
e>Pergamon
Computers Math. Applic. Vol. 31, No. 9, pp. 43-55, 1996

Copyright@l996 Elsevier Science Ltd
Printed in Grea.t Britain. All rights reserved

S0898-1211(96)00041-7
0898-1221/96 $15.00 + 0.00

Experiences with Sparse Matrix
Solvers in Parallel ODE Software

J. J.B. DE SWART AND J. G. BLOM
Department of Numerical Mathematics, CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

(Received October 1995; accepted November 1995)

Abstract-The use of implicit methods for numerically solving stiff systems of differential equa,.
tions requires the solution of systems of nonlinear equations. Normally these are solved by a Newton­
type process, in which we have to solve systems of linea.r equations. The Jacobian of the derivative
function determines the structure of the matrices of these linear systems. Since it often occurs that
the components of the derivative function only depend on a small number of variables, the system
can be considerably sparse. Hence, it can be worth the effort to use a sparse matrix solver instead of
a dense LU-decomposition. This paper reports on experiences with the direct sparse matrix solvers
MA28 by Duff (1), Yl2M by Zlatev et al. [2) a.nd one special-purpose matrix solver, all embedded in
the parallel ODE solver PSODE by Sommeijer [3).

Keywords-Numerical analysis, Sparse matrices, Newton iteration, Runge-Kutta methods, Par­
allelism.

1. INTRODUCTION

For solving the stiff initial value problem (!VP)

y'(t) = f(t,y(t)), y(to) =Yo, (1)

one of the most powerful methods is an implicit Runge-Kutta (RK) scheme. However, in such
a. method we have to solve a system of nonlinear equations of dimension sd in every time step.
Here, s is the number of stages. This may require a lot of computational effort and for this
reason implicit RKs have not been very popular on sequential computers. On parallel computer
architectures the costs can be reduced significantly. Several ways of doing this are described
in [4-8]. In this paper we will focus on PSODE (Parallel Software for ODEs}, described in [3}.
PSODE is an implementation of a Rad.au IIA method with a Newton-type iteration process,
which reduces the nonlinear systems to sequences of linear systems of dimension d. Most time
in PSODE is spent on the solution of these linear systems, using a dense LU-decomposition,
followed by forward-back substitutions. For problems arising in practice it often occurs that the
components of the derivative function only depend on a small number of variables. Such problems
lead to linear systems of which the matrix is sparse. The goal of this paper is to reduce the linear
algebra costs for such problems by using a sparse matrix solver.

The outline of the paper is as follows. Section 2 briefly describes PSODE. Section 3 presents
the off-the-shelf sparse matrix solvers MA28 [1] and Y12M [2] and a sparse matrix solver that
is designed especially for ODE solvers. An analysis of the influence of the errors made in the

The authors a.re grateful to B. P. Sommeijer for his careful reading of the manuscript and for suggesting severe.I
improvements. The research reported in this pa.per was supported by STW (Dutch Foundation for Technical
Sciences).

43

44 J. J. B. DE SWARl' AND J. G. BLOM

numerical solution of the linear systeDlS is given in Section 4. Finally, in Section 5, numerical
experiments give insight into the beha.vior of these matrix solvers.

2. THE PARALLEL ODE SOLVER PSODE

In the following, the mth canonical basis vector of R8 will be denoted by em, and them x m
identity matrix by Im.

PSODE is a code based on a parallel method for numerically solving problems of type (1).
It is ba.5ed on the implicit RK method Rad.au IIA, for which the number of stages s equals 4.
Denoting the Rad.au IIA matrix by A, we have to solve in every time step the sd-dimensional
system of nonlinear equations

{2)

Here, Yn is the sd-dimensional stage vector (Yn,i) containing approximations to y(tn-1 + cihn},
i = 1, ... , s, in which c = (c1, ..• , c8) T is the abscissa vector, e is the s-dimensional unit vector
{1, ... , 1) T, Yn-1 is the approximation to the step point value y(tn-1), hn is the stepsize tn -tn-1
and F(Yn) contains the derivative values /(tn-1 +Cihn, Yn,,). Since Cs = 1 for Rada.u IIA methods,
Yn contains Yn=

'Yn = (e~ ®Id) Yn.

