT and aL correspond with the molecular diffusion, the transversal dispersion,
and the longitudinal dispersion, respectively.

Our examples are connected with laboratory experiments that deal with the displacement of fresh
water by a polluting fluid in a tank filled with a porous medium. Fresh water is flowing from left to
right through the tank. The polluting fluid, which has a higher density than fresh water, is injected
with constant velocity through a slit at the top of the tank. We simulate here a pollution with salt water
of two different concentrations, one with a salt mass fraction of 0.0935, and the other a pollution
with brine having a salt mass fraction of 0.25. The latter is more demanding. In both cases this gives
rise to a fresh-salt water plume, but the steepness of the front is dependent of the salt mass fraction.

The tank is defined by a box n = {(x,y,z) I 0 ~ x:::;; 2.5,0:::;; y:::;; 0.5,0 ~ z :::;; 1.0}. The
acceleration of gravity vector takes the fonn g = (0, 0, g) T, where g is the gravity constant. The initial
values at t = 0 at n u an are taken as

p(x,y,z,0) = (0.03-0.012x+ l -z)p0g, w(x, y, z, 0) = 0. (59)

For 0 < t :::;; tend the following boundary conditions are imposed

x=O, y E [0, 0.5], z E [O, 1]: p = p(x, y, z, 0), (l) = 0,

x = 2.5, y E [0,0.5], Z E [0, 1]: p =p(x,y,z,0), Wx = 0,
y = 0, 1, x E [0,2.5], z E [O, 1]: q2 = 0, Wy = 0,
z =0, x E [O, 2.5], y E [0,0.5]: q3 = 0, Wz = 0,

(60)

z = 1, x,yf:/B: q3 = 0, Wz = 0,
(x,y)EB: pq3 = -4.9510-2, (l) = (J) B•

where

B = {(x,y) I 0.375:::;; x ~ 0.4, 0.2 ~ y ~ 0.3}.

The last line is connected with the slit where the salt water is injected with a prescribed velocity and
concentration. In the first experiment the salt mass fraction w8 = 0.0935, in the second w8 = 0.25.
The other conditions are self-evident. All remaining problem data are contained in Table 4.

3.3.1. Numerical results for Problem III(a) (w 8 = 0.0935)
As cell width of the base grid we used 0.1 in each direction. The maximum number of grid levels

allowed was four. For this problem we set UMAX(l) = p0g = 10000 and UMAX(2) = 0.1. In Fig. 3 we
give contour plots of the salt concentration in the plane y = 0.2 after 2 and 6 hours. The contour lines
of the higher salt mass fractions (0.5-1.0 times w8) display a likely solution pattern and show no

J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156 147

-- ·--1--1-- --
+--+--

--
l

0.0 0.5 1.0 1.5 2.0 2.5

x

0.0 0.5 1.0 1.5 2.0 2.5

x

Fig. 3. Problem IIl(a) (w8 = 0.0935), slice at y = 0.2. Grid and 10% contour lines of the salt mass fraction after 2 hours
(above) and after 6 hours (below).

148 J.C. Blom, J.G. Verwer/ Applied Numerical Mathematics 16 (1994) 129-156

Table 4
Data for Problem III

n 0.35 k 7.1810-•1 nDmol 110-9
po 1000 /LiJ 0.001 aT 0.001

y ln(2) g 10 aL 0.01

/3 0.0 fend 21()4

Table 5
Integration history for Problem IIl(a)

BiCGStab+ILU GCRO+Block-diag

Level 2 3 4 2 3 4

t = 7200 STEPS 101 101 IOI 101 115 115 115 115

JACS 103 103 103 105 126 125 125 135

NIT 203 205 206 211 250 250 253 254

LSIT 1 323 268 359 441 4012 4944 6634 9313

LSIT 2 148 109 186 302 3313 2946 3682 6072

LSIT 3 106 466
pts 1716 2211 7817 25647 1716 2211 7817 25647

t = 21600 STEPS 168 168 168 168 182 182 182 182

JACS 170 170 170 172 193 192 193 202

NIT 337 339 340 345 384 384 399 392
LSIT l 577 494 631 759 7013 8442 11806 16016
LSIT 2 267 235 360 632 5295 4798 6682 9969
LSIT 3 556 571
LSIT 4 187
pts 1716 4675 20419 66527 1716 4675 20419 66527
Uniform 1716 11781 86961 667521 1716 11781 86961 667521

