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INTRODUCTION 

A population can be thought of as having, at a particular time, a definite structure. Here 
"structure" is defined as a frequency distribution of characteristics (here and below we 
are not referring to relative but to absolute frequencies). Usually the structure changes, 
both on a population dynamical time scale and over evolutionary time. One of the 
things we want to understand is how the patterns of change are related to mechanisms. 
These mechanisms necessarily act on the individual level (i-level). Their reduction to 
population dynamical essentials amounts to a description of the way in which growth, 
reproduction, probability of dying and influence on the environment are determined by 
the state of the individual organism (i-state) and the condition of the environment (E­
condition). Here the "environment" is thought to encompass all relevant abiotic factors 
as well as the local abundances of organisms of the same and other kinds (ranging from 
food to competitors, predators, and parasites). In this view, the natural representation 
of density dependence is as a feedback through the environment. 

Life histories are subject to variation and in the course of evolutionary time the predom­
inant life history may have undergone substantial development. One of the things we, 
as scientists, want to understand is how, and to what extent, past population dynamics 
has determined the currently prevailing life history. The same feedback loop via the 
environment provides the environmental arena for the race of alternative individual life 
histories to predominance. 

How do individual life histories determine population abundance and why did the pre­
vailing life histories evolve? To gradually come closer to a general answer to such broad 
questions we need formalisms of sufficient generality, a broad spectrum of techniques 
and lots of case studies. In this paper we shall concentrate on one particular formalism 
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of at least some generality and on some implied techniques. Of course there will be 
quite a contrast between our wishful thinking and the actual state of affairs. The title 
of this paper refers to an ambitious program and we hope that the text may stimulate 
at least some readers to contribute to its realization. 

Section 2 is concerned with formalism: what kind of mathematical equations best repre­
sent physiologically structured population models? This question is unfortunately less 
trivial than it may seem at first sight. 

In section 3 we emphasize the importance of dynamical systems lab facilities for dealing 
with this kind of models and we speculate a little about the possibilities for a technical 
realization. 

In section 4 we briefly sketch one formulation of the evolutionary question. Section 5 
finally sketches in a somewhat anecdotal fashion the wider perspective against which 
our present considerations should be judged. The result is a cautious optimism: our 
formalism may still cover less than we might wish, but there are also good reasons to 
believe that at least some of the results obtained by that formalism have a considerably 
wider applicability. 

This paper does not review the state-of-the-art, nor does it strive for completeness; 
it clearly ignores many important and interesting issues. Our primary focus will be 
some aspects of structured population dynamics we expect to shortly undergo rapid 
development. We hope that we may in addition provide some pointers to a further 
future. 

WHAT SORT OF EQUATIONS? 

Deterministic mathematical modelling, as opposed to e.g. stochastic simulation, nec­
essarily involves a translation of verbal descriptions of assumptions into mathematical 
equations. In the finite dimensional case, any continuous time dynamical system is 
uniquely characterized by a system of ordinary differential equations and consequently 
here "modelling" amounts to a specification of those differential equations on the ba­
sis of submodels for the underlying processes. Physiologically structured population 
models necessarily bring us into the realm of infinite dimensional dynamical systems. 
Formally the situation is the same, with the ordinary differential equations replaced by 
partial differential equations (see Metz & Diekmann, 1986, Heijmans 1986a,b, Metz, de 
Roos & van den Bosch, 1988, Diekmann, to appear). However, a precise interpretation 
and justification of the limits involved in deriving the partial differential equations can 
be a horrendous, if not impossible, task. So the risk that a conscientious mathematical 
analysis never surmounts this, biologically rather uninteresting, stage is substantial. Re­
peating some of the formulations of Diekmann, Gyllenberg, Metz & Thieme, preprint, 
we shall now indicate an attractive alternative for model formulation which can avoid 
much, _if not all, of the unilluminating technical labour. 