Solving (2) by a modified Newton process would yield a sequence of iterates YJ0>, yJ1>, Y~2), •••
defined by

y~o) = given by some predictor formula,

{I8 c1. - hn(A ® Jn))6.Y~Hl) = -R (YJ;)) , j = 0, 1, 2, ... ,

(3)

(4)

where Jn is an approximation to the Jacobian off in (tn-b Yn-1), ayJi+l) = Yn(;+l) - y~i) and
R(Y~;)) denotes the residual of yJi> with respect to (2); i.e.,

R (YJil) = YJi> - (e ® Id)Yn-1 - hn(A ® Ic1.)F (yJJ>) .
The process (3),(4) requires the solution of linear systems of dimension sd. Since the approxima­
tion Jn does not vary during a time step, we are dealing in every time step with a sequence of
linear systems with the same matrix. In practice we often keep the approximation of the Jacobian
a.nd the stepsize hn constant over a. number of time steps. Hence, the number of linear systems
with the same matrix is frequently a multiple of the number of Newton iterations per time step.
This explains our bias to use a direct matrix solver instead of, e.g., a.n iterative Krylov subspace
method; in the latter case we would have to rebuild the Krylov subspace for every new right-hand
side, whereas with an LU-decomposition, for every new right-hand side, only the forward-back
substitutions have to be performed. However, in 8ll iterative approach, it may be possible to
exploit the fact that the linear systems a.re related; this will be the subject of future research.

The costs of 8ll LU-decomposition of the matrix in (4) are O(s3d3). These costs can be reduced
by replacing A with a matrix D = diag {di, ... , d8 }. The linear system of dimension sd is now
decoupled into s systems of dimension d:

i = 1, 2, ... , s; j = 0, 1, 2,.... (5)

These systems ca.n be solved in parallel if s processors are available: every processor makes an
LU-decomposition of Id- hnd,Jn and performs the forward-back substitutions on the right-hand
side -(el ® Id)R(YJj>). The sequential costs on s processors are thus O(d3). Notice that it is
possible to compute the components of R(Yn(j)) in parallel too: every processor computes f(Y~~)),

Pa.rallel ODE Software 45

broadcasts the result to the other s - 1 processors and receives the remaining pa.rt of F(YJi))
from the other processors.

In PSODE the matrix D is chosen such that the stiff components of the iteration errors are
strongly damped (see (9,10]). We shall refer to (3),(5) as a simplified Newton process. PSODE
uses this simplified Newton process to solve (2) together with strategies for determining when
the Jacobian should be reevaluated, when a new LU-decomposition should be ma.de and how
many iterations should be performed in (5). A stepsize control is also included. For details on
implementation, we refer the reader to [3].

3. SPARSE MATRIX SOLVERS

A general direct solver for nonsymmetric, sparse linear systems is in most cases based on the
Gaussian Elimination process (GE). The main feature that characterizes a direct sparse matrix
solver is the pivoting strategy. A balance has to be found between stability pivoting and sparsity
pivoting. Stability pivoting means reordering the matrix to obtain pivots that are relatively large,
so that GE becomes numerically stable. The aim of sparsity pivoting is to find a reordering of
the matrix such that the number of operations and the fill-in of the reordered matrix are kept
small. Here, the fill-in of a matrix M after reordering is defined as follows. Suppose P1 and P2

are permutation matrices such that P1 M P2 denotes the reordered matrix. If

where Lis lower triangular with diag(L) = e and U is upper triangular, then the fill-in of P1MP2

is the number of nonzeros in the strictly lower triangular part of L + the number of nonzeros
in U - the number of nonzeros in M. A well-known strategy to keep fill-in small is to use
the Markowitz criterion [11]. Suppose that the first k steps of GE have been performed. Let
r;k) and c~k) be the number of nonzero entries in the ith row and jth column of the remaining
(n - k) x (n - k) submatrix, respectively. Then the Markowitz criterion selects as pivot the
nonzero element

m~J> with i, j such that (r~k) - 1) (c)k) - 1) is minimal.

