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Abstract. Circuit expressions were introduced to provide a natural link 
between Computational Learning and certain aspects of Structural Com
plexity. Upper and lower bounds on the learnability of circuit expressions 
are known. We study here the case in which the circuit expressions are 
of low (time-bounded) Kolmogorov complexity. We show that these are 
polynomial-time learnable from membership queries in the presence of 
an NP oracle. We also exactly characterize the sets that have such circuit 
expressions, and precisely identify the subclass whose circuit expressions 
can be learned from membership queries alone. The extension of the 
results to various Kolmogorov complexity bounds is discussed.* 

1. Introduction 

This paper presents algorithms to learn circuit expressions in the "learning via 
queries" model of Computational Learning. In this model, the learning algo
rithms interact with their environment, trying to grasp a concept. The concept 
will be formally modeled as a set of encodings, which are themselves simply bi
nary strings. The interaction is formalized by "queries", and these in turn are 
of the kind of questions suggested by the set-theoretic modeling of concepts. 
For instance, the simplest one is the "membership" query, in which the learner 
presents a binary string and asks for its classification as "in" or "out" the concept 
set; and the "subset" query presents (a finite encoding of) a set of words and 
asks whether that set is a subset of the concept set. We focus on the "bounded 
learning" model from [11], where it is not necessary to completely identify the 
concept: a length bound is given initially to the learner, and it must identify the 
concept up to that bound. 

Concepts are usually represented in some manner. We study here the rep
resentation via circuit expressions. These are defined inductively just as regular 
expressions, by the operations of union, concatenation, and Kleene star, with 
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the difference that boolean circuits are considered also as circuit expressions. 
We can therefore take unions of circuits, or Kleene stars of circuits. Their mean
ing is defined in the standard way (but see below for a complete description). 

Circuit expressions were introduced in [12] to provide a natural link between 
Computational Learning and certain aspects of Structural Complexity. They 
share most interesting properties of the boolean circuit model, but overcome the 
inconvenience that a fixed boolean circuit has a fixed number of inputs and, 
therefore, accepts a subset of {O, l }n for some fixed n; circuit expressions may 
even accept infinite sets by using the Kleene star and union. In [12], learnability 
issues for this and other representation classes were related to the "representa
tion finding" problem of Structural Complexity, and this allowed for a precise 
definition of the "computational power" of a learning protocol, given in terms 
of (relativizations of) the polynomial-time hierarchy. 

For instance, following the intuitions there, it can be seen that it is possible 
to learn circuit expressions for a concept A via membership queries if and only 
if A is polynomial-time T-equivalent to a tally set. (This is argued in some 
more detail below.) The polynomial-time tally T-degrees, which were known to 
correspond to the so-called "self-producible circuits", characterize therefore the 
concepts for which a specific learnability problem is solvable. This paper will 
pursue further this sort of connections. 

Upper and lower bounds on the learnability of boolean circuits are known, 
and most of them carry over to circuit expressions. Actually, in the work made 
up to now, the distinction between circuits and circuit expressions is hardly 
worth to be made, being at most a small technical detail. Research in Structural 
Complexity shows that circuits for a set can be obtained from an oracle in 
E~ plus an NP oracle relative to the set itself [8]. It is also known that it is 
possible to learn deterministically boolean circuits from equivalence queries plus 
a L'§ oracle, or just with an NP oracle by a randomized algorithm [5]. Although 
there is motivation for the use of equivalence queries (e.g. connections to the 
"mistake-bounded" model), these fall into the category of "expensive" query 
types, in that for many applications it makes little sense to expect a teacher to 
answer equivalence queries. 

However, for reasonably simple queries like membership, it is not difficult to 
see that circuits cannot be identified with polynomially many queries, regardless 
of the amount of computational power available [l]. As for other queries, in [12] 
the computing power needed to learn a "repetitive" variant of circuits is exactly 
characterized by classes in the relativized polynomial time hierarchy. The survey 
[6] gives a precise account of many such results and related ones. 