wiggles despite the steepness of the solution near the inlet slit. However, for the lower concentrations
there is an unexpected "drip" in the solution. Since the density decreases from top to bottom, one
would expect that the pollutant would be more easier taken by the flow instead of sinking to the
bottom. It is not likely that this is caused by the grid refinement procedure, since the refined grids
are nicely placed around the fresh-salt water plume. Moreover, a second run on a uniform grid with
a cell width of 0.025 gave a solution with the same characteristics.

The integration data are given in Table 5. Using BiCGStab+ILU as linear solver the integration in
time is again performed smoothly, the step size steadily increases from approximately 1 at the start of
the problem to approximately 200 at tend· Both solvers give the same solution up to plotting accuracy.
In this case we could not neglect the boundary conditions in the preconditioner for GCRO. This
was to be expected since the boundary conditions at the inlet do include first-order derivatives. With
block-diagonal preconditioning the second solver behaved reasonably smooth in time. Ten Newton
failures occurred at about t = 3300, but in the remainder of the time interval the step size steadily
increased to 260 at tend· Restrictic:1 to diagonal scaling led to too many failures of the linear solver to
be of practical use. For this problem BiCGStab+ILU is by far the more efficient in CPU time, but if

J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156

Table 6
Integration history for Problem IIl(b)

Level 2 3 4

t = 7200 STEPS 178 178 178 178
JACS 185 184 184 184
NIT 369 368 367 379
LSIT 1 457 431 556 698
LSIT 2 172 195 275 440
LSIT 3
pts 1716 3157 10237 32541

t = 14400 STEPS 243 243 243 243
JACS 261 260 266 257
NIT 521 520 526 525
LSIT 1 739 689 837 991
LSIT 2 286 309 455 674
LSIT 3
LSIT4
LSIT 5
pts 1716 4059 16063 52715
Uniform 1716 11781 86961 667521

5

149

178
198
376
970
896
92

100799

243
282
558

2121
1432

223
97
63

145394
5229441

memory is the bottle-neck the problem can be solved with the matrix-free solver. It should be noted
that this solver is less robust. Since the quality of the stopping criterion (26) is dependent on the
correctness of the approximation of the Jacobian G by the preconditioner P it is important to have
a good preconditioner. This means for the second linear solver that the number of iterations in the
inner GMRES loop should not be too small so that the system is well enough solved.

Note that the solution of the linear systems is more demanding in this case. Therefore the LUGR
approach will be from a computational point of view more profitable than in the previous examples.

3.3.2. Numerical results for Problem III(b) (w8 = 0.25)
We started with the same base grid as in the previous case. A fifth grid level was required to solve

the brine transport problem since a higher salt mass fraction results in steeper fronts. UMAX was set
to (10000,0.25). The contour plots in Fig. 4 show again a slice from the solution at y = 0.2. As
expected, a pollutant with higher density will sink faster to the bottom, which is reached after four
hours. For this problem we present only the results for the BiCGStab+ILU solver. The figures for the
integration history are given in Table 6. They show even more strikingly than in the previous case,
that the solution of the (non)linear systems at a fine grid appears to be more cumbersome than at
the coarser grids. This could probably be explained by near-singularities caused by the hydrodynamic
dispersion tensor in the vicinity of vortices [14].

It would not be feasible to solve Problems III(a) or IIl(b) on a uniform fine grid. However,
knowing the mass fraction of a pollutant and the pressure gradient between x = 0 and x = 2.5, one
could predict on forehand a region where the polluting fluid would spread and use a nonuniform grid
with refinements in that specific region.

150 J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156

0.0 0.5 1.0 1.5 2.0 2.5

x

0.0 0.5 1.0 1.5 2.0 2.5

x

Fig. 4. Problem Ill(b) (w8 = 0.25), slice at y = 0.2. Grid and 10% contour lines of the salt mass fraction after 2 hours
(above) and after 4 hours (below).

