
Learnability of Kolmogorov-Easy Circuit
Expressions Via Queries

Jose L. Balcazar1 , Harry Buhrman2 , and Montserrat Hermo3

1 Dept. LSI, Edif. FIB, Universitat Politecnica de Catalunya, 08071 Barcelona, Spain
2 CWI, Kruislaan 413, Amsterdam, The Netherlands

3 Facultad de Informatica de San Sebastian, Universidad del Pais Vasco, Spain

Abstract. Circuit expressions were introduced to provide a natural link
between Computational Learning and certain aspects of Structural Com
plexity. Upper and lower bounds on the learnability of circuit expressions
are known. We study here the case in which the circuit expressions are
of low (time-bounded) Kolmogorov complexity. We show that these are
polynomial-time learnable from membership queries in the presence of
an NP oracle. We also exactly characterize the sets that have such circuit
expressions, and precisely identify the subclass whose circuit expressions
can be learned from membership queries alone. The extension of the
results to various Kolmogorov complexity bounds is discussed.*

1. Introduction

This paper presents algorithms to learn circuit expressions in the "learning via
queries" model of Computational Learning. In this model, the learning algo
rithms interact with their environment, trying to grasp a concept. The concept
will be formally modeled as a set of encodings, which are themselves simply bi
nary strings. The interaction is formalized by "queries", and these in turn are
of the kind of questions suggested by the set-theoretic modeling of concepts.
For instance, the simplest one is the "membership" query, in which the learner
presents a binary string and asks for its classification as "in" or "out" the concept
set; and the "subset" query presents (a finite encoding of) a set of words and
asks whether that set is a subset of the concept set. We focus on the "bounded
learning" model from [11], where it is not necessary to completely identify the
concept: a length bound is given initially to the learner, and it must identify the
concept up to that bound.

Concepts are usually represented in some manner. We study here the rep
resentation via circuit expressions. These are defined inductively just as regular
expressions, by the operations of union, concatenation, and Kleene star, with

* Work partially supported by the EC through the Esprit program (project
7141, ALCOM-II, and Working Group 8556, NeuroColt), and through the HCM
program (project CHRX-CT93-0451, COLORET Network), by the Ducth NWO,
and by the Spanish DGICYT (project PB92-07099). E-mail: balqui@lsi. upc. es,
buhrman@cwi.nl, jiphehum@si.ehu.es

113

the difference that boolean circuits are considered also as circuit expressions.
We can therefore take unions of circuits, or Kleene stars of circuits. Their mean
ing is defined in the standard way (but see below for a complete description).

Circuit expressions were introduced in [12] to provide a natural link between
Computational Learning and certain aspects of Structural Complexity. They
share most interesting properties of the boolean circuit model, but overcome the
inconvenience that a fixed boolean circuit has a fixed number of inputs and,
therefore, accepts a subset of {O, l }n for some fixed n; circuit expressions may
even accept infinite sets by using the Kleene star and union. In [12], learnability
issues for this and other representation classes were related to the "representa
tion finding" problem of Structural Complexity, and this allowed for a precise
definition of the "computational power" of a learning protocol, given in terms
of (relativizations of) the polynomial-time hierarchy.

For instance, following the intuitions there, it can be seen that it is possible
to learn circuit expressions for a concept A via membership queries if and only
if A is polynomial-time T-equivalent to a tally set. (This is argued in some
more detail below.) The polynomial-time tally T-degrees, which were known to
correspond to the so-called "self-producible circuits", characterize therefore the
concepts for which a specific learnability problem is solvable. This paper will
pursue further this sort of connections.

Upper and lower bounds on the learnability of boolean circuits are known,
and most of them carry over to circuit expressions. Actually, in the work made
up to now, the distinction between circuits and circuit expressions is hardly
worth to be made, being at most a small technical detail. Research in Structural
Complexity shows that circuits for a set can be obtained from an oracle in
E~ plus an NP oracle relative to the set itself [8]. It is also known that it is
possible to learn deterministically boolean circuits from equivalence queries plus
a L'§ oracle, or just with an NP oracle by a randomized algorithm [5]. Although
there is motivation for the use of equivalence queries (e.g. connections to the
"mistake-bounded" model), these fall into the category of "expensive" query
types, in that for many applications it makes little sense to expect a teacher to
answer equivalence queries.