We study here the case in which the circuit expressions are of low time
bounded Kolmogorov complexity; specifically, the case in which they have loga
rithmically long descriptions, from which the (polynomial size) expressions can 
be recovered in polynomial time. There are two reasons. First, in many natural 
cases, this would be satisfactory enough, since frequently large circuits are built 
of replications of small ones; for instance, the quadratic circuit simulation of a 
time-bounded Turing machine is a very regular circuit consisting of a repeated 
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fized-size pattern, and its Kolmogorov complexity is precisely logarithmic. Sec
ond, it is known from other approaches to Computational Learning (such as 
PAC) that sometimes concepts that are not (or not known to be) learnable 
in general become learnable under such "simplicity" conditions (9]. This paper 
proves that this is also the case with learning circuit expressions via queries. 

First, we exactly characterize the sets that have such logarithmically easy 
circuit expressions, in order to know exactly what concepts are we fighting with. 
The proof is not immediate, but.the difficulties can be solved by using techniques 
developed previously by the authors. 

To analyze the learnability of these concepts, we point out some easy obser
vations proving that they are PAC-learnable, and then we study the learnability 
from queries. We start from a naive prefix-search algorithm that uses, in a stan
dard way, a "relativized NP" oracle, similar to the ones used in (12] for the 
general case. Then we show how to use membership queries to "un-relativize" 
the NP oracle. This means that we prove that for every set having logarithmi
cally easy circuit expressions, these can be found with membership queries in 
the presence of an NP oracle, in polynomial time. 

An interesting observation is that the analysis and the replacements of the or
acles bear also consequences for the Structural Complexity of the classes studied, 
yielding so-called "lowness" properties for all such sets. Also, it is worth pointing 
out that our algorithms work by directly obtaining a logarithmically long seed 
that will produce, in polynomial (actually linear) time, a circuit expression for 
the concept. 

A natural subclass to try to understand is that of those concepts for which 
the learnability can be performed using simply the most inexpensive queries, 
those of "membership", without resorting to additional oracles. We study .this 
subclass and characterize it in terms of polynomial time degrees: for a concept 
A, circuit expressions can be learned from membership queries alone if and only 
if A belongs to a polynomial-time doubly tally T-degree (see preliminaries for a 
definition). This class was already known, and characterizations of it, with an 
analysis of its inner structure, appear in [7]. 

The extension of the results to various Kolmogorov complexity bounds is 
also discussed. We prove that many of the technical properties on which our 
results are based also hold for other bounds, in particular for the polylog case. 
We extend some of the characterizations to these bounds. An interesting fact 
is that the corresponding conditions on the tally sets are no longer qualitative 
but quantitative: from log2 n onwards, the tally sets must be defined by density 
conditions, while for the log n case we had to request a specific pattern of the 
words in the corresponding tally sets. The deep reason of this divergence is not 
fully understood. 
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2. Preliminaries 

Complexity Theory 

Our notions and notations of Complexity Theory are standard; see [2]. Our 
sets consist of words over a single fixed alphabet with at least two symbols; we 
frequently assume that the alphabet is {O, 1}, to operate on words with boolean 
models of computation. The most basic of them are assumed known. For a set 
A, A=n is the set of words of length n in A, and A Sn is the set of words of length 
up ton in A. 

Sets of sets are usually called classes. The class P consists of the problems 
solvable deterministically in polynomial time. If the polynomial time compu
tation has access to an oracle set A, the resulting class is denoted pA. When 
B E pA, we say that B is polynomial time Turing reducible to A; if both are 
each reducible to the other, then we say that they are polynomial time Turing 
eq'uivalent. For Ca complexity class CA denotes the class where each machine in 
the class has acces to the oracle A. The class of all sets polynomial time Turing 
equivalent to A is denoted ET(A); this class is the (polynomial time Turing) 
degree of A. We use similarly a whole class of sets instead of a single set A: so, 
ET ( C) is the class of sets polynomial time Turing equivalent to some set in the 
class C. 

We denote by SAT any NP-complete problem such as the well-known "Satis
fiability" problem of boolean formulas. A set S is sparse if the cardinality of ssn 
is bounded by some polynomial. A set T is tally if T s;;; {O}*. A set is doubly 
tally if it is tally and all of its words have length a power of 2. The class of all 
doubly tally sets is denoted by Tally2. 