J.G. Blom, J.G. Verwer/ Applied Numerical Mathematics 16 (1994) 129-156 151

Table 7
Global performance

BiCGStab GCRO

CP sec Mfiop CP sec Mfiop Pree

Problem I(a) scalar 1263 12 2446 22 Diag
vector 430 36 509 104 Diag

Problem I(b) vector 1260 160 Diag

Problem l(c) scalar 1439 10 857 24 Diag
vector 175 79 132 154 Diag

Problem II vector 873 63 787 126 Diag
vector 624 105 Block

Problem III(a) vector 758 119 2854 195 Block

Problem III(b) vector 4222 117

4. Performance

Our performance evaluation was done on a Cray YMP with the CF77 compiling system. Scalar
results were obtained using cf77 -Wf" -o novector" and vector results with cf77 -Zv -Wf"-o
aggress". To measure the Megaflop rate and the CPU time spent in a routine we used the Cray
utility Perftrace [11] that gives the hardware performance by program unit (compiler flags -F and
loader flags -F -lperf).

4.1. Global performance

We first give a global idea of the performance of the two different solvers, i.e., VLUGR3+ BiCGStab
and VLUGR3+GCRO. In Table 7 the CPU time and the Mflop rate is shown for the example problems.

BiCGStab+ILU is the more robust solver and uses the least number of linear iterations. Therefore,
if memory is not a problem it is in most cases more efficient, especially on scalar processors. If
the number of PDE components is large or if (block-)diagonal scaling is a good preconditioner,
then GCRO can be competitive or even faster. This matrix-free solver is more memory efficient and
vectorizes also much better, but since it is more sensitive to stopping criteria and restrictions on the
number of iterations we feel that it should be used with care.

4.2. Vector results

In this section we discuss the vector performance of the LUGR code for the three example problems.
The timings were done on one processor of a Cray Y-MP which has a clock cycle time of 6ns. This
gives a theoretical peak performance on one processor of 167 Mflops and 333 when chaining an
add and a multiplication. Since during one cycle time one store and two loads can be performed,
indirect addressing of one of the vector operands of a triad will reduce the performance at least with
a factor of 2, bank conflicts left out of consideration. When more vectors are indirectly addressed

152 J.G. Blom, J.G. Verwer!Applied Numerical Mathematics 16 (1994) 129-156

Table 8
Vector performance of top 5 routines for Problem l(a)

BiCGStab+ILU GCRO+Diag

calls Avg. time ACM% Mflop #calls Avg. time ACM% Mflop

INJON 816 7.8E-2 14.8 0 DERIVS 9641 l.4E-2 26.4 137

ILU backs 2044 2.2E-2 25.3 69 GMRESO 1393 6.0E-2 42.9 235

JACSLP 277 l.5E-1 35.0 0 INJON 816 7.8E-2 55.4 0

JACSUP 277 1.4E-1 44.3 0 MKBND 276 l.3E-1 62.5 0

MKBND 276 1.3E-1 52.6 0 SETBA 277 l.3E-1 69.5 0

Table 9
Vector performance of top 5 routines for Problem l(b)

GCRO+Diag

#calls Avg. time ACM% Mflop

DERIVS 10374 4.7E-02 38.5 145

GMRESO 1294 2.6E-01 64.9 251

PDEF 11622 l.OE-02 74.4 215

INJON 690 9.5E-02 79.6 0

MATVEC 9688 5.2E-03 83.6 183

Table 10
Vector performance of top 5 routines for Problem I(c)

BiCGStab+ILU GCRO+Diag

#calls Avg. time ACM% Mflop #calls Avg. time ACM% Mflop

ILU dee 108 5.8E-1 36.0 65 DERIVS 3849 l.3E-2 37.7 137

ILU backs 676 6.0E-2 59.4 78 GMRESO 430 8.3E-2 64.8 245

MATVEC 444 3.8E-2 69.2 143 PDEF 4281 2.7E-3 73.7 210

PDEF 3472 2.0E-3 73.2 213 INJON 208 3.3E-2 78.9 0

INJON 208 3.2E-2 77.1 0 MATVEC 3627 l.4E-3 82.7 176

the (current) impossibility on the Y-MP to chain more than one gathered/scattered load/store would
reduce the performance to a much larger degree.