Notice that by this definition, a row or column with only one nonzero entry automatically delivers
this entry as pivot. Unfortunately, the Markowitz ordering does not always produce the best
ordering. On the other hand, the problem of finding the reordering that really minimizes fill-in
is NP-complete [12]. In the sequel we will refer to (dk) - l)(c;k) - 1) as the Markowitz number

of m~J), where M(k) = (m~J)) denotes the matrix M after k - 1 steps of GE.
Another categorization of pivoting strategies distinguishes between regions of the matrix in

which the pivot is to be found. The case where the pivot of the kth step in GE is determined
in the last n - k + 1 entries of the kth column is referred to as partial pivoting. If the pivot is
chosen on the ma.in diagonal, we speak of diagonal pivoting. Complete pivoting means scanning
the whole submatrix M(k : n, k : n) to select the pivot. In a straightforward way one derives
combinations of several pivoting strategies. For example, diagonal Markowitz pivoting means
selecting in the kth step of GE the nonzero element m~7), of which the Markowitz number is
minimal.

3.1. MA28

MA28 is a set of Fortran subroutines for sparse unsymmetric linear equations. This code by
Duff [1] is part of the Harwell Subroutine Library, which is licensed. However, one may use this
code for research purposes. The user can set a parameter u to control bias towards stability
pivoting or sparsity pivoting: -u = 1.0 gives partial stability pivoting, while u = 0.0 minimizes
fill-in without checking the magnitude of the pivots at all. The sparsity pivoting is performed

46 J. J.B. DE SWART AND J. G. BLOM

by means of the Markowitz criterion. For values of u E (0, 1) a stability control is added.
The user supplies the sparse matrix in a one-dimensional array containing the nonzeros. The

row and column indices in the sparse matrix are stored in two one-dimensional integer arrays.
Since MA28 performs the LU-decomposition and the forward-back substitutions in separate

subroutines, it is easy to solve sequences of linear systems with the same matrix by performing
only one decomposition.

In the version of MA28 dated 1January1984, which we used, common blocks that communi­

cate data between the 17 internal subroutines of the package complicate parallel implementation
of the code. One may get around this problem by using more up-to-date versions.

3.2. Yl2M

Y12M is a package of Fortran subroutines for the same purpose as MA28. It wa.s developed at

the Regional Computing Centre at the University of Copenhagen (RECKU) by Zlatev et al One

can obtain the code from Netlib [13]. The complete documentation is in [2]. Although Y12M

is similar to MA28, the influence of the user on the choice of the pivoting strategy is different.
Although the code selects by itself the mixture between sparsity and stability pivoting, the user
can decide where the pivot is to be selected. He can restrict the pivots to the diagonal and it is

also possible to choose in how many rows that have least number of nonzero elements the pivotal
search is carried out. Again the underlying sparsity pivoting strategy is based on the Markowitz
criterion.

3.3. Special Purpose Solver

Our first experiments with Y12M and MA28 suggested that for our test problems the use
of stability pivoting had hardly any influence. The experience that stability pivoting is seldom

required for solving stiff ODEs was also reported by others; see [12,14-16]. In the next section
we give an heuristic explanation of this phenomenon. Therefore, we also implemented a special

purpose matrix solver without stability pivoting. In this solver, we use the following strategy:

1. Use only diagonal sparsity pivoting in order to reduce the fill-in of the matrix la - hndtJn.

2. Compute the fill-in of the reordered matrix and add the elements that will be made nonzero
to the sparse data structure.

3. Perform an Incomplete LU-decomposition (IL U) on the augmented reordered matrix of

Step 2.