Oracles are one way of providing computational devices with additional in
formation. Advice words are another, and give rise to nonuniform complexity 
classes. The nonuniform class Full-P /log consists of all sets for which there exist 
advice words Wn with lwn I ::S; clog( n) for some constant c, and a set B E P, such 
that for all n it holds: 

\fx(lxl '.:Sn), (x E A ~ (x, wn) E B) 

Other advice classes are obtained using other families of bounds for the length 
of the advice words. For instance, using polynomials, we get P /poly, which is 
known to coincide with the problems that can be solved by having polynomial 
size circuits. An equivalent definition is Us is sparse P(S). A similar, less known 

characterization of Full-P /log is as follows: 

Theorem 1. (4) Full-P /log= P(Tally2). 

Circuit expressions were introduced in [12]. They are constructed exactly as 
regular expressions, with the additional proviso that boolean circuits are circuit 
expressions. Hence, a circuit expression is a boolean circuit with a single output, 
or the sum of two circuit expressions, or a star operator applied to a circuit 
expression. The language denoted by a circuit expression is defined in the usual 
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way: if the expression is a standard circuit, it denotes the set of words for which 
the output is 1; the sum corresponds to the union, and the star to the stardard 
Kleene star operator of regular languages. Circuit expressions can be evaluated 
in polynomial time [12]. 

We denote by CEX(A,n) the set of circuit expressions C such that L(C) 
coincides exactly with A up to size n. 

Bounded Learning 

Following [11], we model concepts as sets of words. We follow the "bounded 
learning" framework from that reference. The learner is a (usually polynomial
time) algorithm, sometimes with access to some oracle set. It is initially provided 
with a bound non the size of the representation of the target concept, and with 
a length bound m; its goal is to output a representation, of size no larger than n, 
that correctly represents the target concept up to size m. Information about the 
target concept is obtained from a "teacher" able to somehow compute the answer 
to some selected set-theoretic questions. Basic queries are Membership ("Is this 
word a member of the target set?") and Equivalence ("Does this representation 
correctly represent the target set up to the length bound?"); less frequent queries 
are Subset and Superset. Sometimes counterexamples are required for some of 
these queries, but in this paper we will not use this brand. See [11] for the exact 
notion of representation class and for precise formalizations of all these concepts. 

We say that a class of sets is (Mem)-CEX-learnable if there is a (single) 
learning algorithm that learns circuit expressions for all sets in the class, us
ing membership queries, in polynomial time. Sometimes an oracle (e.g. SAT) is 
assumed to be available, and we will explicitly indicate this fact. 

Obviously a polynomial time learner only can write down as output a circuit 
expression of polynomial size, so that each CEX-learnable concept is in P /poly. 
The following is also immediate: 

Proposition 2. If C1 ~ C2 and C2 is (Mem}-CEX-learnable, then C1 is {Mem}
CEX-learnable. 

The connection with the theory of polynomial time degrees comes from the 
following fact, pointed out by Osamu Watanabe (personal communication). Re
sults in the same spirit (for more general representation classes) appear in [12]. 

Proposition 3. If C is {Mem)-CEX-learnable then every concept in C is 
polynomial-time T-equivalent to some tally set. 

The proof follows the guidelines of the characterization of the polynomial
time tally T-degrees by means of "self-producible circuits"; see for instance [2]. 
We simply sketch it here. Essentially, given a learnable set A, a tally set can 
encode in a standard way the circuit expression that the learning algorithm 
finds. Given the set as oracle, the tally set can be decided by running the learner 
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and checking that the encoding is correct; conversely, given the tally set as oracle, 
the corresponding circuit expression can be retrieved and evaluated. 

Conversely, if A is T-equivalent to a tally set T in polynomial time, a learning 
algorithm on input n scans all of O* up to some polynomial p(n) and, for each 
word, uses queries to A to decide membership to T. Once a large enough initial 
segment of T is known, it is easy to design a polynomial size circuit expression 
that simulates the machine reducing A to T on inputs of length up to n, which 
has built-in enough information about T to compute A without further aid. 

