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1. Introduction 

We consider the integral 

G(r) •= Lx z 2[ 1 - cos(re;~/z)] dz. ( 1.1) 

This integral recently showed up [ l] in the calculation of the time-dependent 
field-field correlation function of the electric field inside polarizable ( dielec
tric) particles. In particular, the integral ( 1.1) describes the influence of 
resonantly induced dipole-dipole coupling (Van-der-Waals interaction) be
tween small Mie-spheres. Without this coupling the field correlation decays 
exponentially, with the so-called dwell time [2] as characteristic time. This 
time is (in some respects) the classical-wave equivalent of the inverse 
Einstein spontaneous emission coefficient A - t in quantum-mechanical light 
scattering [3]. The time-variable r has been scaled with this time. 

The purpose of this paper is to give representations of G(r) which are 
more suitable for obtaining qualitative and quantitative information. We 
give tables of numerical values and we show how to obtain the large 
r-behaviour from these new representations. We obtain the asymptotic 
result 

n , i 3 G(r) - -- ln- r - - ln- r 
2 3 ' 

as r ~ oo. 

In §5 we compare this with the results of numerical computations. 
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2. Interpretation of the integral with respect to convergence 

The integral ( 1.1) is not convergent in the classical sense when we 
integrate over real positive z-values. To make the integral convergent, we 
assume that at infinity the path of integration terminates in the upper 
complex plane, along a ray arg z = e, with 0 < e < n. Since scattering theory 
usually considers exp(iz) as exp[i(z + iO)] this interpretation is in agreement 
with the physical context. Near the origin z = 0 we integrate along real 
positive z-values. To be more specific, we assume that the path of integra
tion in ( 1.1) consists of the interval [O, I] and the half line that starts at the 
point z = 1 and that makes an angle e, 0 < e < n, with the positive real 
z-axis. Later we define completely different paths of integration, which are 
more suitable for obtaining asymptotic information, and which also can be 
used for numerical quadrature. 

3. Non-oscillating representations of G(r) 

We first use integration by parts in order to obtain a representation that 
is more manageable for asymptotic analysis. We have 

I ("' . 
G(r) = 3 Jo [1 - cos(re 1=/z)] dz 3 

1 (00 . . 
= - 3 r Jo z(iz - l)e'= sin(re 1=/z) dz 

= G1 (r) + G2 (r), 

where 

G1(r) =~LOG z(iz - l)ei=+iw1=/= dz, 

G2 (r) = ;i 100 z(iz- I)ei=-ire1=/= dz. 

The function G2 (r) is quite easy to handle. 

(3.1) 

To this end, we define a new path of integration for G2 (r). The 
integrand is analytic in the complex z-plane, with exception of the origin. 
Taking into account the behaviour of exp[iz - iT exp(iz)/z)] at infinity in the 
upper half plane :lz > 0, we can deform the original path into the positive 
imaginary axis. To avoid the essential singularity at the origin, we introduce 
first a small quarter circle that runs from the positive real axis to the 
positive imaginary axis. The contribution along this quarter circle vanishes 
when the radius of the circle vanishes. To verify this we consider the 
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singular part in the exponential function: w(z) = -ir exp(iz)/z. Writing 
z = x + iy, we have 

re-Y 
w(z) = 2 ~ [(x sin x - y cos x) - i(x cos x + y sin x)]. 

x + y-

When y > x tan x, the real part of w(z) is negative. Hence, then exp[w(z)] is 
bounded near the origin. When y :.::;;; x tan x, we have y = C9(x 2) when x is 
small. Hence, 

x sin x - y cos x = (9 ( x 2 ) 

x2 + y2 x2 + y2 • 

which is bounded near the origin. It follows that the contribution along a 
quarter circle with radius b of an integral with integrand as in the second 
line of (3.1) equals C9(<'2) as b -+O. 

Integrating with respect to z = iy, y > 0, we obtain 

-zr . _, .. . lac G2(r) = - 6- 0 
y(y + l)e-.i - re l.i dy. (3.2) 

The integrand is now non-oscillating and purely real. Moreover, the inte
grand is exponentially small at both end points of integration. 

A similar approach for G1 (r) is not possible. It would yield an integral 
as in (3.2), with a different sign of r. But then the convergence at the origin 
is violated. Turning the path of integration of G 1(r) to the negative 
imaginary axis would give a convergent integral (change the signs of bothy 
and r in (3.2)). But we have assumed that both integrals in (3.1) terminate 
in the upper half plane. When we turn the path of G1 (r) into the lower half 
plane, convergence is violated when we pass the real positive z-axis at 
infinity. Turning around a small quarter circle, that runs from the positive 
real axis to the negative imaginary axis is possible, however. This follows 
from a similar analysis as is given above for the integral G2(r). 