Let the i-state take values in n, a measurable subset of Rn. At the i-level, we introduce 
two model ingredients, one to describe growth and survival and one to describe repro­
duction. Each of these may itself be composed of various more elementary building 
blocks. 
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We define 

u(t, to, Yo)(w) = probability that an individual that is in state y0 at time 
t0 will still be alive at time t and have i-state in the 
(measurable) subset w of n. 

where it is implicitly understood that the environmental variables are given as a function 
of time (a point to which we return below). The interpretation requires that u satisfies 
the Chapman-Kolmogorov consistency relation 

u(t+s,to,Yo)(w) = l u(t+s,t,y)(w)u(t,to,Yo)(dy) 

Likewise we define the reproduction kernel ( cf. Jagers, 1989, 1991, preprint) 

A(t, to, Yo)(w) = expected total number of children, with state-at-birth 
in w born in the time-interval [to, t] from an individual 
having at time t0 i-state Yo 

A should satisfy the additive consistency relation 

A(t + s, to, Yo) = A(t, to, Yo)+ l A(t + s, t, y)u(t, to, Yo)(dy) 

(2.1) 

(2.2) 

In the special case of deterministic growth one postulates the existence of a function 
Y(t, to, Yo) giving the i-state at time t, given that the i-state was Yo at time to and given 
survival. One then takes the survival function Fas a second building-block and puts 

u(t, to, Yo) = 8Y(t,t0 ,y0 ):F(t, to, Yo) (2.3) 

where, as usual, 8y denotes the unit measure concentrated in the pointy. Substituting 
(2.3) into (2.1) we find that y should have the semigroup property 

Y(t + s, to, Yo) = Y(t + s, t, Y(t, to, Yo)) (2.4) 

while :F should satisfy the consistency condition 

:F(t + s, to, Yo) = :F(t + s, t, Y(t, to, yo)):F(t, to, Yo) (2.5) 

In a priori modelling often both Y and :F will be derived from a differential equation, 
viz. 

dY dt = v(Y, E), Y(to, to, Yo) = Yo, 

d:F dt =-µ(Y,E):F, :F(to,t0 ,yo) = 1, 

where E denotes the contemporary environmental condition. 

(2.6) 

(2.7) 
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Similarly one can express A by the formula 

A.(t,to,Yo) =lt { p(y,E(r)).A(y,E(r))u(r,to,Yo)(dy)dr 
to Jn 

where 

.A(y, e) = expected rate at which an individual in i-state y, currently 
living under environmental condition e, gives birth 

and 

p(y, e)(w) = probability that a neonate born from a mother with i-state 
y under environmental condition e has itself i-state 
in the (measurable) subset w of n 

In the special case of deterministic i-movement (2.8) reduces to 

A(t, to, Yo)= ft p(Y(r, to, Yo), E(r))>.(Y(r, to, Yo)E(r))F(r, to, Yo)dr 
lto 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Such a formula does, however, not necessarily produce an unambiguous result. For in­
stance, when).. has discontinuities as a function of y, these have to be crossed transver­
sally by Y, in the sense that the set {r: >.(·, E(r)) is discontinuous at Y(r, to, Yo)} has 
measure zero, since otherwise the right hand side of (2.11) does not yield a well-defined 
number. In a partial differential equation involving the ingredients p, >., µ and v this 
difficulty is rather hidden and has to be tackled during the analysis. In the present 
approach the difficulty is considered during the modelling phase, when A. has to be 
specified. To make the step to the population level (p-level), we simply assume that A. 
is well-defined and has suitable properties. Note, furthermore, that when we start from 
data, rather than from model equations, Y, F and A. are the measured quantities and 
not the various rates. 