3. Learning easy circuit expressions 

In order to give a precise definition of the subclass of circuit expressions we study, 
we introduce the resource-bounded Kolmogorov complexity classes. (See [10] for 
undefined notions and properties.) Fix any universal Turing machine U. Define 
the sets of bounded Kolmogorov complexity strings K[f(n), g(n)] as follows: 

Definition 4. x E K[f(n),g(n)] ifthere exists y, IYI ~ f(lxl), such that U(y) = x 
in at most g(lx\) steps. 

We focus here in the class K[log,poly] in which functions from O(logn) are 
selected for f, and functions from nO(l) are selected for g. The chosen constants 
may depend on the set to be learned, but not, of course, on the length for which 
the circuit expression is desired. 

Definition 5. A set A has easy circuit expressions if and only if for some 
constant c, and for each n, there is Cn E CEX(A, n), of size ICnl ~ nc, such 
that Cn E K[clogn, nc]. 

Before moving into learning such easy circuit expressions, it is worth to know 
something about the sets having easy circuit expressions. We have: 

Theorem 6. A set A can be decided by a family of easy circuits expressions if 
and only if A E Full-P /log. 

Proof (Sketch). Suppose first that A E Full-P /log: there exist a sequence of 
advice words Wn with lwnl ~ clog(n) for some constant c, and a set BE P, such 
that for all n it holds: 

\lx(lxl ~ n), (x EA ~ (x, Wn) E B) 

Using standard techniques, it is easy to construct a polynomial size circuit Cn E 
K[log, poly] that recognizes A=n. These can be put together into an easy circuit 
expression for A :5 n. It is important to notice here that the logarithmically many 
constant gates encoding the advice word are the same for all the circuits in the 
circuit expression. 
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Suppose now that A has easy circuit expressions; thus there exists p(n) 
such that for all n there exists a circuit expression C En in such a way that 
CEn E CEX(A, n), IC En I :5 p(n), and CEn E K[log, poly]. Consider the set 
B E P formed by pairs (x, s) where x is in the language recognized by the circuit 
expression produced by U from s. The running time of U is only allowed to be 
an appropriate polynomial. 

Here is where the proof becomes nontrivial. It is easy to see that it is not 
enough to take simply the seeds as advice words. If, together with x, we give a 
seed of roughly the same length, it takes exponential time to find and evaluate 
an exceedingly large circuit expression; and, if we forbid this possibility, we are 
not fulfilling the definition of Full-P /log. The advice words to be taken are, 
instead, concatenations of the seeds for circuit expressions Cn for n a double 
power of 2. This technique was introduced in [4], and a similar one is used below 
for another characterization theorem (see the proof in the appendix). In the pairs 
(x, s) E B, now s is a concatenation of self-delimiting descriptions for several 
circuit expressions, and at least one of them is polynomial on lxl and can be 
used to decide membership into A. Further details will be provided in the full 
text. 0 

This last proof being completely constructive, it also indicates that in order to 
learn circuit expressions it is enough to find a way of computing the appropriate 
advice words. These, together with the length up to which the circuit expression 
is desired and a constant size program, are enough to fully reconstruct the desired 
circuit expression. 

We move now to discuss learnability. Fix A E Full-P /log. First we allow 
ourselves the use of a set in NPA, in two different forms. From the fact that 
only polynomially many descriptions exist for easy circuit expressions, we obtain 
immediately an algorithm based on equivalence queries: simply, reconstruct all 
potential circuit expressions by cycling over all logarithmically long seeds, and 
ask each one as an equivalence query. It is easy to see that the equivalence query 
(which does not need here a counterexample) can be answered by an oracle in 
NPA. This obvious algorithm proves not only that equivalence queries suffice, 
but also, via a now standard transformation [1], that easy circuit expressions are 
PAC-learnable. 

A serious objection is that allowing a number of equivalence queries similar 
to the number of potential hypothesis does not seem reasonable. But it is not 
difficult to reduce the number of queries to a different set in NPA. 

Theorem 1. Easy circuit expressions for every set A E Full-P /log can be 
learned in polynomial time, making logarithmically many queries to NPA. 