However, for reasonably simple queries like membership, it is not difficult to
see that circuits cannot be identified with polynomially many queries, regardless
of the amount of computational power available [l]. As for other queries, in [12]
the computing power needed to learn a "repetitive" variant of circuits is exactly
characterized by classes in the relativized polynomial time hierarchy. The survey
[6] gives a precise account of many such results and related ones.

We study here the case in which the circuit expressions are of low time
bounded Kolmogorov complexity; specifically, the case in which they have loga
rithmically long descriptions, from which the (polynomial size) expressions can
be recovered in polynomial time. There are two reasons. First, in many natural
cases, this would be satisfactory enough, since frequently large circuits are built
of replications of small ones; for instance, the quadratic circuit simulation of a
time-bounded Turing machine is a very regular circuit consisting of a repeated

114

fized-size pattern, and its Kolmogorov complexity is precisely logarithmic. Sec
ond, it is known from other approaches to Computational Learning (such as
PAC) that sometimes concepts that are not (or not known to be) learnable
in general become learnable under such "simplicity" conditions (9]. This paper
proves that this is also the case with learning circuit expressions via queries.

First, we exactly characterize the sets that have such logarithmically easy
circuit expressions, in order to know exactly what concepts are we fighting with.
The proof is not immediate, but.the difficulties can be solved by using techniques
developed previously by the authors.

To analyze the learnability of these concepts, we point out some easy obser
vations proving that they are PAC-learnable, and then we study the learnability
from queries. We start from a naive prefix-search algorithm that uses, in a stan
dard way, a "relativized NP" oracle, similar to the ones used in (12] for the
general case. Then we show how to use membership queries to "un-relativize"
the NP oracle. This means that we prove that for every set having logarithmi
cally easy circuit expressions, these can be found with membership queries in
the presence of an NP oracle, in polynomial time.

An interesting observation is that the analysis and the replacements of the or
acles bear also consequences for the Structural Complexity of the classes studied,
yielding so-called "lowness" properties for all such sets. Also, it is worth pointing
out that our algorithms work by directly obtaining a logarithmically long seed
that will produce, in polynomial (actually linear) time, a circuit expression for
the concept.

A natural subclass to try to understand is that of those concepts for which
the learnability can be performed using simply the most inexpensive queries,
those of "membership", without resorting to additional oracles. We study .this
subclass and characterize it in terms of polynomial time degrees: for a concept
A, circuit expressions can be learned from membership queries alone if and only
if A belongs to a polynomial-time doubly tally T-degree (see preliminaries for a
definition). This class was already known, and characterizations of it, with an
analysis of its inner structure, appear in [7].

The extension of the results to various Kolmogorov complexity bounds is
also discussed. We prove that many of the technical properties on which our
results are based also hold for other bounds, in particular for the polylog case.
We extend some of the characterizations to these bounds. An interesting fact
is that the corresponding conditions on the tally sets are no longer qualitative
but quantitative: from log2 n onwards, the tally sets must be defined by density
conditions, while for the log n case we had to request a specific pattern of the
words in the corresponding tally sets. The deep reason of this divergence is not
fully understood.

115

2. Preliminaries

Complexity Theory

Our notions and notations of Complexity Theory are standard; see [2]. Our
sets consist of words over a single fixed alphabet with at least two symbols; we
frequently assume that the alphabet is {O, 1}, to operate on words with boolean
models of computation. The most basic of them are assumed known. For a set
A, A=n is the set of words of length n in A, and A Sn is the set of words of length
up ton in A.

Sets of sets are usually called classes. The class P consists of the problems
solvable deterministically in polynomial time. If the polynomial time compu
tation has access to an oracle set A, the resulting class is denoted pA. When
B E pA, we say that B is polynomial time Turing reducible to A; if both are
each reducible to the other, then we say that they are polynomial time Turing
eq'uivalent. For Ca complexity class CA denotes the class where each machine in
the class has acces to the oracle A. The class of all sets polynomial time Turing
equivalent to A is denoted ET(A); this class is the (polynomial time Turing)
degree of A. We use similarly a whole class of sets instead of a single set A: so,
ET (C) is the class of sets polynomial time Turing equivalent to some set in the
class C.

We denote by SAT any NP-complete problem such as the well-known "Satis
fiability" problem of boolean formulas. A set S is sparse if the cardinality of ssn
is bounded by some polynomial. A set T is tally if T s;;; {O}*. A set is doubly
tally if it is tally and all of its words have length a power of 2. The class of all
doubly tally sets is denoted by Tally2.