4. Perform the forward-back substitutions with the reordered right-hand sides.

We reorder the matrix with the diagonal Markowitz strategy. Remember that the sparsity
structure of Id - hnddn remains constant over the integration interval, so that Steps 1 and 2
have to be done only once. Since the magnitude of the entries is not involved, this is a symbolic
operation. We programmed Steps 1 and 2 in Maple [17).

Step 3 and 4 are performed by modified versions of subroutines of the Sparse Linear Algebra
Package (SLAP) that perform ILU as preconditioner. SLAP is written by Greenbaum and
Seager (with contributions of several other authors) and is available from Netlib [13]. It uses
the compressed row /column format. Notice that the input for these subroutines does not only
contain the nonzero elements of the matrix Id - hndiJn, but also the zero elements that will be
made nonzero by the GE process. Consequently, the ILU performed in Step 3 is algebraically
equivalent with a complete LU-decomposition. In the sequel, we will refer to this sparse matrix
solver as Special Purpose Solver (SPS). Remark that both MA28 and Y12M do not allow the
pivoting strategy followed in SPS.

Parallel ODE Software 47

4. ERROR ANALYSIS

In this section, we investigate how the omission of stability pivoting in solving linear systems
arising from ODEs, that are solved numerically with the use of a Newton-type process, influences
the numerical solution to the ODE.

In the sequel, we use the shorthand notations M for Id - hndt.Jn, the short form Xj for Y~)
and r(x;) for -(e[® Id)R(YJi>). Denoting the update Xj+t - x; by Uj+i. the linear system (S)
takes the form

Mu;+l = r(x;). (6)

Other implicit ODE solvers, e.g., codes based on Backward Differentiation Formulas, lead to
linear systems for which the remainder of this section holds as well.

First note that neither the matrix M {if nonsingular) nor its decomposition have influence on
the solution of the Newton process; they ca.n only affect the rate of convergence to this solution.

Assume that (6) can be solved using GE with some pivoting strategy. Hence, the inverse
matrix M-1 exists. The omission of stability pivoting may lead to an accidental breakdown, if
a diagonal element of M becomes zero. However, a change of stepsize will cure this breakdown.
If the convergence of the Newton process stagnates because of pivots which a.re too sma.11, then
the integrator would detect this and restrict the stepsize. The matrix M becomes more diagonal
dominant and the pivots using no pivoting or diagonal pivoting would now be relatively larger.
Hence, GE becomes more stable. On the other hand, for efficiency reasons, we want the stiff
solver to use large steps. Experiments suggest that the increase of step rejections due to the
omission of stability pivoting is very modest.

Let us now look in more detail to the error propagation in the Newton process. Assuming that
x is such that r(x) = 0, that no error is made when solving the linear systems and defining the
Newton error by 6; := Xj - x, we arrive at

Cj+l = Cj + M- 1(r(xj) - r(x))

= (I+ M-1Q(x)) 8j + higher order terms

= p3+lc0 + higher order terms.

(7)

Here, Q(x) is the Jacobian of r(x) and P := I+ M- 1Q(x). However, due to the omission of
stability pivoting, we compute instead of x1, x2, ... the sequence X'1, i2, ... , that satisfies

(M + E)ui+1 = r {xj), (8)

where Uj+i := Xj+i -xj· Notice that we neglected here other rounding errors than those arising
in the LU-factorization of M. Defining the linear system error in the jth Newton update by
e.j := uj - u;, where u3 is the solution of Muj = r(xj_ 1), we arrive at

M -1E-e.j = - u;. {9)

Combining the formulas (8),(9),(7) and 60 = 60 yields a formula for the Newton errors in which
the linear system errors are ta.ken into account too, described by 83 := x; - x:

j

S; = 6j + L pi-ke.k + higher order terms. (10)
k=l

In the sequel, we denote the spectrum and spectral radius of any matrix X by O'(X) and p(X).
The formulas above lead us to several indications why omitting the stability pivoting works

well. First of a.11, for dissipative systems, it holds that

O'(Jn) E {z e c I Re(z) :5 O},

48 J. J. B. DE SWARI' AND J. G. BLOM

and consequently, since the diagonal entries di > 0,

u(M) E {z EC I Re(z) 2 1} and p (M- 1) 5 1.