We now turn our attention to the p-level. The population size and composition at some 
time to is described by a (Borel) measure m on n. At time t >to both the size and the 
composition are changed as a result of growth (i-state change), death and reproduction. 
Let us call the group of individuals which were already present at time t0 the zero'th 
generation and let us introduce the generation development operators U0 by 

(Uo(t, to)m)(w) = L u(t, to, Yo)(w)m(dyo) (2.12) 

The Chapman-Kolmogorov equation (2.1) guarantees that U0 is an evolutionary system: 

Uo(t + s, to) = Uo(t + s, t)Uo(t, to) (2.13) 
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The expected cumulative number of direct offspring in the time interval [t0 , t], as dis­
tributed with respect to the i-state at birth, is given by the reproduction operators 

(K(t, to)m)(w) = l A(t, to, Yo) (w)m(dyo). (2.14) 

The consistency condition (2.2) yields, when lifted to the p-level, 

K(t + s, t 0 ) = K(t, t 0 ) + K(t + s, t)U0 (t, t0 ) (2.15) 

which is the defining relation for a "cumulative output family' (a notion which was, 
in the special case of autonomous problems, introduced by Diekmann, Gyllenberg & 
Thieme, to appear). 

The total births from all subsequent generations together are obtained by iterating the 
family K, with due care for the time structure. The resulting operators R(t, t 0 ) we 
shall indicate as the (accumulated) births operators. So (R(t, t0 )m)(w) is the expected 
cumulative number of all births with i-state at birth in the set w c n, in the time 
interval [to, t], given that the population at time to was described by the measure m. 
Since any newborn is either the offspring of an individual already present at time to or 
of an individual born after time t0 we conclude that Rand K are related to each other 
by the Stieltjes renewal equation 

R(t, to) = K(t, to)+ lt K(t, r)R(dr, to). 
to 

(2.16) 

Solving this equation by successive approximations we find the generation expansion 
back again. Once R is known, we can introduce the population development operators 
Uby 

U(t, to) = Uo(t, to) +it Uo(t, r)R(dr, to) 
to 

(2.17) 

to convert i-state at time t 0 , respectively at birth, to i-state at the current time t, while 
accounting for the possibility of death. One can verify that R is a cumulative output 
family for U, i.e. 

R(t + s, t0 ) = R(t, to)+ R(t + s, t)U(t, to) (2.18) 

and subsequently that U is an evolutionary system (as it should be): 

U(t + s, t 0 ) = U(t + s, t)U(t, to). (2.19) 

The evolutionary system U is the object we are interested in. It tells us how p-states at 
time to are mapped onto p-states at later times. The operator families Uo and K are 
calculated direct from the model ingredients at the i-level. Given these, we solve the 
renewal equation (2.16) by successive approximations to obtain Rand then calculate U 
by (2.17). 
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So far we assumed that all the environmental variables were given functions of time (it is 
this assumption which guaranteed the linearity of our equations). To fix ideas, suppose 
that substrate concentration S is one of the environmental variables, that substrate 
dynamics is described by the logistic differential equation in the absence of consumers 
and that substrate is consumed at a per capita rate 'Y(Y, S). Then we have to add the 
equation 

dS S f dt = rS(l - K) - Jn 'Y(Y, S)n(dy) (2.20) 

to the description of the system, where n is the measure describing the (consumer) 
population at the relevant time. So we can substitute for n in the equation UE(t, t0 )m, 
where m is the initial condition at time to and where we now have emphasized the 
dependence of U on the environmental variables E by incorporationg E as a super­
index in our notation. In this manner (2.20) becomes a functional differential equation 
for S, since E involves S as one of its components and UE(t, t0 ) thus depends on 
S as a function on the interval [to, t]. It remains to solve this functional differential 
equation (equivalently: it remains to find a fixed point for S taking both the internal 
dynamics and the feedback via the consumer population into account). For this we 
need a contraction mapping argument and this in turn requires a Lipschitz estimate 
for < "f(·, S), uE (t, t 0)m > as a function of S, as a given (continuous, say) function on 
[t0 , t]. Here special properties of either 'Y(·, S) or m may be helpful or even essential. 

