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CW/, P.O.Box 94079, 1090 GB Amsterdam, Netherlands 

We investigate numerical algorithms for use in air pollution models. The emphasis is on the time integration 
aspects in connection with advection, vertical turbulent diffusion and stiff chemistry. The time integration 
scheme considered is a second-order implicit-explicit BDF scheme which handles advection explicitly and 
vertical turbulent diffusion and chemistry implicitly. The investigation is divided into three parts. In the first 
part we propose a Gauss-Seidel technique for the implicit solution of the chemistry and vertical turbulent 
diffusion. In the second part we discuss stability properties of the implicit-explicit BDF scheme, assuming the 
third-order upwind biased finite difference discretization of the advection operator. In the third part we apply 
the implicit-explicit scheme to a 30 test model and discuss vectorization and parallelization aspects. 

Keywords: Long range transport air pollution models; Time-dependent advection-diffusion reaction; Numerical methods; 
Vectorization; Parallelization 

1. Introduction 

Air pollution models take into account many physical processes. From the numerical point of view, 
important processes are the chemical transformations, advective transport, caused by horizontal wind 
mainly, and vertical transport caused by turbulent diffusion. This paper is devoted to a numerical 
study of a 3D model of the form 

ap + div(HJ>) = !_ (Kaap) + r(t, p) 
at au u 

(I) 

in spherical coordinates, where p = p(A., q,, u, t) is a vector in ntm of m concentration values, 
H. = ueA + ve.p is the horizontal velocity vector with e>. and e~ the unit vectors on the sphere in 
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the longitude (A) and the latitude(</>) directions, respectively, and K is a scalar turbulent diffusio1 
coefficient in the vertical direction (u). The horizontal divergence operator is given by, [ 18], 

div(WJ) = ac~s<P (:A (up)+:</> (vpcos</>)), 

where a is the radius of the earth. Vertical advection and horizontal diffusion can be added withou 
essential numerical difficulties. The vector function r(t, p) defining the chemical transformatiom 
emission and dry deposition, has the special form 

r(t, p) = P(t, p) - L(t, p)p, (3 

where P(t, p) is the vector of production terms and L(t, p)p the vector of loss terms with L(t, P 
a diagonal matrix. For many species, the reciprocal of their entry in L is a good approximation a 
the physical time constant or characteristic reaction time. In virtually all applications, the range a 
reaction times is so large that we have to face the difficulty of stiffness [ 8]. 

Our numerical study considers a scheme which is derived employing the method of lines (MOL) 
The integration method is based on a second-order implicit-explicit BOF formula which handle 
advection explicitly, and chemistry and vertical diffusion implicitly. The numerical study focuses o 
three points. The first is taken up in Section 2 and concerns the solution of chemistry and verti 
cal diffusion. Normally, for stability reasons, stiffness impedes the use of some form of Newto 
iteration for computing the implicitly defined solutions. In [ 13, 14] we have shown, for differer 
box models and using the implicit second-order BOF formula, that for atmospheric chemistry prot 
lems the simpler Gauss-Seidel iteration can be used with greater or competitive efficiency. In fac· 
the Gauss-Seidel method used is truly explicit and is related to simple, explicit quasi-steady-stat 
approximation ( QSSA) schemes to which it compares very favorably also [ 14]. An additional ac 
vantage is the much lower memory demand compared to a Newton method. Here we show that th 
Gauss-Seidel iteration from [ 13,14] can be effectively extended to the coupled chemistry diffusio 
case. 

In Section 3, the second point is addressed, namely the stability of the implicit-explicit MO: 
scheme, given that the advection operator is discretized by the mass-conservative, flux-limited finit 
difference scheme proposed in [7]. This finite difference scheme is based on the third-order upwin 
biased discretization (the K = 1/3 scheme in the terminology of van Leer) and has been found to b 
very suitable for our application (see also [ 1,3]). We give results of a Fourier-van Neumann analys 
which show that the explicit, two-step advection scheme yields stability limits sufficiently large fc 
the application of the complete implicit-explicit scheme. Because the use of the Gauss-Seidel methc 
renders the diffusion chemistry computation explicit also, except for tridiagonal matrix inversion 
the combined implicit-explicit approach results in an efficient, almost explicit, process for models c 
type (1). 

Section 4 deals with the third point, namely the accuracy and efficiency performance of the implici1 
explicit MOL scheme when applied to a 30 test problem. Efficiency is of utmost importance an 
since we currently use a Cray C98/4256 (4 vector processors, 256 Mw shared memory), attentic 
will be paid to vectorization and parallelization of the advection and diffusion chemistry computatic 
in 30 applications. 
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2. The Gauss-Seidel process 

First consider the l D diffusion chemistry problem 

ap a ( ap) - = - K- + r(t p) ar a(]' a(]' ' · t > to, Q < U <<TH, 

supplemented with the initial condition p((J', t0 ) = p0 (<r) and the boundary conditions 

( K;;) (0, t) = 0, 

2. J. The discretization 

The vertical turbulent diffusion term is discretized on the nonuniform cell-centered grid 

flv = { (J'k: (]'1 = tAui. uk = (J'k-1 + t (Auk-1 +Auk), 2 :::;; k :::;; Nu}, 

such that the following ODE system is obtained. For 1 :::;; k:::;; Nu 

d;tk = fk(t, c) = dk(t, c) + r(t, ck), t >to, ck( to)= p0 (uk), 

where c(t) is the complete grid function on fly, ck(t) :;::;j p(uk> t) and 

SKt ck+I - ck _ SK; ck - ck-I 

d ( ) _ Auk+I +Auk Auk+ Auk-I k t' c - ----':...:..,:__ __ .::...._ ___ ....::...... _ ___;,:'-'-
A(J'k+I + 2Auk + Ll(J'k-1 