This is a nece&<>ary (although not sufficient) condition for M to damp the error matrix E in (9).

Second, for h -+ O, the matrix M becomes increasingly diagonal dominant. This means
llEll -+ O. On the other hand, the situation h -+ oo is usually initiated by an ODE-solution
!_hat tends to a steady state. Here we expect that "lj, Uj-+ 0. In both situations, Vk, ek-+ O, so
6j-+ 6j.

Our last argument is based on formulas (9) and (10). Normally, Newton iterates a.re monoton­
ically decreasing:

fork> j.

Together with formula (9) this tells us that it is likely that the error matrix E has less influence
on Ek as k increases. However, the contribution of ek in~ is by means of (10) multiplied by
pi-k and thus more damped for small k, since Pisa contracting operator if the Newton process
converges.

Although we did not give a rigorous proof that the omission of stability pivoting in the solution
process of the nonlinear systems arising from ODEs is harmless, we showed in the a;bove that at
least a number of necessary conditions are fulfilled.

5. NUMERICAL EXPERIMENTS

5.1. Test Problems

To test how the sparse matrix solvers perform in PSODE we consider three stiff test problems.
The first one comes from circuit analysis and describes a ring modulator. It is of dimension 15.
Our second test problem has dimension 20 and is the chemical part of an air pollution model.
The last problem is the EMEP MSC-W ozone chemistry model of dimension 66. For a more
detailed description of these problems we refer the reader to the Appendix of this paper.

In order to see the effect of an increasing problem size on the performance of the sparse matrix
solvers we 'cascade' the problems m times as follows. If the original test problems are of the form

y'(t) = f(t, Y), y(O) =Yo.

then the resulting 'cascaded' problems are of form (1), where f is defined by

(
f{t,Y))

f(t,y) = ~ : '
f(t,Y)

and d = md.
Information on the sparsity of the matrix Id - h,,.d;J,,. is listed in Table 1. As usual, we define

the non.zero ratio of a matrix to be the number of nonzero entries divided by the total number of
entries. In the ta.ble, the fill-in before and a.fter reordering with the diagonal Markowitz strategy
is specified form E {1, 2, 3, 10}. For the pollution and EMEP problem we see that the fill-in after
reordering does not depend linearly on m. The reason for this is that from the elements with
the same Markowitz number the last one is chosen a.s pivot. Consequently, the diagonal blocks
of the J a.cobian of the 'm times cascaded' problem a.re not necessarily treated identically by the
reordering algorithm.

Parallel ODE Software 49

Table 1. Sparsity characteristics for the three test problems.

Problem ('m times cascaded') Ring modulator Pollution problem EMEP problem

Nonzero ratio 55/(225m) 86/(400m) 496/(662m)

Fill-in before reordering 58m 176m 2166m

Fill-in after diagonal Markowitz 12,24,36,120 9,17,24,82 87, 171, 260, 861

Sparsity structure symmetric? yes no no

5.2. Numerical Results

First, we experimented with PSODE using Y12M, MA28 and SPS on a one-processor machine
in order to compare the matrix solvers mutually and to see the influence of an increasing nonzero
ratio of the Jacobian on the performance. We also listed the results of the dense matrix solver
of LINPACK (the routines dgefa and dgesl, for computing the LU factors and forward-back
substitutions, respectively). Tables 2-4 show the results of solving the three test problems. A
few remarks with respect to these tables should be made.

• The numerical experiments were done on a Silicon Graphics Indy workstation (100 MHz
R4000SC), using 64-bit arithmetic. 'CPU' refers to the CPU time in seconds to solve a test
problem on this machine.

• m denotes the number of times that the problem is cascaded.

• For MA28, the pivoting parameter u was set equal to 0.5. Other settings of u did not yield
significantly better results.

• For Y12M most parameters were set to their default values. Only the drop tolerance
was valued 10-14 (using the default value 10-12 , a breakdown occurred in the pollution
problem). Other choices for the parameters that determine the pivoting strategy did not
improve the results considerably.