A general theory for nonlinear problems involving feedback via the environment will 
in all probability essentially follow the line of arguments sketched for the particular 
example above. Lots of technicalities are still to be elaborated in detail. The point of this 
section is simply to demonstrate that one can define the evolution operators UE(t, t 0 ) 

in terms of explicit expressions and an abstract renewal equation, avoiding alltogether 
functional partial differential equations and their cumbersome interpretation! In other 
words, we can construct the relevant dynamical systems on the p-level, both in the non­
autonomous linear case and in the nonlinear case, by formulating the model directly as 
an integral equation, rather than in terms of infinitesimal generators. 

HOW TO ANALYSE THE EQUATIONS? 

Not only are ordinary differential equations convenient for the formulation of models, 
they are, quite often, much more amenable to analysis than their infinite dimensional 
analogues. This applies to their quantitative, numerical, analysis as well as to their 
qualitative analysis. In the two-dimensional case, phase plane analysis is an extremely 
powerful tool. In higher dimensions one often can resort to perturbation methods and 
bifurcation theory. The higher the dimension, the more difficult this becomes in practice, 
and perhaps it is more just to make a distinction between low-dimensional and high­
dimensional than between finite- and infinite-dimensional. 

In recent years, the power of the computer as an aid for the analysis of dynamical systems 
has quickly transcended the strictly numerical domain. Guckenheimer (1991) gives a 
nice exposition of the underlying philosophy. Programs for the automatic stability and 
bifurcation analysis of low dimensional dynamical systems, combined with sophisticated 
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graphical output facilities, have created possibilities for a qualitative study of models 
which would escape most understanding when the tools would be restricted to pencil 
and paper. The program AUTO of E. Doedel (Doedel, 1986) has had a tremendous 
success in the area of biological applications. More recent developments are LOCBIF 
(Khibnik, 1990, Khibnik et al., 1992) and DSTOOLS (Guckenheimer, 1991). 

More often than not, biological models are meant to investigate the relation between 
mechanisms and dynamic behaviour in an idealized context, rather than as a quanti­
tatively accurate description of reality. In such situations, the qualitative viewpoint is 
essential and therefore the new computer tools are of the utmost importance. 

But how can we make all this to bear on the infinite dimensional physiologically struc­
tured population models? Let us first emphasize that, in our opinion, it will prove to be 
essential for the applicability of these models that a users friendly computational envi­
ronment (including nice graphical output facilities) for the qualitative analysis of these 
models be developed. A crucial step will be the approximation of the infinite dimen­
sional dynamical systems by finite dimensional ones. In principle, there is a multitude 
of ways in which this can be done. For the special case of deterministic i-movement, de 
Roos, Diekmann and Metz (1992) developed a method based on the approximation of 
the measure describing the population size and composition by a sum of finitely many 
concentrated measures. Biologically, these concentrated measures correspond to cohorts 
and thus the approximation has the attractive feature that it allows an immediate bio­
logical interpretation. For each existing cohort the equations describing the change in 
numbers due to death and the change in position in i-state space n due to growth are 
obtained direct from the model ingredients. To derive the equations for the "cohorts 
in creation" (i.e. the cohorts which are gradually formed from newborns) one has to 
perform a careful analysis, see de Roos, Diekmann & Metz (1992) and de Roos (1988). 
A discrete time element is introduced by the, to some extent arbitrary, decision to stop 
to add newborns to a particular cohort and to start the formation of a new one. It is 
convenient to renumber the cohorts, in much the same way as in the discretized age Les­
ley matrix model, at such instants, to keep the range of cohort numbers within bounds 
and to facilitate the interpretation as a discrete time dynamical system. An efficient 
interface between the implementation of this technique, called the "escalator boxcar 
train", as developped by de Roos, and programs like LOCBIF, AUTO and DSTOOLS 
seems realisable in a period of a couple of years. The main problem is that the ap­
proximation may, though finite dimensional, be rather high dimensional. (Therefore it 
remains of great importance too to enlarge our toolbox for model simplification, i.e. for 
the derivation of meaningful caricatures; see Greiner, Heesterbeek & Metz, submitted, 
Diekmann, Metz & Sabelis, 1988, Metz & Diekmann 1986, 1991, Nisbet & Gurney 1983, 
1986, Gurney, Nisbet & Blythe, 1986, Val & Metz, preprint). 