Proof. Suppose A E Full-P /log. We will show how to construct the advice words, 
and then appeal to the constructive character of the previous characterization. 

We will say that the wordy, with IYI :5 clogn, is a "good advice" if'v'u (lul ~ 
n ( { u, y) E B <=>- u E A). This predicate is in co-NPA. Let GA be the following 
oracle set: 
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GA= { (z, on) j lzl :-:; clogn A 3y z i;;;; y (IYI = clogn A y is a "good advice")} 

The set GA belongs to co-NPA, and allows for a prefix-search procedure to 
calculate a good advice by asking GA about consecutive prefixes. Thus, if A E 
Full-P /log then circuit expressions for A can be learned in polynomial time, 
making logarithmically many queries to NPA. D 

Observe that trivially the converse also holds. 
Our interest centers now, therefore, on learning via membership queries to 

the target concept. Actually, the algorithm used is somewhat more general, in 
that it allows us to prove that, for A E Full-P /log, any set in NP relativized to 
A can be decided in polynomial time with queries to A directly, in the presence 
of a set in ( unrelativized) NP. Specifically, we are going to prove that, for all 
sets A E Full-P /log, it holds that NPA ~ pAtf!SAT. 

Theorem 8. If A E Full-P /log, then NPA ~ pAtf!SAT. 

Proof (Sketch). Let A be a set in Full-P /log, and let M be a nondeterministic 
polynomial time oracle Turing machine to be simulated on some input x of 
length n. The kernel of the algorithm is a function that, given two potential 
advice words t;, tj, tries to find a word on which they give different answers; 
this is where the NP oracle is used. If two advice words t; and tj give always the 
same answers, either both are correct of both are wrong, so it is unnecessary to 
keep both; one is discarded. For the remaining pairs, simply make membership 
queries about the distinguishing word; the advice that is inconsistent with the 
answer gets discarded. Only the correct one, that exists by hypothesis (and is 
unique after discarding advices that give the same answers) will emerge out of 
the game. 

The function that uses an NP oracle to find a word that distinguishes two 
advice words follows a standard prefix search procedure. D 

In the terminology of structural complexity, this theorem is a result on "low
ness"; more precisely, the sets A for which NPA ~ pAtf!SAT form the first level 
of the extended low hierarchy, and are denoted as ELf. Thus this theorem is 
actually showing that Full-P /log ~ ELf. We immediately obtain: 

Corollary 9. Easy circuit expressions for every set A E Full-P /log can be 
learned in polynomial time with membership queries and an NP oracle. 

There is one more observation to point out: we have now two ways of obtain
ing a learning algorithm using subset and superset queries. On the one hand, 
these c~n simulate equivalence queries in the obvious manner. On the other 
hand, as shown in (5], when learning a representation class based of boolean 
models, subset and superset are able to simulate an NP oracle, and of course a 
membership query. This yields two different learning algorithms using superset 
and subset queries. 
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4. Learnability from membership queries only 

The purpose of this section is to precisely characterize those concepts for which 
circuit expressions can be learned in polynomial time using only membership 
queries, without the additional NP oracle. Note that to construct in polynomial 
time easy circuit expressions is equivalent to finding their logarithmically long 
seeds, since these can be found, if necessary, in polynomial time by exhaustive 
search. 

Theorem 10. The following facts are equivalent: 

i/ A E ET(Tally2). 
ii/ A is decided by a family of easy circuit expressions whose descriptions 

can be obtained in polynomial time using membership queries. 

Proof (Sketch). First we prove i/ ==? ii/. Let A be a set in ET(Tally2), and let 
TE Tally2 be such that T E pA and A E PT. Therefore A:5n can be decided 
from the characterstic sequence of T up to nc for some c. As T is very regular, 
its characteristic sequence can be expressed relative to the set {02n I n ?: O} and 
then the size of this information is logarithmic in n. From this, and the fact that 
A E pT, it follows that A has easy circuit expressions as in the characterization 
given in the previous section. Moreover, these can be constructed from the list of 
words of T up to length nc, and this can be obtained from membership queries 
to A. 