On all problems the vector performance of the LUGR code using the matrix-free GCRO+(block-)
diagonal preconditioning is satisfactory or even good. For more difficult problems a vector speed
of approximately 200 Mftops is reached. For Problem l(a) and to a lesser extent also for Problem
II the code with BiCGStab+ILU almost behaves as a scalar code. Closer inspection shows that all
routines that deal with the solution of the PDE system on one specific grid have a satisfactory vector
performance. The definition of the PDE achieves 150-250 Mflops, the matrix-vector multiplication
about 150 and the preconditioner approximately 70 Mflops. The disappointing overall vector perfor­
mance for the first two problems is caused by the grid refinement "overhead" routines that contain

11

J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156 153

Table 11
Vector performance of top 5 routines for Problem II for solvers BiCGStab+ILU and GCRO+Diag

BiCGStab+ILU GCRO+Diag
1% Mflop # calls Avg. time ACM% Mflop #calls Avg. time ACM% Mftop

i6.4 137 ILU dee 1340 l.6E-J 24.6 62 DERIVS 33583 7.0E-3 30.2 137
~2.9 235 ILU backs 5611 2.4E-2 40.2 69 GMRESO 4397 3.5E-2 50.0 239
i5.4 0 INJON 3003 2.5E-2 48.9 0 INJON 3084 2.6E-2 60.2 0
)2.5 0 MATVEC 2930 l.SE-2 54.0 140 PDEF 39133 1.7E-3 68.6 240
)9.5 0 JACSLP 1006 4.3E-2 59.0 0 MKBND 1038 3.9E-2 73.7 0

Table 12
Vector performance of top 5 routines for Problem II for solver GCRO+Block-diag

GCRO+Block-diag

calls Avg. time ACM% Mftop
Mflop DERIVS 22460 7.0E-03 25.5 136

145 INJON 3003 2.6E-02 37.8 0

251 GMRESO 4148 l.7E-02 49.4 226

215 PDEF 33180 l.6E-03 58.1 240

0 MKBND 1005 3.9E-02 64.4 0

183

Table 13
Vector performance of top 5 routines for Problem III(a)

BiCGStab+ILU GCRO+Block-diag

calls Avg. time ACM% Mftop #calls Avg. time ACM% Mftop
1% Mflop PDEF 15006 l.6E-2 31.4 210 PDEF 83865 2.lE-2 62.9 209

17.7 137 ILU backs 9340 2.0E-2 56.5 72 GMRESO 4150 l.OE-1 77.7 254

;4.8 245 MATVEC 7972 l.3E-2 70.6 142 DERIVS 72957 5.4E-3 91.7 134

r3.7 210 ILU dee 682 I.OE-I 80.J 62 BCKBDI 72957 6.6E-4 93.4 113

r8.9 0 INJON 1518 l.6E-2 83.3 0 MATVEC 71364 5.8E-4 94.8 175

12.7 176

Table 14

store would
Vector performance of top 5 routines for Problem III(b)