As a side-remark we want to mention that a treatment of the numerical stability and 
convergence properties of the escalator boxcar train is still missing (some initial steps 
have been taken by de Roos & Metz, 1991). This may be an attractive challenge for 
numerical analysts interested in weak * convergence. The method as described is the 
lowest order variant and higher order versions are obtained by looking at higher moments 
of "local" pieces of the measure (see de Roos, 1988). So one can also view the method 
as a kind of moving finite element method, where movement is along the characteristics 
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of the first order partial differential equation. For the special case of one-dimensional n 
alternative methods exist, see Banks et al., 1988, Ito et al., 1991, Huyer, preprint. We 
feel enthusiastic about the escalator boxcar train though, since it (i) works whatever 
the dimension of the i-state space n and (ii) admits a biological interpretation. 

We hope that in the future physiologically structured population models will receive 
more attention from numerical analysts, since, we think, pluriformity is a conditio sine 
qua non for the advancement of any field of scientific activity. The main message of this 
section is that the attention should go both to the direct numerical integration and to 
the automatic stability and bifurcation analysis with graphical output. 

AN EVOLUTIONARY PERSPECTIVE; FIRST GO. 

For a start, consider a population living under constant environmental conditions. Will 
the population grow or decline? 

A newborn individual having i-state y0 at birthtime 0 is expected to produce during its 
entire life a number of offspring 

A(oo, 0, Yo)(w) 

with state-at-birth in w. In other words, A( oo, 0, Yo) is the measure describing the ex­
pected total offspring production and the corresponding i-states at birth. Next, consider 
a group of newborn individuals with i-state-distribution described by the measure m. 
The assumption of constant environmental conditions implies that A(t + t 0 , t 0 , y0 ) = 
A(t, 0, Yo) and, in particular, that A( oo, to, Yo) = A( oo, 0, Yo). (In words: production of 
offspring does not depend on the moment of birth of the mother.) So if we consider this 
group of newborn individuals, their birth times may all be different, yet their expected 
total lifetime offspring production is 

l A(oo, 0, 17)m(d17) 

The operator G, mapping measures onto measures, defined by 

Gm= k A(oo, 0, 17)m(d17), ( 4.1) 

is called the next-generation operator. The biological interpretation immediately yields 
that A should map positive measures onto positive measures, i.e. G should be a positive 
operator. So under minor technical conditions (Schaefer, 1974, Krasnosel'skii, et al., 
1989) the spectral radius of G is a strictly dominant eigenvalue, which we shall call R, 
and if we iterate we find that asymptotically the sizes of subsequent generations differ 
by a factor R, while the composition stabilizes to the eigenvector corresponding to the 
eigenvalue R. Of course R still depends on the (constant) condition of the environment 
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E. In the special case that E = Eo, the "virgin" environment, we shall use the symbol 
Ro. 

As a side-remark we want to point out the link between the present set-up and our 
earlier, slightly different, presentation of the same basic issues [Diekmann, Heesterbeek 
& Metz, 1990, Diekmann, to appear, Heesterbeek, 1992]. Whenever A is absolutely 
continuous in the sense that B = B ( r, .; , ry) exists such that 

A(t,0,yo)(w) = 1t 1 B(a,~,yo)d.;da (4.2) 

we can restrict the attention to generations described by absolutely continuous measures 
and define Ras the strictly dominant eigenvalue of the operator K defined on L1 (0) by 

(4.3) 

So K can be considered as the restriction of G to the attracting invariant subspace of 
absolutely continuous measures. 