193 

(4) 

(5) 

(6) 

(7) 

with Kc= K(t, ((J'k+ Uk±i)/2) and Llu0 = Llui. LluN,,+I = AuN,,· Note that K is evaluated halfway 
between the cell centers, rather than at the cell boundaries, to obtain a consistent discretization of 
(at least) order one. The boundary conditions are incorporated by putting K; = 0 for k = 1 and 
Kt = 0 for k = Nu· Also note that ck ( t) is a vector in Rm and that the diffusion operator introduces 
no coupling between different species. For each of the species, the semi-discrete diffusion operator is 
equal and represented by the same tridiagonal matrix. The species are coupled through the chemistry 
tenn r(t,ck)· 

For the time integration, we consider the two-step BDF formula in variable step form 

n+i _cn+ J (t n+I) ck - k yr k n+I> c • (9) 

( 10) 

r = tn+I -tn, y = (l +q)/(l +2q) and q = Un+I -tn)/(tn -tn_i). The initial vector c~ = ck(to). and 
cl is assumed to be defined by the first-order implicit Euler rule. This combination yields second
order accurate time stepping which for atmospheric transport applications is sufficient in view of the 
modest accuracy requirement. Generally, a relative accuracy better than 1 % is superfluous. 
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2.2. The Gauss-Seidel iteration 

Suppressing the temporal index n + l and tn+i for notational convenience, we write (9) as 

ck= Cf + yrdk(c) + yrP(cd - rrL(ck)ch 1 ::;; k::;; Nu. ( 11) 

Let dil be the jth component of ck and introduce, for j = 1, ... , m, the following vectors on flv: 

C(j) = [c\j), ... , cv;r, pU\c) = [pUl(c1), ... , p<n(cNJ )T, 

and, similarly, 

C i /) - [C(j) C(j)]T 
- I '· · ·' N1r • 

The vector c contains all vectors cW, j = 1, ... , m. Then, introducing the diagonal matrices 

Len (c) = diag(Lu>(c1), ••• , LUl(cNJ ), j = 1, ... , m, 

we may write 

cUl = C(j) +yr Ac<n +yr Pu> ( c) - yr L <Jl ( c) cUl, j = 1, ... , m, 

where A is the tridiagonal (diffusion) matrix of order N" ( cf. ( 8)). Equivalently, we have 

cw= (1 - yrA + yrLUl(c) )-' ( c<n + yrP<j>(c)), j = 1, ... ,m, 

(12) 

(13) 

(14) 

since the inverse of the (diagonally dominant) tridiagonal matrix I - rr A+ yrL U\ c) always exists. 
The Gauss-Seidel iteration for approximating c<n, 1 :::; j ::;; m, is carried out on equation ( 14) and 

consists of the following calculations. Let C[iJ denote the ith iterate for c. Then, at step n, 

( 1) Initial estimation: i = 0, c1;1 := max(O, ~ + q( ~ - en-I)). 

( 2) Compute, in the order j = 1, ... , m: 

(a) Lu> ( c, ii), P(j) ( c, ii). 
(b)LU-decompose I - yr A+ yrLU> (cu1 ). (15) 

(c)Backsolve in (14) for cUl 11 • 

(d)u d t ._ ( (I) (j) (j+l) (m)) p aec1;1 .- cli+IJ•····cli+IJ•c(il , ... ,c[iJ . 

( 3) Set i := i + 1. If more iterations are required, then go to ( 2). 

Hence the approximations are corrected specieswise and simultaneously over the grid, such that the 
diffusion term is treated implicitly. This requires the tridiagonal matrix calculations ( 2 )( b), ( c) 
any time a species is corrected. Thus, except for the tridiagonal matrix calculations, the Gauss
Seidel process is truly explicit. No Jacobian matrices for the chemistry system are computed and no 
additional storage is required. If there were no diffusion, then this process is completely identical to 
that used for the box models in [ 13,14]. On the other hand, without chemistry the diffusion is treated 
implicitly in the usual way. This means that method (15) differs from the well-known classical 
nonlinear Gauss-Seidel method since this classical method does not distinguish between the diffusion 
and reaction terms and would be applied directly to ( 11). 
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2.3. Numerical illustration 

This section presents numerical results for a large, real life test problem obtained with a code based 
on (9). For the approximate solution of the implicit relations, the Gauss-Seidel (GS) iteration ( 15) 
and modified Newton (MN) iteration have been implemented. The stepsize strategy is similar to that 
in [ 13, 14] and many stiff ODE codes and identical for the GS and MN iterations. To save space 
we omit details here. We have not implemented an iteration strategy for GS and hence prescribe 
the number of GS iterations. In our experience, this works well using only a few iterations. A 
standard UNPACK [5] linear band solver is used for the block-tridiagonal system arising within 
the MN iteration. We use an analytical Jacobian matrix for the chemistry part. This matrix is sparse 
which means that Jacobian evaluations are cheap. Unfortunately, for the block-tridiagonal system the 
fill-in of the matrix factorization is almost complete, ruling out using a sparse system solver as is 
successfully applied in [ 15] to box models. 

Our test problem of type (4)-(5) is based on the state-of-the-art EMEP MSC-W ozone chemistry 
( 140 reactions between 66 species [ 10, 11 ] ) . In [ 14] we have used the same chemistry in box model 
tests. The experiments reported here extend these to column model tests in a straightforward way 
by adding a vertical turbulent diffusion term. Hence K(t, u) depends on the mixing height which 
depends on the time of day. Photolysis rates undergo a discontinuity at sunset and sunrise. This, and 
the space-time dependence of K(t, u) causes large local concentration gradients. A nonuniform space 
grid is used which contains 40 points. This grid covers an air column of height uH = 2000 m. We 
use the ODE error on this grid in the comparisons. Hence we pay no separate attention to the spatial 
accuracy, which is approximately I% in the error norm introduced below in (16). For the grid with 
40 points, the dimension of the banded linear system arising in the MN iteration equals mN u = 2640 
with a bandwidth equal to 2m + I = 133. 