BiCGStab+ILU

>+(block-) #calls Avg. time ACM% Mfiop

::ctor speed
ILU backs 21071 6.6E-2 33.1 73

or Problem PDEF 29277 3.6E-2 57.9 210
>WS that all

MATVEC 18282 4.4E-2 77.2 142
;tory vector

ILU dee 1326 2.3E-1 84.2 66
iltiplication

INJON 3064 3.3E-2 86.7 0
ctor perfor-
:hat contain

154 J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156

no floating-point operations and that take a considerable amount of the total CPU time. In the case
of the scalar Problem I(a) this amounts to even 70% of the total CPU time. For the two-component
system of Problem II the overhead still amounts to 35%. In Tables 8-14 we can see that the most
time consuming "search" routine is INJON which transfers the solution values of previous time levels
to the grid at a current time level. The time spent in this routine could be diminished by adding
pointers between coinciding grid points from one grid to another during creation of the new grid.
In the current implementation one has to search for coinciding grid points in both grids. It is also
possible to use a one-step time-integration formula instead of the two-step BDF formula. This would
approximately halve the time used to transfer solution values of previous time levels to the current
grid. The less complicated way of defining the boundary in 3D compared to the structure in 2D in
VLUGR2 [3] has its consequences when those structures are used (as in JACSLP and JACSUP which
create the dependency lists for the vectorizable version of the preconditioner) or created (MKBND).
However one should keep in mind that these routines are less dominant when the problem is more
nonlinear or when the number of PDE components is larger so that more work has to be done to
solve the PDE-system on a specific grid (cf. Tables 13 and 14). For Problem III(a) the overhead
costs are approximately 10% and for Problem IIl(b) even less than 5%.

5. Summary

We have discussed the performance of a Method of Lines solver based on a Local Uniform
Grid Refinement method for systems of time-dependent PDEs in three dimensions. The vectorizable
implementation of this method is an extension of the 2D code VLUGR2 [3]. The LUGR method proved
to be robust and efficient with respect to the location of the refined grids, especially when a very
fine grid was required in part of the domain. The experiments with VLUGR2 [3] revealed that in two
dimensions the overhead for the grid refinement is negligible when using an implicit time integrator
even for simple scalar problems. In three space dimensions the local refinement overhead is larger
and can even dominate the CPU time for simple problems. It is possible to decrease this overhead by
adding extra pointers to the data structure or by using a one-step time-integration formula. However,
if the number of components is large or the non linearity of the problem is high (as for instance in
Problem III) the CPU time needed for the grid structure and refinement is again negligible.

Our LUGR code offers two different iterative nonlinear solvers. In the first the Jacobian of the
Newton process is approximated and stored. The linear solver used is BiCGStab [20] combined
with standard ILU preconditioning. The second solver is a matrix-free Newton process and uses
GCRO [12] and (block-)diagonal scaling. If memory demands are no restriction we advocate the
former since it is more robust and generally uses less CPU time. The matrix-free solver not only
avoids the storage of Jacobian and ILU matrices, it also generates a true Newton process instead of
a modified one. An additional advantage is that tailor-made space-discretization schemes, resulting
in other couplings than the here used 19-point stencil, can be more easily implemented. The vector
performance of this solver is good, from 100 Mflops for a simple scalar PDE to 200 Mftops for a
more nonlinear system of PDEs.

The first linear solver is less efficiently vectorizable but uses also in general less CPUtime. For
simple scalar problems the CPU time is dominated by the grid refinement overhead which is for
this solver even larger than for the matrix-free one. It will of course still be faster than solving

n the case
:::omponent
.t the most
time levels
by adding
new grid .

. It is also
lhis would
the current
e in 2D in
)UP which
\.fKBND).
m is more
Je done to
~ overhead

1 Unifonn
:x:torizable
10d proved
ien a very
hat in two
integrator

:i is larger
rerhead by
However,

nstance in
e.
ian of the
combined
and uses

vocate the
r not only
instead of
, resulting
rhe vector
fops for a

Jtime. For
tich is for
m solving

J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (/994) 129-156 155

on a uniform fine grid. The ILU preconditioning of the linear systems vectorizes better than in the
two-dimensional case, since the number of computations that can be done independently from each
other is much larger. However, the Mflop rate is still hampered by the fact that only one indirect
load/ store instruction can be issued at a time, versus two load and one store instructions without
gather I scatter necessity (cf. [4]).

Acknowledgement

We wish to thank Mart Oostrom and Jan van Eijkeren (RIVM) for providing us the data for
Problem III.

References

[I] C.C. Ashcraft and R.G. Grimes, On vectorizing incomplete factorization and SSOR preconditioners, SIAM J. Sci.
Statist. Comput. 9 (I) (1988) 122-15 I.

[2] J.G. Blom and J.G. Verwer, A vectorizable adaptive grid solver for PDEs in 3D, Report NM-R9319, CW!, Amsterdam
(1993).