Clearly the population will grow whenever R > 1 and decline whenever R < 1. When 
there is feedback through the environment such that the population stabilizes to a steady 
state, the corresponding environmental condition E should be such that R(E) = l. 

The reproduction kernel A depends on the life history characteristics of the species 
concerned. Let these be characterized by a variable taking values in a set :E. To pose 
the invasibility question we need to distinguish between the resident, characterized by 
u E E, and the invader, characterized by v E :E. The resident will determine, by 
feedback, the environmental conditions which the invader has to face. Assume that 
these are steady conditions (the verification of this assumption will, as a rule, involve 
many more details of the population dynamic model than are required for an analysis 
of the invasibility question as such). Then we can discuss 

the dominant ·eigenvalue of the next generation operator corresponding to type v in the 
environment set by u. Necessarily R0 (Eu, u) = 1. Hence u is an ESS (evolutionarily 
stable strategy) if the function v ,_. Ro ( Eu, v) attains its maximum at u. In some special 
situations R(Eu, v) factorizes into the product of a function of u and a function of v i.e. 

R(Eu, v) = a(u)Ro(v) 

and in that case an ESS corresponds to a maximum of Ro. It is this characterization of 
an ESS which one frequently encounters in the literature, usually without any explicit 
reference to the underlying factorization assumption. 

1 Originally, in the context of age-dependent population dynamics in a constant environment, the index 

zero referred to the zero'th moment of the net maternity function. There is no equivalent of these 

moments in the general situation, so gradually the interpretation of the index zero changed to what we 

present here. 
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We recall and emphasize the basic but questionable assumption made above of a (glob­
ally) stable demographic steady state. Certainly cases were the feedback throug~ the 
environment leads to periodic or even strange fluctuations of (some of) the environ­
mental variables are of truely biological interest. Moreover, in real biology there always 
are unpredictable external drivers around, such as the weather. For non-constant en­
vironments the dominant eigenvalue should be replaced by the dominant Floquet or 
Lyapunov exponent (see Metz, Nisbet & Geritz, 1992, for an exposition of the basic 
ideas in a discrete time context). The main influence this has at the mathematical end 
is that analytical tractability becomes even far more exceptional than it already is in 
the case of a constant environment. So we find one more reason to stress the need of dy­
namical systems lab facilities. At the biological end, fluctuating environments permit a 
plethora of interesting, and observed, life history strategies (Tuljapurkar 1990, Ferriere 
& Clobert 1992) which radically differ from those predicted for the case of constant 
environments! 

The point of this section is the observation that interesting submodels for growth, death 
and reproduction will lead to reproduction kernels depending on life history parameters 
and that one can easily pose evolutionary questions in this framework. Under various 
special assumptions our formulation reduces to the conventional ones. One advantage 
of the approach taken above is, that it provides a clear perspective, both of the under­
lying assumptions relevant to the various specific cases and of the relationships linking 
the various more special approaches. We also hope (and expect) that the framework 
presented here will: (i) help in the search for further interesting tractable special cases, 
and, (ii) provide a clearer ecological framework for the extension of ideas like exter­
nal genetic stability (Eshel & Feldman, 1982) and the "street-car theory of evolution" 
(Hammerstein & Selten, in press) which should provide the ultimate justification for 
our evolutionary ecological considerations (compare also Charlesworth, 1980). 

A LARGER BIOLOGICAL PERSPECTIVE 

The formalism outlined in the previous sections has a certain elegance, otherwise we 
would not be that hooked to it. But it cannot be everything there is to the world, as 
the whole approach is predicated upon the assumption that a deterministic individual­
based framework holds water. A heuristic discussion of the circumstances under which 
this will be the case can be found in Metz & De Roos (1992). These authors also dis­
cuss a number of essential open problems inherent in the approach from the previous 
sections. Their most important observation is that this approach fails when there are 
long term or preferential interactions among individuals. Such interactions can be of 
two kinds: (i) individuals seek each other out in an otherwise well mixed assembly. One 
example occurs in models dealing with pair formation. Another example is when family 
members stay together in small colonies or herds. (ii) The spatial structure is such that 
individuals keep bumping into the same opponents. One example is provided by sessile 
organisms which are stuck into competing (or cooperating) with their immediate neigh­
bours. Another example are models for local mate competition where local populations, 
though well mixed, are that small that sons are bound to compete predominantly with 
their brothers. 