The time integration over 112 hours starts at sunrise (04.00 hours) on day one (t0 = 14,400sec.) 
and ends at sunset (20.00 hours) on day five (t = 417,600sec.). In all integrations, the 112-hour 
interval is divided into 56 two-hour intervals, on each of which we restart the integration with the 
one-step backward Euler formula using a tenfold smaller stepsize than on the previous step. This 
division into 56 subintegrations was also used in [ 14] and is in accordance with regular changes in 
model coefficients and input. Such changes can introduce a discontinuity (as at sunset and sunrise), 
motivating the many restarts. Note that, if the current procedures were used in an operator splitting 
scheme, then frequent restarts would also be made. 

We have carried out two different experiments. The first serves to provide insight in the accuracy 
efficiency performance of GS iteration when varying RTol (the relative tolerance parameter for the 
variable time stepsize selection) and the number of GS iterations. The second serves to compare GS 
iteration with MN iteration. Efficiency is measured by CPU time and accuracy by the number of 
correct digits 

(16) 

where sol;;1 denotes a highly accurate approximation to the ODE solution on the grid and app;;1 the 
numerical solution. The times tn are restricted to tn = 14400 + 7200n with 8 ~ n ~ 56, j runs over 
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Fig. l. ID experiment, CPU sec. versus SDA: (a) GS iteration, (b) GS iteration ( x) versus MN iteration ( o). 

all species, and k runs over the grid. Hence we sample at the end of each 2 hour interval, but for 
the first time at sunset on the first day because we start at sunrise with an arbitrary initial condition. 
Thus we assume that we have fully eliminated the initial transients at the first sunset. In (16) we 
first compute an 12 error in time and over the grid for each species and then average over all species. 

Fig. 1 (a) gives results of the first experiment which comprises 16 integrations. Each of the four 
lines corresponds to a prescribed number of GS iterations ( o-2, x-4, +-6, *-8) and connects results 
for four values of RTol 00- 1, 10-2 , 10-3, 10-4 ). This enables us to compare the use of different 
values of RTol and a fixed number of GS iterations with the use of a different number of GS iterations 
and a fixed value of RTol. First we notice that decreasing RTol by the chosen factor of 10 also reduces 
the error by this same factor, approximately. This indicates that the variable stepsize strategy works 
well. Because the four lines almost coincide, we conclude a good strategy is to keep the number of 
GS iterations low and to take RTol small, rather than using a large number of iterations and a crude 
tolerance. Then we do not need a GS iteration strategy and we do not risk performing a number of 
GS iterations larger than the amount required to reach the accuracy of the implicit second-order BDF 
method. 

Fig. I ( b) gives results of the second experiment. Accuracy is plotted against efficiency for four 
integrations using RTol = 10-1, 10-2, 10-3 and 10-4, both for GS iteration and MN iteration. Here 
we have fixed the number of GS iterations to 4. In line with the results of the first experiment, we see 
that MN iteration al ways results in smaller errors (close to the error of the BDF formula), but clearly 
at the expense of much higher costs. GS iteration appears to be four to five times more efficient. 
This strongly favors GS iteration, certainly so for 3D problems where ID calculations of the type 
considered here need to be carried out at thousands of points in a horizontal grid. 

3. The implicit-explicit two-step BDF scheme 

In this section, we present the implicit-explicit two-step BDF scheme for ( 1) and discuss its 
stability. We assume that the advection operator (2) is discretized on a cell-centered uniform grid 
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by means of the mass-conservative, flux-limited, finite difference scheme proposed in [7]. This 
scheme is based on the third-order upwind biased method which is equivalent to the K = 1/3 scheme 
of van Leer and derived with the aim of producing positive and monotone solutions and little artificial 
diffusion. It has been found to be very suitable for our application (see [ 1,3,7] ). For the sake of 
brevity, we refer to [ 7] for the actual formulas and their derivation. 

3.1. The implicit-explicit scheme 

Let e(t) denote the semi-discrete grid function on the cell-centered 3D grid nH x nv. where flv 
is defined by (6), with components C;jk(t), now approximating pat the grid point (A;, </>j. c.rk). Let 

de 
dt =g(t,e)+f(t,e) (17) 

denote the associated semi-discrete 3D problem. Components fuk are defined by (7) and components 
g;;k represent the numerical advection scheme (boundary conditions for the advection operator are 
omitted here). Recall that each component eiJk itself is a vector in JRm. Also recall that f ( t, e) is only 
coupled in flv and g(t, e) only in 118 . Further, since in the advection operator species are not coupled 
to one another, we might consider the semi-discrete advection system for each species separately. 

Assuming constant stepsizes, for simplicity of presentation, the two-step implicit BDF formula 
applied to ( 17) is 

( 18) 

However, we do not wish to integrate (17) implicitly, and replace (18) by the implicit-explicit 
scheme 

l ,11tl =±en_ !en-I+ £rg(t 2en _ en-1) + £Tj(t en+l) 
3 3 3 n+ 1' 3 n+ 1' · 

(19) 

Likewise, for n = 0, the implicit Euler rule is replaced by the first-order implicit-explicit Euler rule 

(20) 

Integration schemes of this type are well known, [2,12]. For our application (19) is particularly 
attractive as the method is only 1 D implicit. One step with ( 19) amounts to computing advection 
explicitly at all horizontal grids {}8 , and vertical diffusion and chemistry implicitly and coupled along 
all vertical grids flv perpendicular to nH, as discussed in Section 2. 