In the second place we see that ii/ ==? i/. Let A be a set recognized by 
a family of easy circuit expressions, and assume that the logarithmically long 
seeds of the expressions can be obtained in pA. Invoking again the techniques 
of [4], it is possible to prove that there exists a (different) family of seeds for 
circuit expressions for A with the property that each seed is a prefix of the next 
one. These can be easily constructed from the old ones, so that we can keep 
the information of the seeds in a tally2 set T that is in pA. On the other hand, 
A E pT because from the information in T we can construct in polynomial time 
a circuit expression to decide A. 0 

5. Polylogarithmic complexity 

Of course, it would be interesting to relax the condition of "easy" circuit expres
sions on which all the constructions are based. Unfortunately, we cannot extend 
all the results for bounds larger than logarithmic. But, for certain reasonable con
ditions on the bounds, some parts of the characterization carry through; and, 
concentrating on polylogarithmic bounds, there are alternative characterizations 
that extend those given in the last section. 

We first observe that a more careful tuning of the proof technique from [4] 
gives the following result. The previous section has used extensively the fact 
that it is possible to find a family of advices for each set in Full-P /log with the 
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property that all of them are prefixes of a single infinite word [4]. This class is 
called Pref-P /O(f(n)). This fact can be extended as follows: 

Theorem 11. If f(n) is an unbounded function that can be calculated in poly
nomial time, then Full-P/O(f(n)) = Pref-P/O(f(n)). 

The proof is given in the appendix. 
We will focus next in the nonuniform classes defined from polylog advices, 

that is, Full-P /O(logi(n)). The next question we address is how to extend the 
characterization of the sets with easy circuit expressions learnable only from 
membership queries, to not-so-easy (e.g. poly log-easy) circuit expressions. Ob
serve that nowhere in the class Er(Tally2) appears explicitly a logarithm that 
could be changed into a polylog function. Actually, as it turns out, there is a 
nice reason for this. 

Indeed, as we shall see shortly, there is a marked difference between the 
logarithmic and the polylogarithmic case. Both allow for a characterization in 
terms of polynomial-time Turing degrees of tally sets. In the case discussed in the 
previous section, the tally sets used were defined by a "qualitative" condition 
that the words were only of certain fixed lengths, namely powers of 2. When 
we move to polylog functions, the characterization no longer has this fiavor, 
but it instead becomes purely "quantitative": it corresponds to tally degrees of 
polylog density. Moreover, the exponent of the density tightly corresponds to the 
exponent of the complexity of the circuit expressions, modulo a log factor; and 
this log factor precludes the use of this characterization for the logarithmic case. 
So the theorem of the previous section cannot be obtained as a particularization 
of the present one. 

Let us denote as :F-Tally the class of tally sets of density bounded by a 
function from :F, i.e., having at most f(n) words up to length n where f E :F. 

Lemma 12. For all i ;::: 1, the following holds: 

Full-P /O(logi+ 1 (n)) =Pr( O(logi(n) )-Tally). 

Proof {Sketch). We show first Pr(O(logi(n))-Tally) s; Full-P/O(logi+1 (n)). In 
polynomial time, at most a polynomially long initial part of the tally set is 
accessible, and we need to know the tally oracle T up to that length. This 
information fits into O(logi+ 1 (ixl)) bits, and constitutes our advice word. 

Conversely, we see that Full-P /O(logi+ 1 (n)) s; Pr( O(logi(n))-Tally). By the 
previous theorem, it suffices to prove it for Pref-P / O(logi+l ( n) ). We encode the 
single infinite sequence limiting the successive advices into a tally set of the 
indicated density. 

The encoding scheme is as follows. Let T be a tally set of k logi ( n) density, 
where k is a constant. In the interval between 02" and 02n+•, there can be at most 
k(n + l)i - kni ~ rni-I possible new words belonging to T, for some constant r. 
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These must be chosen among the 2n words of the interval. So, we divide the 2n 
words into rni-l parts. Each part has the following number of words: 

2n 
N = Lrni-1 J 

So, we can interpret each part as a digit in base B = N + 1, depending on 
where the only word of that part is, and encode a number with rni-l such 
digits. Straightforward computation shows that there is enough room to encode 
the needed part of the infinite sequence limiting the advices. The advice can be 
easily decoded in polynomial time. 0 

Theorem 13. For all i ?: 1, the class of sets having polynomial size circuit ex
pressions in K[O(logi+1 ( n) ), poly] whose descriptions are learnable in polynomial 
time from membership queries is precisely Er(O(logi(n))-Tally). 