Oracles are one way of providing computational devices with additional in
formation. Advice words are another, and give rise to nonuniform complexity
classes. The nonuniform class Full-P /log consists of all sets for which there exist
advice words Wn with lwn I ::S; clog(n) for some constant c, and a set B E P, such
that for all n it holds:

\fx(lxl '.:Sn), (x E A ~ (x, wn) E B)

Other advice classes are obtained using other families of bounds for the length
of the advice words. For instance, using polynomials, we get P /poly, which is
known to coincide with the problems that can be solved by having polynomial
size circuits. An equivalent definition is Us is sparse P(S). A similar, less known

characterization of Full-P /log is as follows:

Theorem 1. (4) Full-P /log= P(Tally2).

Circuit expressions were introduced in [12]. They are constructed exactly as
regular expressions, with the additional proviso that boolean circuits are circuit
expressions. Hence, a circuit expression is a boolean circuit with a single output,
or the sum of two circuit expressions, or a star operator applied to a circuit
expression. The language denoted by a circuit expression is defined in the usual

116

way: if the expression is a standard circuit, it denotes the set of words for which
the output is 1; the sum corresponds to the union, and the star to the stardard
Kleene star operator of regular languages. Circuit expressions can be evaluated
in polynomial time [12].

We denote by CEX(A,n) the set of circuit expressions C such that L(C)
coincides exactly with A up to size n.

Bounded Learning

Following [11], we model concepts as sets of words. We follow the "bounded
learning" framework from that reference. The learner is a (usually polynomial
time) algorithm, sometimes with access to some oracle set. It is initially provided
with a bound non the size of the representation of the target concept, and with
a length bound m; its goal is to output a representation, of size no larger than n,
that correctly represents the target concept up to size m. Information about the
target concept is obtained from a "teacher" able to somehow compute the answer
to some selected set-theoretic questions. Basic queries are Membership ("Is this
word a member of the target set?") and Equivalence ("Does this representation
correctly represent the target set up to the length bound?"); less frequent queries
are Subset and Superset. Sometimes counterexamples are required for some of
these queries, but in this paper we will not use this brand. See [11] for the exact
notion of representation class and for precise formalizations of all these concepts.

We say that a class of sets is (Mem)-CEX-learnable if there is a (single)
learning algorithm that learns circuit expressions for all sets in the class, us
ing membership queries, in polynomial time. Sometimes an oracle (e.g. SAT) is
assumed to be available, and we will explicitly indicate this fact.

Obviously a polynomial time learner only can write down as output a circuit
expression of polynomial size, so that each CEX-learnable concept is in P /poly.
The following is also immediate:

Proposition 2. If C1 ~ C2 and C2 is (Mem}-CEX-learnable, then C1 is {Mem}
CEX-learnable.

The connection with the theory of polynomial time degrees comes from the
following fact, pointed out by Osamu Watanabe (personal communication). Re
sults in the same spirit (for more general representation classes) appear in [12].

Proposition 3. If C is {Mem)-CEX-learnable then every concept in C is
polynomial-time T-equivalent to some tally set.

The proof follows the guidelines of the characterization of the polynomial
time tally T-degrees by means of "self-producible circuits"; see for instance [2].
We simply sketch it here. Essentially, given a learnable set A, a tally set can
encode in a standard way the circuit expression that the learning algorithm
finds. Given the set as oracle, the tally set can be decided by running the learner

117

and checking that the encoding is correct; conversely, given the tally set as oracle,
the corresponding circuit expression can be retrieved and evaluated.

Conversely, if A is T-equivalent to a tally set T in polynomial time, a learning
algorithm on input n scans all of O* up to some polynomial p(n) and, for each
word, uses queries to A to decide membership to T. Once a large enough initial
segment of T is known, it is easy to design a polynomial size circuit expression
that simulates the machine reducing A to T on inputs of length up to n, which
has built-in enough information about T to compute A without further aid.

3. Learning easy circuit expressions

In order to give a precise definition of the subclass of circuit expressions we study,
we introduce the resource-bounded Kolmogorov complexity classes. (See [10] for
undefined notions and properties.) Fix any universal Turing machine U. Define
the sets of bounded Kolmogorov complexity strings K[f(n), g(n)] as follows:

Definition 4. x E K[f(n),g(n)] ifthere exists y, IYI ~ f(lxl), such that U(y) = x
in at most g(lx\) steps.