The implicit-explicit approach may be viewed as splitting within a method. The additional error 
introduced by "internally splitting" advection from diffusion and chemistry preferably should be of 
the same size as the error of the original BDF formula. Substitution of a sufficiently differentiable 
solution e( t) into ( 19) yields the local truncation error 

2 3 d3 2 3 I d2 4 
9r dt3 e(tn) + 3T g Ctn. c(tn)) dt2C(tn) + O(T ). (21) 

Hence the extrapolation in ( 19) adds the product of the Jacobian g' with the second derivative of e 
to the original local truncation error, but the local error remains 0( r3). Thus, to retain the level of 
local accuracy, the size of this product should be comparable to the size of the third derivative of the 
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solution. Alternatively, we can examine the local temporal accuracy of the implicit-explicit formula 
for the PDE itself, by directly applying the integration formula to ( l). The local truncation error 
expression then becomes 

~r1 p11 ,(t 11 ) + ~73 div(g[p(t11 +1) -2p(tn) +PUn-dJ) +0(74 ) 

= ~73 P111Un) + ~73 div(gptt(t,,)) + 0(74). (22) 

We see that, if the third temporal derivative is of the same size as the divergence of the velocity times 
the second temporal derivative, then no reduction in local accuracy will result. This observation is of 
relevance only when the spatial error is negligibly small. Of course, if the spatial error dominates, as 
is surely the case for our experiments, then "internal splitting" will never ham1 accuracy. 

3.2. Linear stability 

Treating advection explicitly obviously has a large impact on stability. To examine this, we consider 
the linear, constant coefficient system 

Pr + llPA = KPmr + M p, (23) 

where K is a scalar and M is a matrix representing the chemistry. Note that, for the purpose of 
inear stability analysis, it suffices to consider only l D advection. Conclusions for 2D (and 3D) 

tdvection can be drawn immediately from the ID analysis. Assuming that M is similar to its diagonal 
eigenvalue matrix, it is sufficient to study the componentwise equations arising in the eigensystem 
expansion. Using the same notation, we thus proceed with the scalar equation 

Pr + UfJA = Kp,,,, + µp. ( 24) 

We apply the Fourier method of von Neumann and thus assume that the K-scheme is applied without 
limiting and that f2v is uniform. The semi-discrete scheme can then be written as 

u , c, - 4c,. 1 + -· 4c;, 1 +· c, 
+ sign ( u J - (~A.) -· -----------------·-··---------·-·------

. 12 (6A.) 4 

= L' c,,i, 1 -· 2c1.1. + c,_,; 1 /). .... -·------···-·---·-- +· µc,.1:· 
( DdT) 

(25) 

Fourier analysis leads to the characteristic equation 

(26) 

where AA and A,, are the advection and diffusion eigenvalues, 

_I _~- ( 

3 l1,\ ' 
(27) 

2K 
A,, :;;: --, (cos fl, 1 I ) , 

i.J.(T• 
(28) 
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Fig. 2. The stability region S of the explicit two-step scheme (solid line). The dashed, dashdotted and dotted line are the 
curves for r A,1 for the CFL numbers v = 0.3, 0.45, 0.6, respectively. 

with ()J.. = wJ..tlA., Ou = Wuil<T and IOJ..I, IOul :::;; 'TT. When the term sign(u) (1 - cos BJ..) 2 is removed 
from (27), the advection eigenvalue AJ.. for the classical fourth-order central difference scheme results. 
Then AJ.. is purely imaginary. In the upwind case (with the term sign(u)(l -cos()J..) 2 in place in 
( 27) ) , AJ.. is complex with a negative real part. We first determine the stability region S of the explicit 
two-step scheme contained in ( 19), 

e"+I = :!en - len-1 + 1Tg( t 2en - en-I) 
3 3 3 n+i> • (29) 

This is easily done with the root locus curve computation [ 6]. If rAJ.. E S for all OJ.., then we have 
von Neumann stability for the explicit advection scheme. In Fig. 2, we have plotted the boundary of 
S and the curve TAJ.., as a function of OJ.., for three trial-and-error values of the Courant, Friedrichs 
and Lewy (CFL) number 

Tlul 
VJ.. = ilA, (30) 

namely, for VJ.. = 0.3, 0.45, 0.6. The figure shows that the explicit two-step scheme is stable and 
that the maximal CFL number is 0.45, approximately. In higher space dimension the derivation goes 
entirely similarly. For example, for 

Pr+ UPJ.. + vpq, =0, (31) 

we must have T( AJ.. + Aq,) E S for all frequencies. Here Aq, is the "advection eigenvalue" defined 
similarly to AJ... A safe upperbound for the stepsize T of the explicit advection scheme then is obtained 
from 

T (M + M) ~ 0.45. (32) 
tlA. tl</> "" 
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For central differences, the explicit advection scheme will be unstable for all T > 0, because the 
eigenvalues then lie on the imaginary axis which is not intersected by S. In this case, one should start 
from a different implicit method for developing an implicit-explicit variant [2, 12]. 