273 

When the collection of groups, be it pairs, family herds or local mate competition 
arena's, forms a well mixed assemblage, then it is still possible to arrive at a determin­
istic model formulation by treating the groups, and not the separate organisms, as the 
basic units of discourse, but the resulting formalisms may differ from the one we have 
considered in the previous section. However, often even this sleight of hand is denied 
to us, as is exemplified by the sessile organisms. No well-defined deterministic system 
results when we let for example the number of cells of a stochastic cellular automaton 
go to infinity while keeping the contact structure fixed! Only when we at the same time 
let individuals move faster or interact over larger distances will a good deterministic 
limit obtain (though this certainly has not been proved yet in some generality: a nice 
discussion of this sort of limits can be found in Spohn, 1991, and De Masi & Presutti, 
1991). 

If we do feel that biological reality conforms to a very local pattern of interactions, 
in which moreover large numbers of individuals are indirectly coupled in a reticulated 
fashion, mathematics unfortunately has as yet little to offer in the way of general ap­
proaches and theorems (but see Liggett, 1985, Durrett, 1988a,b, Durrett and Levin, 
preprint, Matsuda et al., 1992, and Wolfram, 1986). Our credo, though, is that, while 
the reality of local interactions should not be denied, much insight can usually be gained 
from just assuming global, or as a last resort local, well-mixedness, provided a certain 
amount of care is excercised in interpreting the resulting conclusions. Some results, like 
the evolutionary stability of a cannibalistic lifestyle or the evolutionary inevitability 
of the tragedy of the commons, clearly crucially depend on that special, and in those 
particular cases therefore often ill founded, modelling approximation. But it is usually 
relatively easy to see when such is the case. Of course cannibalism pays when we assume 
that the risk of one's own children being eaten does not differ from the risk of being 
eaten in the population at large, and of course only the ability to cope with an impov­
erished environment matters, and not the extent to which one's own actions adduce to 
that improverishment, when we assume that the burden is shared equally. 

In order to substantiate the optimistic view expressed in the last paragraph we shall 
finish by discussing two examples of useful results of which we have good reason to 
believe that their validity extends considerably beyond the framework of their origin, 
first discovered, at least by us, in a deterministic individual-based context. 

By appending spatial coordinates to the i-state variable to arrive at a combined 
h(eterogeneity)-variable we can immediately extend the formalism from the previous 
sections to spatially distributed populations. From now on we shall assume that the pop­
ulation and environmental equations together are translationally invariant over space. 
In cases where the environment is spatially homogeneous, we can define R(E) by first 
integrating out over space. Ro we get by specialising to the virgin environmental condi­
tion Ea. Notice that as h-space is no longer compact this Ro may differ from the Perron 
root figuring in the same context in, for example, Jagers (preprint). 

We shall now concentrate on the linearized dynamics obtained by setting E everywhere 
equal to Ea. If we locally introduce a small population it will after a while start grow­
ing exponentially iff Ro > 1. In that case it will moreover start expanding radially at 
eventually constant rates (see e.g. Radcliff & Rass 1986, van den Bosch et al., 1990, 
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and Mollison 1991). If dispersal is not rotationally symmetric the rates will not be the 
same in all directions. In fact some of those rates may turn out negative, in which case 
our population marches of towards infinity. The Perron root serves as an indicator: by 
definition it is larger than one iff our population inherits the whole plane. Our guess is 
that these results, if reformulated carefully, extend to the full nonlinear case, indepen­
dent of whether this case admits a well-defined deterministic limit equation, provided 
(i) under any other environmental conditions that can be encountered, individuals can 
only do worse than under Eo (in the ordering induced on the cumulative birth kernels 
by the positive cone), (ii) the influence exerted on the environment by the population 
stays sufficiently localized, (iii) there is a sufficient range of local population densities 
in between the densities where demographic stochasticity first becomes negligible and 
those where the effect of the population on E starts to make itself felt. Assumption 
(ii) is biologically trivial, (i) i.a. implies that there should be no Allee effect and that 
individuals should not range wider at higher densities, and (iii) is fulfilled whenever 
propagules are spread around sufficiently widely. 