We focus here in the class K[log,poly] in which functions from O(logn) are
selected for f, and functions from nO(l) are selected for g. The chosen constants
may depend on the set to be learned, but not, of course, on the length for which
the circuit expression is desired.

Definition 5. A set A has easy circuit expressions if and only if for some
constant c, and for each n, there is Cn E CEX(A, n), of size ICnl ~ nc, such
that Cn E K[clogn, nc].

Before moving into learning such easy circuit expressions, it is worth to know
something about the sets having easy circuit expressions. We have:

Theorem 6. A set A can be decided by a family of easy circuits expressions if
and only if A E Full-P /log.

Proof (Sketch). Suppose first that A E Full-P /log: there exist a sequence of
advice words Wn with lwnl ~ clog(n) for some constant c, and a set BE P, such
that for all n it holds:

\lx(lxl ~ n), (x EA ~ (x, Wn) E B)

Using standard techniques, it is easy to construct a polynomial size circuit Cn E
K[log, poly] that recognizes A=n. These can be put together into an easy circuit
expression for A :5 n. It is important to notice here that the logarithmically many
constant gates encoding the advice word are the same for all the circuits in the
circuit expression.

118

Suppose now that A has easy circuit expressions; thus there exists p(n)
such that for all n there exists a circuit expression C En in such a way that
CEn E CEX(A, n), IC En I :5 p(n), and CEn E K[log, poly]. Consider the set
B E P formed by pairs (x, s) where x is in the language recognized by the circuit
expression produced by U from s. The running time of U is only allowed to be
an appropriate polynomial.

Here is where the proof becomes nontrivial. It is easy to see that it is not
enough to take simply the seeds as advice words. If, together with x, we give a
seed of roughly the same length, it takes exponential time to find and evaluate
an exceedingly large circuit expression; and, if we forbid this possibility, we are
not fulfilling the definition of Full-P /log. The advice words to be taken are,
instead, concatenations of the seeds for circuit expressions Cn for n a double
power of 2. This technique was introduced in [4], and a similar one is used below
for another characterization theorem (see the proof in the appendix). In the pairs
(x, s) E B, now s is a concatenation of self-delimiting descriptions for several
circuit expressions, and at least one of them is polynomial on lxl and can be
used to decide membership into A. Further details will be provided in the full
text. 0

This last proof being completely constructive, it also indicates that in order to
learn circuit expressions it is enough to find a way of computing the appropriate
advice words. These, together with the length up to which the circuit expression
is desired and a constant size program, are enough to fully reconstruct the desired
circuit expression.

We move now to discuss learnability. Fix A E Full-P /log. First we allow
ourselves the use of a set in NPA, in two different forms. From the fact that
only polynomially many descriptions exist for easy circuit expressions, we obtain
immediately an algorithm based on equivalence queries: simply, reconstruct all
potential circuit expressions by cycling over all logarithmically long seeds, and
ask each one as an equivalence query. It is easy to see that the equivalence query
(which does not need here a counterexample) can be answered by an oracle in
NPA. This obvious algorithm proves not only that equivalence queries suffice,
but also, via a now standard transformation [1], that easy circuit expressions are
PAC-learnable.

A serious objection is that allowing a number of equivalence queries similar
to the number of potential hypothesis does not seem reasonable. But it is not
difficult to reduce the number of queries to a different set in NPA.

Theorem 1. Easy circuit expressions for every set A E Full-P /log can be
learned in polynomial time, making logarithmically many queries to NPA.

Proof. Suppose A E Full-P /log. We will show how to construct the advice words,
and then appeal to the constructive character of the previous characterization.

We will say that the wordy, with IYI :5 clogn, is a "good advice" if'v'u (lul ~
n ({ u, y) E B <=>- u E A). This predicate is in co-NPA. Let GA be the following
oracle set:

119

GA= { (z, on) j lzl :-:; clogn A 3y z i;;;; y (IYI = clogn A y is a "good advice")}

The set GA belongs to co-NPA, and allows for a prefix-search procedure to
calculate a good advice by asking GA about consecutive prefixes. Thus, if A E
Full-P /log then circuit expressions for A can be learned in polynomial time,
making logarithmically many queries to NPA. D

Observe that trivially the converse also holds.
Our interest centers now, therefore, on learning via membership queries to

the target concept. Actually, the algorithm used is somewhat more general, in
that it allows us to prove that, for A E Full-P /log, any set in NP relativized to
A can be decided in polynomial time with queries to A directly, in the presence
of a set in (unrelativized) NP. Specifically, we are going to prove that, for all
sets A E Full-P /log, it holds that NPA ~ pAtf!SAT.