The CFL condition is comparable to those found in [7] for a number of explicit Runge-Kutta 
methods. Also the results reported in [ 3], where the global spherical advection problem is discussed, 
show that (29) combined with the K-scheme works well. For ( 19), the CFL condition seems certainly 
acceptable, since, in practice, stepsizes taken by this method will be determined mainly by the stiff 
chemistry and vertical diffusion and hence will generally be smaller than the largest permissible 
advection stepsize. Of course, the explicit advection approach should not reduce the excellent stability 
of the implicit BDF method for the stiff chemistry and vertical diffusion computation. The question 
is thus, will (19) be stable for any stepsize Ta for which the explicit advection scheme is stable? This 
implies that the root condition for (26) must be satisfied for all possible values of TaAA and 1 - ~( 
where C = 7" a (Ar + µ). For C < 0 this holds and is a consequence of the theorem below. We have 
( < O if the chemistry eigenvalue µ is negative. The theorem does not hold for arbitrary complex ( 
with Re(() ~ 0. However this seems to be a redundant observation for atmospheric chemical kinetics 
problems since these seem to give rise to negative µ. 

Theorem 1. Let the complex number z E S. The roots of 

(1 - ~C) a2 - (~ + 1z) a+ (t + ~z) = 0, 

then lie in the unit disk for any ( < 0. 

Proof. Let a 1 and a 2 be the roots for ( = 0. As z E S, we have laj I ~ 1, j = 1, 2. Now write the 
characteristic equation as 

(33) 

and consider the stability domain for(, for any fixed z E S. On the boundary of this domain we have 
a root !al= 1, which implies that iaj/al ~ 1. It then follows from (33) that this boundary cannot 
intersect the negative axis and hence the entire negative (-axis must belong to the stability domain 
since we have stability for C --.. -oo. D 

3.3. The exact CFL condition 

For multistep implicit-explicit methods, necessary and sufficient conditions for von Neumann 
stability can be difficult to determine. A semi-analytical approach which gives sufficient conditions 
for a variety of methods has been proposed in [ J 6] for schemes based on second or fourth-order 
central differences and in [ 17] for schemes using the third-order upwind discretization for advection. 
Our approach above is standard and also semi-analytical. The approximation 0.45 for the maximal 
CFL number was found by plotting the boundary of the stability region Sand three curves of -rA,1. 
By means of Theorem I, we then established that the critical stepsize for von Neumann stability in 
the implicit-explicit case is determined by the critical stepsize for the explicit case and hence by the 
maximal CPL number. 

I 
! I 

_J 
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Although the approximation 0.45 is quite accurate, we will now present the derivation of the 
true maximal CFL number, denoted below by Vmax· This derivation involves complicated algebraic 
expressions so that the final step of the proof is solved with help of the computer algebra package 
MAPLE. 

Theorem 2. To ten decimal digits accuracy, the maximal CFL number is given by 

V111ax = 0.4617485908. 

Proof. Set v = v;.., () = ();,. and A= A ... By definition 

Vmax = max[v: !ail, la2I::::;; 1 for 1()1::::;; 17"], 

where a 1, a 2 are the zeros of the characteristic polynomial 

p(a) = a2a 2 + a1a + ao 

with coefficients 

I 2 A ao = 3 + 31' . 

Let 

p*(a) = Zi2 + a,a + 2ioa2, Pi (a)= ii2a1 - Zi1ao + (Zi2a2 - Zioao)a. 

According to [9, Theorem 6.1], the zeroes a 1, a 2 lie in the unit disk if and only if 

(i) lp*(O)I > lp(O)I, and (ii) laol::::;; 1, 

where a0 is the zero of p 1• 

Condition ( i) is equivalent to 

Jaol2 = ~ - H<q- 1)2v + '1[ (q- 1)4 + (l - q2)(4- q)2]v2 < 1, 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

where q =cos(()). Because la0 l2 is an increasing parabola in v, with value 1 /9 at v = 0, it follows 
that ( 40) holds for 0 ::::;; v ::::;; v0 if this inequality holds for v0 • Let us substitute the trial value v0 = I. 
Then ( 40) holds if and only if 

2q3 - 6q2 - 3q - 2 < 0. ( 41: 

It is readily shown that this is the case for all jqj ::::;; I. 
Condition (ii) is equivalent to 

I a 1 - a 1 ao I ::::;; I I - Zioao I = I - I ao I 2. 
Write TA= Re+ilm. Then (42) is equivalent to 

3 Re4 +3 Im4 -2 Re3 +6 Re2 Im2 -2Im2 Re -5 Re2 +4 Re::::;; 0. 

From the expressions 

Re = - t v ( q - 1 ) 2 , 

(42) 

(43) 

(44) 

'' ,, I 
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it follows that ( 43) holds for q = 1, so that in the remainder we may assume -1 ~ q < 1. 
Substitution of the expressions for Re and Im into ( 43) yields, after a lengthy computation, the 
equivalent condition 

(45) 

where 

Qo(q) = -4, 

Q1(q) = -5(q- 1)2, 

Q2 ( q) = ( q - l )( 8q2 - 1 Oq - 34), 

Q3 ( q) = 48q4 - l 20q3 - 333q2 + 51 Oq + 867. (46) 

Because Q3(q) > 0, Q(v,q) - ±oc for v - ±oo. Further, Q0 (q) = -4 and Q1(q) < 0, so 
that Q ( i1, q) has a minimum for v > 0 and a maximum for v < 0. Hence, the cubic polynomial 
Q ( v, q} has one positive zero and the value of this zero, minimized with respect to q over the interval 
- I ~ q < l, is just the maximal CFL number ( 35), provided this zero is less than or equal to one 
(cf. condition (i) of (39)). 

For computing the positive zero of Q(v, q) and for the minimization with respect to q, the 
computer algebra package MAPLE was used. The resulting closed expression for Vmax is very long 
and complicated; for the sake of brevity, we give the number Vmax to 10 decimal digits accuracy. 0 

4. The performance for 3D applications 

In this section, we present results of the implicit-explicit MOL scheme for a 30 test problem. We 
also discuss the speedup obtained by vectorization and parallelization (on a Cray C98/ 4256). 