[3] J.G. Blom and J.G. Verwer, VLUGR2: a vectorized local uniform grid refinement code for PDEs in 2D, Report
NM-R9306, CWI. Amsterdam (1993).

[4] J.G. Blom and J.G. Verwer, Vectorizing matrix operations arising from PDE discretization on 9-point stencils, J.
Supercomput. 8 (1994) 29-51.

[5] J.G. Blom and J.G. Verwer, VLUGR3: a vectorizable adaptive grid solver for PDEs in 3D. II. Code description, Report
NM-R9405, CWI, Amsterdam (1994).

[6] J.G. Blom, J.G. Verwer and R.A. Trompert, A comparison between direct and iterative methods to solve the linear
systems arising from a time-dependent 2D groundwater flow model, lnternat. J. Comput. Fluid Dynamics 1 (1993)
95-113.

[7] K.E. Brenan, S.L. Campbell and L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic
Equations (North-Holland, New York, 1989).

[8] P.N. Brown, A.C. Hindmarsh and L.R. Petzold, Using Krylov methods in the solution of large-scale differential­
algebraic systems, Technical Report TR 93-37, Computer Science Department, University of Minnesota, Minneapolis,
MN (1993).

[9] P.N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput. 11
(I) (1990) 450-481.

[I O] A.T. Chronopoulos, Nonlinear CG-like iterative methods, Report UMSI 91 /99, University of Minnesota Supercomputer
Institute, Minneapolis, MN (1991).

[11] Cray Research, Inc., UN/COS Performance Utilities Reference Manual, SR-2040 6.0 edition (1991).
[12] E. De Sturler and D.R. Fokkema, Nested Krylov methods and preserving the orthogonality, In N. Duane Melson, T.A.

Manteuffel and S.F. McCormick, eds., Sixth Copper Mountain Conference on Multigrid Methods, NASA Conference
Publication 3324, Part I (1993) 11 1-126.

[13] R.A. Trompert, MOORKOP, an adaptive grid code for initial-boundary value problems in two space dimensions,
Report NM-N9201, CWI, Amsterdam (1992).

[14] R.A. Trompert, A note on singularities caused by the hydrodynamic dispersion tensor, Report NM-R9302, CW!,
Amsterdam (1993).

(15] R.A. Trompert, Local Uniform Grid Refinement for time-dependent partial differential equations, Ph.D. Thesis,
University of Amsterdam (1994).

[16] R.A. Trompert and J .G. Verwer, A static-regridding method for two-dimensional parabolic partial differential equations,
Appl. Numer. Math. 8 (1991) 65-90.

156 J.G. Blom, J.G. Verwer/Applied Numerical Mathematics 16 (1994) 129-156

[17] R.A. Trompert and J.G. Verwer, Analysis of the implicit Euler local unifonn grid refinement method, SIAM J. Sci.
Comput. 14 (1993) 259-278.

[18] R.A. Trompert and J.G. Verwer, Runge-Kutta methods and local unifonn grid refinement, Math. Comp. 60 (1993)
591-616.

[19] R.A. Trompert, J.G. Verwer and J.G. Blom, Computing brine transport in porous media with an adaptive-grid method,
lnternat. J. Numer. Methods Fluids 16 (1993) 43-63.

[20) H.A. van der Yorst, Bl-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric
linear systems, SIAM J. Sci. Statist. Comput. 13 (2) (1992) 631-644.

[21] H.A. van der Yorst and C. Vuik, GMRESR: a family of nested GMRES methods, Report 91-80, Faculty of Technical
Mathematics and Informatics, TU Delft, Netherlands (1991).

[22] J.G. Verwer and R.A. Trompert, An adaptive-grid finite-difference method for time-dependent partial differential
equations, in: D.F. Griffiths and G.A. Watson, eds., Proceedings 14th Biennial Dundee Conference on Numerical
Analysis, Pitman Research Notes in Mathematics Series 260 (Pitman, London, 1992) 267-284.

[23] J.G. Verwer and R.A. Trompert, Analysis of local unifonn grid refinement, Appl. Numer. Math. 13 (1993) 251-270.
[24) G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).