The propagation of so-called focal plant epidemics clearly satisfies assumptions (i) to 
(iii). The individuals here are the foci or hot spots, i.e. roughly circular areas with a 
very high density of infection, which derive from a local dispersion of fungal spores in 
the canopy. These foci interact by bumping into each other, and reproduce through 
the relatively rare event of long distance spore dispersal. The mechanism by which foci 
interact cannot be brought under our general framework from the previous sections. Yet 
we believe (and know from observations) that the results derived from the linearized 
deterministic considerations apply. 

As our second example we notice that many results on the dynamics of individual traits 
over evolutionary time, including (i) the eventual reachability of ESSes, either direct 
or through a sequence of protected polymorphisms of diminishing amplitude, and (ii) 
the characterization of singular points in trait space where protected polymorphisms of 
ever increasing amplitude get started, on second thought mainly turn out to depend on 
the existence of a sufficiently smooth function S(u, v) characterizing the possibility of 
v-mutants to invade into au-population (Geritz, Kisdi, Metz, in prep), independent of 
whether we identify this function with the reproduction ratio R(Eu, v) defined in section 
4, the more general dominant Lyapunov exponent Su ( v) advertized by Metz, Nisbet & 
Geritz (1992), or some measure of inclusive fitness as explained so beautifully by Taylor 
(1988a,b, 1989). 

Of course we need specific models to arrive at concrete biological predictions, but ap­
parently there also exists an exceedingly simple more abstract framework which unifies 
many of the special results. To arrive at such more encompassing levels of abstraction 
it helps having available modelling frameworks suggestive of a considerable biological 
generality which yet are sufficiently near to mainstream mathematics that the relevant 
abstractions spring to the fore by the simple elegance of their expression. It is this view 
of the scientific process which sets us on our present course. We hope that also you, 
dear reader, got some intelectual enjoyment out of our exertions. 
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SUMMARY 

From a mathematical point of view, physiologically structured population models are 
an underdeveloped branch of the theory of infinite dimensional dynamical systems. We 
have called attention to four aspects: 

(i) A choice has to be made about the kind of equations one extracts from the 
predominantly verbal arguments about the basic assumptions, and subsequently 
uses as a starting point for a rigorous mathematical analysis. Though differential 
equations are easy to formulate (different mechanisms don't interact in infinites­
imal time intervals and so end up as separate terms in the equations) they may 
be hard to interpret rigorously as infinitesimal generators. Integral equations 
constitute an attractive alternative. 

(ii) The ability of physiologically structured population models to increase our un­
derstanding of the relation between mechanisms at the i-level and phenomena 
at the p-level will depend strongly on the development of dynamical systems lab 
facilities which are applicable to this class of models. 

(iii) Physiologically structured population models are ideally suited for the for­
mulation of evolutionary questions. Apart from the special case of age (see 
Charlesworth 1980, Yodzis 1989, Caswell 1989, and the references given there) 
hardly any theory exists at the moment. This will, hopefully, change rapidly in 
the coming years. Again the development of appropriate software may turn out 
to be crucial. 

(iv) Though there clearly exist numerous practical cases that do not naturally fit into 
our modelling framework, we believe that its combination of a fair amount of 
realism and elegance is bound to pay dividend, were it only by suggesting useful 
further generalizations and abstractions. 
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