We use the method of saddle points (see [ 4]) to derive a new path of 
integration for G1 (r). The dominant part of the integrand in the first line of 
(3.1) is the function cp(z)==ie;=/z. It has a saddle point at the point where 
the derivative cp'(z) vanishes. We have 

!!._ cp(z) = i !!._ e;= = <f>(z)[i - ~]. 
dz dz z z 

It follows that there is one saddle point, which is located at z = - i. In the 
saddle point method one tries to modify the original path of integration into 
a new path, such that the new path runs through the saddle point; several 
aspects should be taken into account: the original end points of the contour 
and preservation of convergence of the integral during this operation. 
Furthermore, one tries to obtain a contour along which the imaginary part 
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of the phase function, in our case <f>(z), is constant. Considering this final 
point, one tries to solve the equation ':Jcp(z) = '3cp( - i); the right-hand side 
is the value at the saddle point, which happens to be zero in our case. 
Writing z = x + iy, we obtain the equation 

e-.v 
'3</>(x + iy) = ~ ~ [x cos x + y sin x] = 0. 

x-+ y-

Hence, the equation ':Jcp(z) = 0 has the solutions x = 0 and y = -x cot x. 
The latter defines a parabola shaped curve, - re < x <re, with minimal point 
at z = - i, the saddle point. Along this curve we have 

sin x 
9i<f>(x + iy) = -e-v -. 

x 

By using these results the path of integration for the integral defining G1 (r) 
in (3.1) is composed by two parts (see Figure I): 

• the path from the origin to the saddle point z = - i; 
• the path starting at the saddle point and running to oo along a curve 

defined by the equation y = -x cot x, (0::::;; x <re). 

During the deformation of the original path into the new contour conver
gence of the integral is preserved, and both end points are maintained. The 
integrals along the two components of the paths are called G\1l(r), G\2l('r), 
respectively. By Cauchy's theorem: G 1 (r) = G\1l(r) + G\2l(r), where 

ir 11 
G\ll(r) = 6 Jo y(l - y)ey-uY/y dy, 

' I" G\2l(r) = 6 Jo f(x)e -y-u-Ysin(x)/x dx, 

Figure 1 
Path of integration for G,('r) of (3.1), 
giving the integrals in (3.3) and (3.4). 
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where 

f(x) = i(x + iy)(ix -y- l)e;{1 + idx) 

and the relation between x and y is given by u = -x cot x. 

4. Asymptotic behaviour of G('r) 

We derive first approximations for the real and imaginary parts of the 
functions given in (3.2), (3.3) and (3.4). 

An estimate of G2(1") 

We recall (3.2): 

- ir rcc 
G2 ('r) = - 6- Jo y(y + l)e-y- re-''l.v dy 

and take as new variable of integration u := e - -"/y. It follows that, by using 
du/dy = -u(y + 1)/y and a few other straightforward manipulations, 

( 4.1) 

When r is large, the main contributions to this integral come from a small 
neighbourhood of u = 0. When u is small the equation u = e-v;y can be 
inverted: (see [ 4, p. 25]) 

( In( -In u)) 
y = -ln u - In( -In u) + (!J In u . 

Taking the first term in this expansion, we obtain 

G2(r)""' -;r 1x (-In u) 3e -ru du. 

Using 

T r·xc ( -ln u) 3e -rn du= {'.G (-[n xf'r:) 3e·-x dx = -[n3 T + @(ln2 T), 

Jo Jo 
as r ~ oo, we see that 

as r ~ oo. 

( 4.2) 

( 4.3) 

( 4.4) 

Remark. We can compute the (0(ln2 r) term in this estimate, but we 
already neglected a term that is of higher order: going from the exact 
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relation (4.1) to (4.3), we neglected m y 3 , among others, the term 
-3 ln2 u ln( -ln u). 

An estimate of G1 (r) 

Next we consider G1 (r). The function G\1l(r) defined in (3.3) is exponen
tially small when r is large. This follows from the behaviour of the 
dominant part of the integrand: exp( -reY/y). This function is maximal at 
the end pointy= 1, where its value is exp( -re). Hence, G)11 (r) is exponen
tially small compared with G2 (r) and can be neglected in the asymptotic 
expansion of the function G( r ). 