Proof (Sketch). Use the encoding described in the lemma to code into a tally 
set the seeds for the circuit expressions found by the learning algorithm. Not 
all of them are to be encoded: those are to be selected as in the proof given in 
the appendix. (Details are again deferred to a complete version of the paper.) 
This yields a tally set that is T-equivalent to the learned concept. The converse 
follows exactly as in the proof of the main result of the previous section. 0 

Taking the union over all i gives: 

Corollary 14. The class of sets that have a polynomial size circuit expression 
in K[O(logO(l) (n)), poly], and whose description is learnable in polynomial time 
from membership queries, is precisely Er(O(logO(l)(n))-Tally). 

6. Appendix 

We present here the proof of theorem 12. The proof technique is the same, or 
simpler, for the omitted proofs of theorems 7, 11, and 14, and is a generalization 
of that used in [4] to prove theorem 1. A similar construction appears in [3], 
the essential difference being that in their context the time bounds for the Kol
mogorov complexity definitions are based on the length of the output, and this 
requires a number of additional hypothesis and extra information manipulation. 

The nontrivial inclusion is from left to right. Let A E Full-P/O(f(n)), so 
that there exists a Turing machine M that decides A in polynomial time, with 
the help of advices {wn}nElN· There exists a function h(n) E O(f(n)) such that 
each Wn has the length bounded by h(n). Without loss of generality we assume 
that h is unbounded too. We have to construct an infinite sequence, in such a 
way that the prefixes of length O(f) can be used as well as advices for A. 

Using the fact that any advice corresponding to a particular length can be 
used by smaller lengths, the infinite sequence could be the concatenation of some 
Wn 's. The idea is to keep only the information Wn for some selected n's instead 
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of storing all of them. In order to choose the Wn 's we have to consider a balance 
between two contradictory restrictions. If we select Wn 's too frequently, then 
they will need too many bits and the piece of the infinite sequence could be 
too large; but if we select them too separated, then for some words the nearest 
valid advice would be too long to be extracted from the infinite sequence in 
polynomial time. It turns out that there is a way of skipping wn's for which the 
balance is satisfactory. 

Since h is unbounded, it is possible to find for each n a number mn such that 
2mn -l < h( n) :::; 2m,,; moreover, given n, the search of mn is done in polynomial 
time. Remark that eventually many n's are associated to the same mn. Let g(n) 
be the following function: 

g(n) = max{i I h(i) :S 2m"} 

Construct an infinite sequence (3 including all of {wg(n)}nEN· In order to get 
a good manipulation of the sequence, we construct (3 step by step, appending a 
power of two many bits each time. Namely /3 = P1P2P3 .. ·Pn ... in such a way 
that Vi > 0 holds: 

otherwise 

The minimum prefix of (3 containing the information of the advice Wg(n) will 
be exactly f31:2mn+1_ 1 , which denotes the finite word made up with the bits of 
(3 starting at 1 and ending at 2m,, +l - I. Then A is in Pref-P / O(J ( n)) because 
the following algorithm decides whether a word x is in A. 

input x; 

n := lxl; 
Find mn; 
From ,61,2m,,+1_ 1 obtain (32,,..,,, 2 m,,+1_ 1 ; 

Discard the 10* tail, obtaining advice word w 

Simulate M( (x, w)) and accept if and only if M accepts. 

The amount of bits from (3 used to decide whether x belongs to A is 
/31:2mn+1_ 1 . Its length is exactly 2m,,+l _1. From the fact that 2rn,,-l < h(n), we 
obtain that mn < log(h(n)) + 1, so 2m,,+l - 1 is bounded by 4h(n). Therefore, 
A E Pref-P/O(J(n)). D 
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