.f. I. The JD test problem 

The 3D test problem (I )-(3) is based on an extension of the ID column model to a 3D model on 
the sphere. The cell-centered horizontal grid covers an area of 7 .5° square, arbitrarily chosen near the 
equator. This corresponds to an 850 km square, approximately. We take a uniform longitude-latitude 
grid in the horizontal directions, 

!}H = { ( A;, </> J ) : Ao = -97.5°, </>o = - 7.5°, 

ft.;= (i- ~)J, </>1 = (j- ~)J; i,j = l,. . ., N} (47) 

with cell width .d = 7 .5° / N. In the vertical direction, the domain definition and the discretization are 
the same as in the column model described in Section 2.5. Note that the emission input, deposition, 
etc. are also defined in the same way as in this column model. Thus we take the "rural case" 
emission input on the whole domain, except for a square inside (see Fig. 3) where we switch to 
the "urban case" emission input ( cf. [ 14] ) which is approximately a factor 10 larger. This serves to 
create significantly larger (also by an order of magnitude of 10) concentrations at the urban area, 

Fig. 3. The horizo; 
Ulain "rural" emi 
mcteristic. 

'llhich then dow 
horizontal trans1 
&:ginning of Se 
imposed with si 

v(ft., </>) = -

where {3 = - 3'77 
3.6 m/sec. 

We take N • 
solution, we tal 

. tests, different · 
lllOdels of regi c 

.~ horizontal <lorn 
Let us elabc 

coosider the co 
in (2) so that 
yields 

T ~ 0.225 
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Fig. 3. The horizontal domain with the windfield. In the gray square we impose "urban" emissions, in the rest of the 
domain "rural" emissions. The diagonal line gives the points where the solution is compared to the ID solution along the 
characteristic. 

which then downwind gradually must be reduced to the lower rural levels. The discretization of the 
horizontal transport term (2) is based on the flux-limited finite difference scheme referenced at the 
beginning of Section 3. We use zero Neumann boundary conditions. A divergence-free windfield is 
imposed with such a direction and strength that the area is crossed diagonally in four days 

1Ta y'2 
u ( ,.\, </>) = 24 345600 · (cos /3 cos</> + sin ,8 sin</> cos ,.\), (48) 

,.\ A. 1Ta y'2 . /3 . ,.\ 
v( ''f') = -24 345600. sm sm ' (49) 

where /3 = -31T / 4 is the angle with the equator. This corresponds to a wind speed of approximately 
3.6 m/sec. 

We take N = 32, 64, 128 and we start our computations at t0 = 14400 + 7200 · 8. As initial 
solution, we take at all grid points the vertical 1 D solution of the "rural case" at that time. In our 
tests, different resolutions were chosen to show the performance of the numerical algorithms in 30 
models of regional to urban scale. Notice that the chosen values for N correspond to grid sizes in the 
horizontal domain of approximately 26.6, 13.3 and 6.6 km. 

Let us elaborate on the CFL restriction ( 32) for this test problem. For this purpose, we first 
consider the corner point ( -90°, 0°), where u = u = -7Ta / ( 24 · 345600). Because </> = 0°, cos </> = 1 
in (2) so that (32) becomes rlul/(a.1)::::;; 0.225. Inserting .1=7.5°/N = 27T/(48N) radians, this 
yields 

6 0 
{ 

2430.0 sec., for N = 32, 
24 · 345 0 a7T 

r::::;; 0.225 · 7Ta 24N ~ 1215.0 sec., for N = 64, 

607.5 sec., for N = 128. 

(50) 
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Because the angles r/>, A do not vary much over the spatial domain, these inequalities are approximately 
true everywhere. The linear stability analysis of Section 3.2 predicts that if (50) is satisfied, then the 
implicit-explicit BDF scheme will be stable. In the actual application, variable stepsizes are used. 
Consequently, if violation of (50) would result in instability, then the local error control must detect 
its onset and reduce the stepsize to a level which ensures stability. 

4.2. Vectorization and parallelization 

For N = 128, the dimension of the complete semi-discrete ODE system is 129 · 129 · 40 · 66 ~ 
44 · l 06. Obviously, speed is then of utmost importance and because we use a computer with four 
vector processors (Cray C98 I 4256), a natural question is how to obtain good parallel vector speed. 
The integration scheme ( 19) has been implemented in a modular way. Separate routines perform 
the flux computations and the explicit advection part. A straightforward implementation of these is 
automatically optimized by the compiler both with respect to parallelization and to vectorization, 
resulting for these parts in a good performance. The subroutines are analogous to the ones used 
in [ 3]. The core of the implicit solver for the chemical transformations and the vertical turbulent 
diffusion is the Gauss-Seidel method ( 15). This method might be applied for all horizontal grid 
points but the computations are independent. Therefore we implemented loops over all horizontal 
grid points inside the items 2(a)-2(d) of (15). With this implementation the Gauss-Seidel process 
vectorizes very well. To obtain a good performance on a shared memory system with only a few 
processors, item 2( a) can be parallelized over the vertical grid, while in items 2(b) and 2( c) the 
loop over the horizontal grid may be distributed over the processors. 

4.3. Test results 

In Fig. 4, the horizontal distribution of the 0 3 concentration in the first vertical layer is plotted. 
It shows that the transitions between the rural and the urban area are very steep, while downwind a 
strong dependence of the ozone level on the higher urban emission exists. Plots on the coarse grid 
( N = 32) show a comparable behavior. To assess accuracy, we compare the numerical solution with 
the true ID solution obtained along the characteristic from ( -90°, 0°) to ( -97 .5°, - 7 .5°). The error 
is measured by 

ERR 1
; = [f (solZJ - app~;) 2] 1

12 
/ [max (1, '£: ( solZJ) 2)] 1

12
, 

k=I k=I 

( 51) 

SDA'' = - log10 ( ~6 f ERR_~) , 
;=I 

(52) 

( 
1 N66 ) 

SDA=-log 10 N. 66 ~~ERR) , (53) 

computed at all grid points through which the characteristic travels. Here, solk; denotes a highly 
accurate approximation to the semi-discrete 1 D solution along the characteristic at time 
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Fig. 4. The ozone concentration at sunset of each day on the horizontal domain ( N = 64) in the first vertical layer. 