• The integration statistics of PSODE are given by the following:

scd denoting the minimum number of significant correct digits in the numerical solu­
tion in the end point, that is:

scd := min (-log I Yi(te) - Yi(te) I)
iE{l, ... ,d} lO Yi(te) '

where Yi(te) and Yi(te) denote the ith component of the numerical and true solution
in the end point, respectively, and d is the dimension of the problem. Since the
exact solution to the problems is not known, the numerical solution was compared
with the output of a very accurate run.

Steps refers to the number of time steps (including rejected steps).

J-eval is the number of evaluations of the analytical Jacobian of the function f.
LU-dee denotes the number of 'sequential' LU-decompositions of matrices of the form

id - hndiJn.

f-eval is the number of 'sequential' evaluations of the function f.

Here, 'sequential' means that operations on the four stages at the same time step, which
can be done in parallel, are counted as one.

• The user of PSODE has to supply the error tolerance, a safe upperbound for !ly(t)lloo on
the whole integration interval, and the initial stepsize. For the ring modulator and the
pollution problem we set them equal to 10-4 , 1 and 10-7 , respectively, for the EMEP
problem to 10-2 , 1016 and 1.

• Blank entries in the tables a.re identical to corresponding entries in the adjacent upper row.

50 J. J.B. DE SWART AND J. G. BLOM

Table 2. Results on ring modulator.

m CPU scd Steps J-eval LU-dee f-eval.
LINPACK 1 24.40 4.20 3129 537 2393 19247

2 67.13

3 130.52

10 1145.44

MA28 1 30.57 4.46 3188 568 2462 19784
2 59.41 4.06 3155 554 2434 19488
3 96.21

10 306.12

Yl2M 1 24.82 4.78 3173 552 2437 19540
2 50.13 4.04 3165 552 2452 19486

3 75.86 4.64 3146 548 2443 19408
10 258.69 4.31 3159 557 2458 19446

SPS 1 14.35 4.49 3159 550 2428 19390

2 28.16 4.73 3160 554 2424 19481

3 42.81 4.62 3131 541 2434 19337

10 153.38 4.53 3150 551 2418 19422

Table 3. Results on pollution problem.

m CPU scd Steps J-eval LU-dee f-eval

LINPACK 1 0.59 6.11 46 10 44 299

2 1.80

3 3.68

10 37.80

MA28 1 0.67 6.11 46 10 44 299

2 1.32

3 1.92

10 6.42

Y12M 1 0.54 6.11 46 10 44 299

2 1.14

3 1.62

10 5.53

SPS 1 0.29 6.11 46 10 44 299

2 0.55

3 0.85

10 2.98

We nicely see tha.t the CPU-timings for the sparse matrix solvers a.re O(m), whereas for the
dense solver of LINPACK they are superlinea.r. For these three test problems it begins to pa.y
off to use MA28 or Y12M instead of LINPACK for nonzero ratios ofless than about 20-25%.
For SPS this ma:ximum nonzero ratio is even somewhat la.rger. SPS performs a.bout 1. 75 times
more efficiently than Y12M and is about twice as fast as MA28. For the ring modulator and
EMEP problem, the four solvers show roughly the same statistics. They slightly depend on m,
since the order in which pivots are selected within diagonal blocks of [4 - hn~Jn may differ. For
the pollution problem all integration statistics were identical to the LINPACK statistics.