In the integral ( 3 .4) defining the function G \2\ r) we take as new variable 
of integration v := e-.v sin(x) /x with y = -x cot x. A straightforward ma
nipulation of f(x) dx /dv finally gives the representation 

G\"l(r) = iT (" e3ix ~ e-T!' dv. 
6 Jo sm3 x 

( 4.5) 

Again, when r is large, the main contributions to this integral come from 
a small neighbourhood of v = 0. When v is small, the equation v = 
ex cot x sin(x) /x has a solution x with x "'n. Hence, replacing x cot x by 
-x/sin x, we find that the solution x satisfies 

x 
-.- = -Inv+ CD[ln( -Inv)], 
smx 
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Real and imaginary parts of G(r). 
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Since x "' n we have e3ix"' -1 + 3i sin x. It follows that a first approxima
tion of G\2l(r) is given by 

G\2>(r)r - ( -ln v) 3e-w dv - - ( -ln v) 2e-w dv, - ir 100 nr 100 

6 0 2 0 

giving 

as r - oo. (4.6) 

Collecting these results for G(r) = G1 (r) + G2 (r) "'G\2l(r) + G2 (r) from 
( 4.4)-( 4.6), we finally have 

-i 3 1C 2 G(r) "' - ln r - - ln r 
3 2 ' as r - oo. (4.7) 

5. Numerical evaluation of G(r) 

When computing G(r) for, say r :::::: 3, direct numerical integration of 
( 1.1) is not recommended. Because of the singularity at the origin and the 
strong oscillations of the integrand, especially when r is large, numerical 
quadrature is quite impossible. For instance, earlier experiments with 
straightforward applications to (1.1) for r > 15 of library quadrature rou
tines (that claimed to be suitable for oscillating integrands) yielded results of 
order 1010, while the function G(r) is of order (f)(ln3 r) as r - oo. 

In Table 1 we give the real and imaginary parts of G(r) for r-values in 
the inverval [O, 50]. Table 2 gives values for very large r-values. Only for 
these r-values the asymptotic result in ( 4.7) does come close to the numer
ical values. This is due to the logarithmic scale that shows up in the 
asymptotic expansion and to the order of magnitude of the neglected terms 
in ( 4.7); they are of lower order, but not much smaller than the dominant 
terms given in ( 4.7). 

We have computed the tables by using the splitting G(r) = G\1l(r) + 
G\2l(r) + G2 (r) and the integral representations given in (3.2), (3.3) and 
(3.4). For the numerical computations we have used the NAG subroutines 
DOlAHF and DOlAMF. 

6. Discussion and physical interpretations 

As has been mentioned in Section 1, the function G(r) describes the 
influence of resonant dipole-dipole coupling on the field-field correlation 
function C(r) inside polarizable particles. This correlation function is the 
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Table I 
Real and imaginary parts of G(r) 

r ~G(r) :JG(r) r ~G(r) :JG(r) 

0.00 O.OOOOOOE + 00 O.OOOOOOE + 00 10.00 -0.349571E+01 -0.693905E - 01 
0.50 -0.204561E-Ol 0.509865E - 01 12.00 -0.412071E+01 - 0.330307E + 00 
1.00 -0.108133E+OO 0.150845E + 00 14.00 -0.469942E + 01 - 0.605984E + 00 
l.50 -0.253001E + 00 0.248874E + 00 16.00 -0.523879E + 01 -0.889528E + 00 
2.00 - 0.433038E + 00 0.327306E + 00 18.00 -0.574441E + 01 -O.l 17678E +01 
2.50 -0.632011 E + 00 0.383101 E + 00 20.00 -0.622078E + 01 -0.146511E+Ol 

3.00 -0.839893E + 00 0.418198E + 00 22.00 -0.667154E + 01 -0.175286E + 01 
3.50 -0.105081E + 01 0.435715E + 00 24.00 -0.709967E + 01 -0.203893E + 01 
4.00 -0.126136E + 01 0.438666E + 00 26.00 -0.750766E + 01 - 0.232260E + 0 I 
4.50 -0.146963E + 01 0.429627E + 00 28.00 -0.789758E + 01 -0.260340E + 01 
5.00 -0.167453E + 01 0.410699E + 00 30.00 -0.827119E + 01 -0.288104E + 01 