Tn =to + n ( 4 · 24 · 3600) / N for n = 1, ... , N, 

which represents the true solution of the 30 problem at the vertical column at the grid point 
(N - n, N - n) at that time. Likewise, appki denotes the numerical vertical column solution at 
this grid point at that time. (See Fig. 3, where we indicated 17 of those points with a o.) Because 
we use variable stepsizes in time, linear interpolation in time is used to get an approximation at 
T,,. 

We used four GS iterations and made runs for two different time tolerances, viz., RTol = 0.1 and 
RTol = 0.01. As in the ID case, after every two hours, the integration is restarted with the backward 
Euler formula and a tenfold smaller stepsize. At the 65 x 65 x 40 grid, for RTol = 0. l the maximum 
and average stepsize taken are, respectively, 2400 sec. and 307 sec. For RTol = 0.01 these values are 
1118 sec. and 144. This amounts to a total of 1125 integration steps for RTol = 0.1 and 2407 for 
RTol = 0.01. 

Table I shows that on the coarse grid, N = 32, and to a lesser extent also for N = 64, RTol = 0.01 
does not result in a more accurate solution. This obviously indicates that the spatial errors dominate. 
To illustrate this we have plotted in Fig. 5 the SON values in all grid points through which the 
characteristic travels. Note that in the first quarter no spatial errors are present since in the right upper 
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Table I 
Performance on I CPU 

129 x 129 x 40 65 x 65 x 40 

RTol SDA CPUs Mflop SDA CPUs 

0.01 1.71 4.45e4 570 1.54 l.20e4 
0.1 1.39 2.43e4 570 1.44 6.06e3 

Table 2 
Performance on 1 CPU for GS process and flux computations 

129 x 129 x 40 

CPUs 

RTol=0.01 GS 2.49e4 

RTol=O.l 

Flux, 7.00e3 

Flux</> 6.58e3 

GS l.36e4 

Flux, 3.83e3 

Flux</> 3.60e3 

129x129x40 

4 

:S3 <( ,. 
D 2·111. 
(/) I 

...,,.·v .. .,...,.._ ,.-":..v'· --.. 
v 

33 65 97 129 
-> n 

4 

65 x 65 x 40 

Mflop CPUs 

610 6.50e3 

510 l.91e3 

540 l.78e3 

610 3.29e3 

510 9.66e2 

540 8.99e2 

65x65x40 

17 33 49 65 
-> n 

Mftop 

550 

550 

33 x 33 x 40 

SDA CPUs 

1.24 3.3le3 

1.24 l.64e3 

33 x 33 x 40 

Mftop 

600 

500 

530 

590 

500 

530 

4 

:S3, 
<( •. 
D \.\. 

(/) 2 "· 
1 

CPUs 

l.67e3 

6.53e2 

4.80e2 

8.27e2 

3.24e2 

2.38e2 

33x33x40 

9 17 25 33 
-> n 

Mftop 

500 

500 

Mftop 

590 

360 

490 

590 

360 

490 

Fig. 5. The errors at the grid points through which the characteristic travels, shown for the three different space grids and 
the two time tolerances RTol = 0.1 ( dashdotted) and RTol = 0.01 (solid). 

square of the domain as the solution is constant over the horizontal grid. It is clear that the steep 
gradients in the rural-urban transition result in dips in the accuracy. On the coarse grids, after the 
first transition, the error is no longer influenced by the time tolerance and the spatial errors start to 
dominate. On the finest grid, N = 128, the accuracy for RTol = 0.1 is even lower than on the grid with 
N = 64. In Fig. 5, it can be seen that the drop in accuracy occurs after the urban area. The reason is 
that we did not impose the CFL restriction on the time stepsize assuming that the local error control 
would detect instabilities in a timely way and reduce the stepsize to a stable level. This obviously did 
not happen during the nights when two time steps were taken of approximately 900 sec. resulting in 
a drop of accuracy caused by instabilities in the area just SW of the urban square. A rerun starting 
at 20 h on day 2 with the CFL restriction imposed confirmed this. Note also that, for the stricter time 
tolerance RTol = 0.0 I, this accuracy drop caused by instabilities does not occur. 
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Table 3 
ATExpert data of the parallel fraction (Par. Fr.) and the predictions of the performance on a dedicated machine for the 

whole program, the GS process and the flux computations. The number of processors is 4, 8 and 16, and the bracketed 
numbers give the speedup predicted by Amdahl's law 

Par. Fr. 4 8 16 

Overall 97% 3.4 (3.7) 5.4 (6.6) 7.7 (11.0) 

GS 100% 3.4 ( 4.0) 5.4 ( 8.0) 7.8 ( 16.0) 

Flux, 96% 3.5 (3.6) 6.3 (6.3) 8.9 ( 10.0) 

Fluxq, 96% 3.5 (3.6) 6.1 ( 6.3) 8.7 ( l 0.0) 

The space discretization scheme in the advection part will be first-order at the rapid transition points 
due to the limiting procedure. Fig. 5 confirms this. Beyond the first transition, the errors plotted in 
Fig. 5 are close to 2% (N = 128), 4% (N = 64), and 6% (N = 33). These errors may seem rather 
large but are believed to be quite acceptable for modeling purposes. 