Theorem 8. If A E Full-P /log, then NPA ~ pAtf!SAT.

Proof (Sketch). Let A be a set in Full-P /log, and let M be a nondeterministic
polynomial time oracle Turing machine to be simulated on some input x of
length n. The kernel of the algorithm is a function that, given two potential
advice words t;, tj, tries to find a word on which they give different answers;
this is where the NP oracle is used. If two advice words t; and tj give always the
same answers, either both are correct of both are wrong, so it is unnecessary to
keep both; one is discarded. For the remaining pairs, simply make membership
queries about the distinguishing word; the advice that is inconsistent with the
answer gets discarded. Only the correct one, that exists by hypothesis (and is
unique after discarding advices that give the same answers) will emerge out of
the game.

The function that uses an NP oracle to find a word that distinguishes two
advice words follows a standard prefix search procedure. D

In the terminology of structural complexity, this theorem is a result on "low
ness"; more precisely, the sets A for which NPA ~ pAtf!SAT form the first level
of the extended low hierarchy, and are denoted as ELf. Thus this theorem is
actually showing that Full-P /log ~ ELf. We immediately obtain:

Corollary 9. Easy circuit expressions for every set A E Full-P /log can be
learned in polynomial time with membership queries and an NP oracle.

There is one more observation to point out: we have now two ways of obtain
ing a learning algorithm using subset and superset queries. On the one hand,
these c~n simulate equivalence queries in the obvious manner. On the other
hand, as shown in (5], when learning a representation class based of boolean
models, subset and superset are able to simulate an NP oracle, and of course a
membership query. This yields two different learning algorithms using superset
and subset queries.

120

4. Learnability from membership queries only

The purpose of this section is to precisely characterize those concepts for which
circuit expressions can be learned in polynomial time using only membership
queries, without the additional NP oracle. Note that to construct in polynomial
time easy circuit expressions is equivalent to finding their logarithmically long
seeds, since these can be found, if necessary, in polynomial time by exhaustive
search.

Theorem 10. The following facts are equivalent:

i/ A E ET(Tally2).
ii/ A is decided by a family of easy circuit expressions whose descriptions

can be obtained in polynomial time using membership queries.

Proof (Sketch). First we prove i/ ==? ii/. Let A be a set in ET(Tally2), and let
TE Tally2 be such that T E pA and A E PT. Therefore A:5n can be decided
from the characterstic sequence of T up to nc for some c. As T is very regular,
its characteristic sequence can be expressed relative to the set {02n I n ?: O} and
then the size of this information is logarithmic in n. From this, and the fact that
A E pT, it follows that A has easy circuit expressions as in the characterization
given in the previous section. Moreover, these can be constructed from the list of
words of T up to length nc, and this can be obtained from membership queries
to A.

In the second place we see that ii/ ==? i/. Let A be a set recognized by
a family of easy circuit expressions, and assume that the logarithmically long
seeds of the expressions can be obtained in pA. Invoking again the techniques
of [4], it is possible to prove that there exists a (different) family of seeds for
circuit expressions for A with the property that each seed is a prefix of the next
one. These can be easily constructed from the old ones, so that we can keep
the information of the seeds in a tally2 set T that is in pA. On the other hand,
A E pT because from the information in T we can construct in polynomial time
a circuit expression to decide A. 0

5. Polylogarithmic complexity

Of course, it would be interesting to relax the condition of "easy" circuit expres
sions on which all the constructions are based. Unfortunately, we cannot extend
all the results for bounds larger than logarithmic. But, for certain reasonable con
ditions on the bounds, some parts of the characterization carry through; and,
concentrating on polylogarithmic bounds, there are alternative characterizations
that extend those given in the last section.

We first observe that a more careful tuning of the proof technique from [4]
gives the following result. The previous section has used extensively the fact
that it is possible to find a family of advices for each set in Full-P /log with the

121

property that all of them are prefixes of a single infinite word [4]. This class is
called Pref-P /O(f(n)). This fact can be extended as follows:

Theorem 11. If f(n) is an unbounded function that can be calculated in poly
nomial time, then Full-P/O(f(n)) = Pref-P/O(f(n)).