5.50 -0.187546E + 01 0.383576E + 00 32.00 -0.863000E + 01 -0.315532E + 01 
6.00 -0.207216E + 01 0.349623E + 00 34.00 -0.897531E + 01 -0.342616E + 01 
6.50 - 0.226452E + 0 l 0.309943E + 00 36.00 -0.930823E + 01 -0.369349E + 01 
7.00 -0.245254E + 01 0.265435E + 00 38.00 -0.962977E + 01 -0.395733E + 01 
7.50 -0.263630E + 01 0.216836E + 00 40.00 -0.994078E + 01 -0.421768E+Ol 

8.00 -0.281591E + 01 0.164755E + 00 42.00 -0.I 02420E + 02 -0.447459E + 01 
8.50 -0.299151E+Ol 0. 109698E + 00 44.00 -0.105342E + 02 -0.472812E + 01 
9.00 -0.316324E + 01 0.520913E - 01 46.00 -0.108179E + 02 -0.497833E + 01 
9.50 -0.333126E + 01 -0.770639E - 02 48.00 -O. l 10937E + 02 -0.522530E + 01 

10.00 -0.349571E + 01 -0.693905E - 01 50.00 -O. l 13620E + 02 -0.546909E + 01 

Table 2 
Real and imaginary parts of G(r) for large values of r . .6.!RG(r) and .6.'.:IG(r) are the relative errors with 
respect to the asymptotic estimate given in ( 4. 7) 

!RG(r) :JG(r) Ll!RG(r) Ll'.:IG(r) 

I.OE+ 10 -0.6319E+3 -0.2843E+ 4 0.24E-O 0.30E-O 
I.OE+ 20 -0.2819E + 4 -0.2613E+ 5 0.15E-O 0.20E-O 
I.OE+ 30 -0.6630E + 4 -0.9335E+ 5 O.llE-0 0.15E-O 
I.OE+ 40 -0.1208E + 5 -0.2284E + 6 0.93E- l 0.12E-O 
I.OE+ 50 -0.1918E + 5 -0.4555E+ 6 0.79E - l O.lOE-0 

I.OE+ 60 -0.2792E + 5 -0.7987E+6 0.69E- I 0.91E- l 
I.OE+ 70 -0.3833E + 5 -0.1282E+ 7 0.61E-1 0.83E- l 
I.OE+ 80 -0.5038E + 5 -0.1930E+ 7 0.55E- I 0.74E-1 
I.OE+ 90 -0.6409E + 5 -0.2767E+ 7 0.49E- l 0.67E- l 
I.OE+ 100 -0.7946E + 5 -0.3817E+7 0.45E- l 0.61E- l 

Fourier transform of the total 'potential energy' in the medium [ 1] contain
ing the particles as a function of frequency. It is given by 

C(i") = e-·~[e;'"0 '(I + eG(r))], 

where cv0 is the eigenfrequency of the dipoles and e is a dimensionless 
quantity proportional to the number density of the dipoles. The parameter 
r has been scaled with the inverse linewidth of the radiation resonance of 
the dipole. For a single dipole C(r) decreases exponentially with r, suggest-
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ing that this inverse linewidth is a sort of 'dwell time' of the light in the 
particle. In general we might associate a 'dwell time' with the decay 
properties of C('r). 

The function G(r) describes the influence of recurrent scattering between 
two dipoles on this correlation function, the various orders of recurrency 
being obtained separately by expanding the integrand of Eq. ( 1.1) formally 
into a Taylor series. The first order of recurrency is in fact at the base of the 
1 /r 6 Van-der-Waals interaction between two polarizable particles separated 
by a distance r. At larger times, higher orders of recurrent scattering take 
over. 

From the analysis of the present paper we can draw various conclusions: 

• The field-field correlation function achieves an out-phase component, 
reflected by the imaginary part of G(r). Physically this happens 
because the line profile is no longer symmetric with respect to the 
resonance. 

• At large times, the correlation function C(r) is completely determined 
by high orders of recurrent scattering, and mainly out-phase. 

• The exponential decay is not replaced by an asymptotic algebraic 
decay. Instead it takes the form exp( -r) ln3 r. This means that the 
original inverse linewidth is still a characteristic time scale, although 
the real dwell time seems to be increased. 

The last point raises the interesting (but difficult) question what happens to 
correlation function and dwell time if recurrent scattering between more 
than 2 scatterers is taken into account. 
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Abstract 

We consider an integral that recently showed up in the calculation of the time-dependent field-field 
correlation function of the electric field inside polarizable (dielectric) particles. We derive new integral 
representations on which numerical algorithms can be based and which give information on the 
asymptotic behaviour for large values of a time parameter. We interpret the results of the paper in terms 
of the physical problem. 
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