The vectorization of the code is very satisfying. To interpret the figures in Table l and 2 bear in 
mind that one CPU of a C90 has a clock period of 4.2 ns and a double vector pipe. This gives a 
theoretical peak performance on 1 processor of 476 Mftop/s and 952 when chaining an add and a 
multiply. As was already shown in [ 3], the explicit part of the solver, which consists mainly of flux 
computations, has a performance of approximately 0.5 Oft.op/ s. The implicit part of the solver is 
dominated by the Gauss-Seidel process which reaches even 0.6 Gftop/ s. To measure the Megaftop 
rate and the CPU time of a routine we used the Cray utility Perftrace [ 4], that gives the hardware 
performance by program unit. 

Parallelization is done using the Cray Autotasking system, which automatically distributes loop 
iterations to multiple processors, optionally guided by user directives. For Autotasking, the Cray tool 
ATExpert [ 4] can be used to predict speedups for a number of processors on a dedicated system 
from data collected from a run on a nondedicated system. Table 3 shows the information obtained by 
ATExpert on the 65 x 65 x 40 grid. The parallel fraction gives an indication of the optimal speedup 
according to Amdahl's law S = 1/(fs + fp/N), where fs and fp are the sequential and parallel 
fraction, respectively, and N the number of processors. For example, a parallel fraction of 97% gives 
a speedup of 3.7 on a 4-processor machine and 11.0 on 16 processors. The figures in the table indicat 
that the actual speedup would be much lower for the GS process, especially for 16 processors, wher 
the optimal speed up of 16 is predicted to reduce to an actual speedup of only 7 .8. There are two 
main reasons for this. The first is load imbalance. For example, the computation of the production 
and loss terms in the Gauss-Seidel process is parallelized over the vertical grid ( 40 grid points) and 
gives a satisfactory speedup for 8 processors, but of course not for 16 processors. The second is the 
system time needed to invoke and terminate a parallel region ( 3600 clock periods on a C90). If the 
parallel sections do not contain enough work, most of the work will be done by the master task and a 
few slaves. On a 65 x 65 grid, the actual speedup does not approach the optimal because the amount 
of work needed to do a part of the decomposition or the backsolve is of the order of only a few 
operations per loop iteration and because the loop over the horizontal grid needs to be parallelized as 
well as vectorized, resulting in a relatively small number of points per processor. On the 129 x 129, 
horizontal grid this overhead is less important and indeed inspection of a few loops showed that the 
speedup is significantly higher than for the coarser grid. 

···~ i . . ' 
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5. Final remarks 

Air pollution codes usually employ operator splitting. Following the method of lines, in this paper 
we discussed numerical integration based on the variable stepsize, second-order BDF formula. This 
choice of integration formula is natural in view of its excellent performance for stiff ODE problems 
from chemical kinetics in the low accuracy range. However, since we deal with a huge system of 
ODEs obtained after the spatial discretization of the advection and diffusion terms, it would be very 
cumbersome to apply the BDF formula in its fully implicit form. We therefore have modified it 
to an implicit-explicit form which treats advection explicitly and vertical turbulent diffusion and 
chemistry implicitly. As outlined in Section 3, this implicit-explicit modification is appropriate for 
our application as regards local accuracy and stability. 

The implicit-explicit modification means that the main processes of advection, chemical trans
formation and vertical turbulent diffusion are treated according to their general physical time con
stants. Advection is rather slow and can thus be treated explicitly. Certain chemical species and 
associated vertical turbulent diffusions have small time constants of the same magnitude. The er
ror introduced in treating these two latter processes decoupled, as in operator splitting methods, 
is therefore difficult to estimate and can be avoided by solving them coupled and by an implicit 
approach. 

However, the remaining ID solution of the vertical turbulent diffusion and chemistry is a huge task, 
since this has to be done at every point from the horizontal grid. For this task we have developed the 
Gauss-Seidel technique ( 15), which for the 1 D example problem from Section 2.4 has been shown 
to be 4 to 5 times more efficient than the usual modified Newton iteration supplied with a linear 
banded solver. A second advantage of the Gauss-Seidel technique, compared to modified Newton, 
is its low memory requirement. No Jacobian matrices need to be stored which makes it possible 
to exploit grid vectorization in core memory for the very large problem sizes shown here. In view 
of the CPU times required, it is obvious that good vectorization and parallelization is a practical 
necessity. The flop rates of 0.5 Gftop/ s, about half the peak performance, that we measured for the 
3D test problem, illustrate that the vectorization of our implementation on the C90 is very satisfying. 
The algorithms used are naturally parallel. Without much effort, we have made the parallel fraction 
of the total program about 97%. On the 65 x 65 horizontal grid the actual speedup obtained by 
parallelization on 4 processors is 3.4 which is quite acceptable, but for a larger number of processors, 
say I 6, the amount of work in some of the parallelized loops is too small to reach the optimal 
speedup of 11.0. 

Our 3D test problem is realistic as regards the chemistry scheme. We used the EMEP MSC-W 
ozone chemistry which is state-of-the-art in the field of regional air pollution modeling. Atmo
spheric and meteorological conditions, like the vertical turbulent diffusion, the windfield, humidity 
and temperature, have been prescribed in analytic form and hence we have not simulated a genuine 
atmospheric pollution problem in all respects. However, numerically the example problem provides 
a challenging test. The tenfold higher urban emissions in part of the computational modeling do
main give rise to sharp transition regions which are difficult for advection schemes. This, combined 
with the realistic chemistry and the vertical turbulent diffusion modeling, makes it a challenging 3D 
test problem well suited for benchmarking numerical codes, both with respect to the discretization 
aspects of accuracy and stability and the high performance computing aspects of vectorization and 
parallelization. 
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