The proof is given in the appendix.
We will focus next in the nonuniform classes defined from polylog advices,

that is, Full-P /O(logi(n)). The next question we address is how to extend the
characterization of the sets with easy circuit expressions learnable only from
membership queries, to not-so-easy (e.g. poly log-easy) circuit expressions. Ob
serve that nowhere in the class Er(Tally2) appears explicitly a logarithm that
could be changed into a polylog function. Actually, as it turns out, there is a
nice reason for this.

Indeed, as we shall see shortly, there is a marked difference between the
logarithmic and the polylogarithmic case. Both allow for a characterization in
terms of polynomial-time Turing degrees of tally sets. In the case discussed in the
previous section, the tally sets used were defined by a "qualitative" condition
that the words were only of certain fixed lengths, namely powers of 2. When
we move to polylog functions, the characterization no longer has this fiavor,
but it instead becomes purely "quantitative": it corresponds to tally degrees of
polylog density. Moreover, the exponent of the density tightly corresponds to the
exponent of the complexity of the circuit expressions, modulo a log factor; and
this log factor precludes the use of this characterization for the logarithmic case.
So the theorem of the previous section cannot be obtained as a particularization
of the present one.

Let us denote as :F-Tally the class of tally sets of density bounded by a
function from :F, i.e., having at most f(n) words up to length n where f E :F.

Lemma 12. For all i ;::: 1, the following holds:

Full-P /O(logi+ 1 (n)) =Pr(O(logi(n))-Tally).

Proof {Sketch). We show first Pr(O(logi(n))-Tally) s; Full-P/O(logi+1 (n)). In
polynomial time, at most a polynomially long initial part of the tally set is
accessible, and we need to know the tally oracle T up to that length. This
information fits into O(logi+ 1 (ixl)) bits, and constitutes our advice word.

Conversely, we see that Full-P /O(logi+ 1 (n)) s; Pr(O(logi(n))-Tally). By the
previous theorem, it suffices to prove it for Pref-P / O(logi+l (n)). We encode the
single infinite sequence limiting the successive advices into a tally set of the
indicated density.

The encoding scheme is as follows. Let T be a tally set of k logi (n) density,
where k is a constant. In the interval between 02" and 02n+•, there can be at most
k(n + l)i - kni ~ rni-I possible new words belonging to T, for some constant r.

122

These must be chosen among the 2n words of the interval. So, we divide the 2n
words into rni-l parts. Each part has the following number of words:

2n
N = Lrni-1 J

So, we can interpret each part as a digit in base B = N + 1, depending on
where the only word of that part is, and encode a number with rni-l such
digits. Straightforward computation shows that there is enough room to encode
the needed part of the infinite sequence limiting the advices. The advice can be
easily decoded in polynomial time. 0

Theorem 13. For all i ?: 1, the class of sets having polynomial size circuit ex
pressions in K[O(logi+1 (n)), poly] whose descriptions are learnable in polynomial
time from membership queries is precisely Er(O(logi(n))-Tally).

Proof (Sketch). Use the encoding described in the lemma to code into a tally
set the seeds for the circuit expressions found by the learning algorithm. Not
all of them are to be encoded: those are to be selected as in the proof given in
the appendix. (Details are again deferred to a complete version of the paper.)
This yields a tally set that is T-equivalent to the learned concept. The converse
follows exactly as in the proof of the main result of the previous section. 0

Taking the union over all i gives:

Corollary 14. The class of sets that have a polynomial size circuit expression
in K[O(logO(l) (n)), poly], and whose description is learnable in polynomial time
from membership queries, is precisely Er(O(logO(l)(n))-Tally).

6. Appendix

We present here the proof of theorem 12. The proof technique is the same, or
simpler, for the omitted proofs of theorems 7, 11, and 14, and is a generalization
of that used in [4] to prove theorem 1. A similar construction appears in [3],
the essential difference being that in their context the time bounds for the Kol
mogorov complexity definitions are based on the length of the output, and this
requires a number of additional hypothesis and extra information manipulation.