Second, we investigate how the parallel performance of PSODE depends on the solver and
on m. We implemented the codes on the Cray C98 / 4256 a.t SARA. Since the integration statistics
were roughly the same as in Tables 2-4, we only listed the speed-up factors of the runs on four
processors compared to the runs in one-processor mode. The Cray C98/4256 is a. shared memory
computer with four processors. Since we did not have the machine in dedicated mode during

Para.lie! ODE Software 51

Table 4. Results on EMEP problem.

m CPU scd Steps J-eval LU-dee /-eval
LINPACK 1 107.27 3.75 594 243 716 4422

2 404.32 3.84 614 273 722 4516

3 861.06 3.77 567 260 676 4251

10 9951.05 3.91 621 260 719 4507

MA28 1 80.36 3.81 645 267 772 4723

2 142.15 3.56 549 251 660 4132

3 228.44 3.73 635 250 749 4592

10 690.34 3.81 530 238 626 3973

Y12M 1 56.66 3.95 574 250 685 4992

2 116.46 3.75 618 262 738 4553

3 180.10 3.97 654 262 773 4705

10 581.59 3.63 589 260 689 4369

SPS 1 33.09 3.11 606 264 722 4499

2 57.78 3.64 581 246 681 4270

3 89.77 3.55 605 256 699 4390

10 352.61 3.89 509 229 643 3924

our experiments (on the average we used 2.5 processors concurrently), we used a tool called
ATExpert [18] to predict the speed-up factors on four processors. Table 5 gives these results.
Denoting the fraction of the code that can be done in parallel by fp, the optimal speed-up on
N processors according to Amdahl's law is given by the formula 1/(1- fp + fp/N). ATExpert
produces these optimal speed-up values, based on estimates of the parallel fraction fp. These
values are also listed in Table 5.

Table 5. Speed-up factors for the three test problems.

rung modulator Pollution problem EMEP problem

Predicted Optimal Predicted Optimal Predicted Optimal
speed-up speed-up speed-up speed-up speed-up speed-up

LINPACK l 2.2 2.7 2.2 2.5 3.4 3.5

2 2.6 3.0 2.7 3.0 3.6 3.8

3 3.0 3.2 3.1 3.3 3.6 3.9

10 3.6 3.8 3.5 3.8 3.5 3.9

Yl2M 1 3.1 3.4 2.8 3.4 3.8 3.8

2 3.3 3.5 2.8 3.5 3.8 3.8

3 3.4 3.6 3.5 3.6 3.8 3.8

10 3.5 3.7 3.6 3.7 3.8 3.9

SPS 1 2.4 2.8 2.4 2.7 3.6 3.7

2 2.6 2.9 2.7 2.9 3.7 3.8

3 2.8 3.1 2.5 3.0 3.8 3.8

10 3.3 3.4 3.0 3.3 3.7 3.8

We compiled the codes using the flags -dp, -ZP and -Wu"-p". The environment variables NCPUS
and MP _DEDICATED were valued 4 and 1, respectively. We refer to the Cray C90 documentation [19]
for the specification of these settings. We did not include results for MA28, since for a parallel
implementation of this code, one would have to get rid of the common blocks. Table 5 confirms
the expectation that the speed-up factors grow for increasing problem sizes. The predicted
speed-up factors do not always increase monotonically with m. This can be explained by the fact
that the results of ATExpert are based on a varying number of processors. For PSODE with

52 J. J.B. DE SWART AND J. G. BLOM

LINPACK the optimized routines sgefa and sgesl of the Cray library were used. The relatively
fast performance of the resulting code leads to smaller speed-up factors. The speed-up of SPS is
somewhat withdrawn with respect to Y12M for large m. We explain this by the smaller amount
of computations that have to be done in SPS before communicating.

6. CONCLUSIONS

In this paper, we tested the direct sparse matrix solvers MA28, Y12M and one special purpose
solver in the parallel ODE solver PSODE. If the number of nonzeros in the Jacobian of the
derivative function is less than about 20-25% of the total number of entries, then it begins to
pay off to use a sparse matrix solver. The costs can be further reduced by a factor varying
from 1. 75 to 2 by using a. special purpose solver based on Gaussian Elimination a.nd diagonal
Markowitz pivoting without stability check. Up to a certain extent we can explain theoretically
why numerically solving stiff ODEs with the use of a Newton-type process for the solution of
the systems of nonlinear equations leads to linear systems tha.t can be solved without stability
pivoting.

Experiments on a Cray C98/4256 show speed-up factors of PSODE on four processors in the
region 2.2-3.8, depending on the problem size, but not much on the (sparse) matrix solver.