The nontrivial inclusion is from left to right. Let A E Full-P/O(f(n)), so
that there exists a Turing machine M that decides A in polynomial time, with
the help of advices {wn}nElN· There exists a function h(n) E O(f(n)) such that
each Wn has the length bounded by h(n). Without loss of generality we assume
that h is unbounded too. We have to construct an infinite sequence, in such a
way that the prefixes of length O(f) can be used as well as advices for A.

Using the fact that any advice corresponding to a particular length can be
used by smaller lengths, the infinite sequence could be the concatenation of some
Wn 's. The idea is to keep only the information Wn for some selected n's instead

123

of storing all of them. In order to choose the Wn 's we have to consider a balance
between two contradictory restrictions. If we select Wn 's too frequently, then
they will need too many bits and the piece of the infinite sequence could be
too large; but if we select them too separated, then for some words the nearest
valid advice would be too long to be extracted from the infinite sequence in
polynomial time. It turns out that there is a way of skipping wn's for which the
balance is satisfactory.

Since h is unbounded, it is possible to find for each n a number mn such that
2mn -l < h(n) :::; 2m,,; moreover, given n, the search of mn is done in polynomial
time. Remark that eventually many n's are associated to the same mn. Let g(n)
be the following function:

g(n) = max{i I h(i) :S 2m"}

Construct an infinite sequence (3 including all of {wg(n)}nEN· In order to get
a good manipulation of the sequence, we construct (3 step by step, appending a
power of two many bits each time. Namely /3 = P1P2P3 .. ·Pn ... in such a way
that Vi > 0 holds:

otherwise

The minimum prefix of (3 containing the information of the advice Wg(n) will
be exactly f31:2mn+1_ 1 , which denotes the finite word made up with the bits of
(3 starting at 1 and ending at 2m,, +l - I. Then A is in Pref-P / O(J (n)) because
the following algorithm decides whether a word x is in A.

input x;

n := lxl;
Find mn;
From ,61,2m,,+1_ 1 obtain (32,,..,,, 2 m,,+1_ 1 ;

Discard the 10* tail, obtaining advice word w

Simulate M((x, w)) and accept if and only if M accepts.

The amount of bits from (3 used to decide whether x belongs to A is
/31:2mn+1_ 1 . Its length is exactly 2m,,+l _1. From the fact that 2rn,,-l < h(n), we
obtain that mn < log(h(n)) + 1, so 2m,,+l - 1 is bounded by 4h(n). Therefore,
A E Pref-P/O(J(n)). D

124

References

1. D. Angluin: "Queries and Concept Learning". Machine Learning 2 1988, 319-342.
2. J. L. Balcazar, J. Diaz, J. Gabarr6: Structural Complexity I. Springer Verlag 1988.
3. J. L. Balcazar, R. Gavalda, M. Hermo: "On infinite sequences almost as easy as

11"'. Workshop on Applications of Descriptional Complexity, Rutgers Univ., july
1994. Report LSI-94-24-R, Univ. Politecnica de Catalunya.

4. J. L. Balcazar, M. Hermo, E. Mayordomo: "Characterizations of logarithmic advice
complexity classes". In: Algorithms, Software, Architecture: Information Process
ing 92, Elsevier 1992, vol. 1, 315-321.

5. N. Bshouty, R. Cleve, S. Kannan, C. Tamon: "Oracles and queries that are sufficient
for exact learning". In: Conference on Computational Learning Theory 1994, 130-
139.

6. R. Gavalda: "The complexity of learning with queries". In: Structure in Comm
plexity Theory 1994, 324-337.

7. R. Gavalda, 0. Watanabe: "Structural analysis of polynomial time query learn
ability". Mathematical Systems Theory 27 1994, 231-256.

8. M. Hermo: "Degrees and reducibilities of easy tally sets". In: Mathematical Founda
tions of Computer Science 94, Springer-Verlag Lecture Notes in Computer Science
8411994, 403-412.

9. J. Kobler: "Locating P /poly optimally in the low hierarchy". In: Symp. Theoret
ical Aspects of Computer Science 93, Springer-Verlag Lecture Notes in Computer
Science 665 1993, 28-37.

10. M. Li, P. Vitanyi: "Learning simple concepts under simple distributions". SIAM
Journal on Computing 20 1991, 911-935.

11. M. Li, P. Vitanyi: An introduction to Kolmogorov complexity and its applications.
Springer-Ver lag 1994.

12. 0. Watanabe: "A framework for polynomial time query learnability". Mathemati
cal Systems Theory 27 1994, 211-229.