APPENDIX

In this Appendix, we describe the test problems that we used in Section 5. All problems a.re
contained in the test set for IVP solvers, which is available on the WWW page with URL

http://www.cwi.nl/cwi/projects/IVPtestset.html.

A more elaborate description, references to the literature and Fortran 77 codes of these (and
other) problems can be found there.

A.1. Ring Modulator

The problem is of form (1), where to = 0, te = 10-3 , d = 15 and f is defined by

c-1 (Ya - 0.5y10 + 0.5y11 + Y14 - R-1Y1)
c-1 (y9 - 0.5y12 + 0.5y13 + Y1s - R-1y2)
C;1(y10 - q(UDl) + q(UD4))
0;1(-Yu + q(UD2) - q(UD3))
C;1(Y12 + q(UDl) - q(UD3))
c;1(-Y1s- q(U02) +q(Uv4))
C;1 (-R;1y7 +q(UD1) + q(U02)-q(UD3) -q(UD4))

J(t, y) = -L'h1Y1
-Lj;1Y2

L;.f (0.5y1 -Ya - Ru2Y10)
L;a1(-0.5111+114 - RgaYn)
L;.f (0.5112 - Ys - Ru2Y12)
L;l(-0.5112+11& - Rga1/1a)
L;i1(-y1 + Uini(t) - (~ + Ru1)1114)
L;l(-y2 - (Re+ Rg1)Y1s)

The auxiliary functions UDl, Uv2, Uva, UD4,q, Utn1(t) and U1n2(t) a.re given by

UD1 = Ya - Ys - 1/1...: U1n2(t),

UD2 = -y4 + Y& - Yr - U1n2(t),

(11)

Parallel ODE Software

U03 = Y4 + Y5 + Y1 + Uin2(t),

UD4 = -y3 -y6 + Y1 + Uin2(t),

q(U) = 1(esu - 1),

U.in1(t) = 0.5sin(20007rt),

Uin2(t) = 2sin(200007tt).

The values of the parameters are

C = 1.6 -10-8 ,

Cs= 10-9 ,

Cp = 10-8 ,

R = 25000,
Rp = 50,

L 8 3 = 5 · 10-4 ,

R9 1=36.3,
R92 = 17.3,
R93 = 17.3,
~=50,

Re= 600, Lh = 4.45,
Lai= 0.002,
Ls2 = 5 · 10-4 ,

"{ = 40.67286402 . 10-9'
~ = 17.7493332.

Initially, all components are zero; i.e., Yo = (0, ... , 0) T.

A.2. Pollution Problem

The problem is of form (1), where to= 0, te = 60, d = 20 a.nd f is defined by

jE{l,10,14,23,24} jE{2,3,9,ll,12,22,25}

-r2 - r3 - r9 - r12 + r1 + r21

-r1s + r1 + r11 + r19 + r22

-r2 - r1s - r11 - r23 + r1s

-rs + 2r4 + r5 + r7 + r13 + r20

-r6 - rs - r14 - r20 + rs + 2r1s

-r 4 - rs - r6 + r13

r 4 + rs + r6 + r1
-r1 - rs

f = -r12 + r7 + r9

-r9 - r10 + rs + ru
r9

-ru + r10

-r1a + r12

r14

-r1s - r19 + r16

-r20

r20

-r21 - r22 - r24 + r23 + r25

-r2s + ru

where the ri a.re auxiliary variables, given by

r1 = k1 ·Yi.

ra = ka · Ys • Y2,

rs = ks · Y1,

r1 = k1 · yg,

r2 = k2 · Y2 · y4,

r4 = k4 · y7,

r5 = k5 · Y1 ·Ya,

re = ka · yg · y5,

r;

53

54 J. J. B. DE SWAR:r AND J. G. BLOM

rg =kg· Yu· Y2,

ru = ku · Y13,

r13 = kl3 · Y14,

T15 = k15 · y3,

r11 = k11 · y4,

r19 = k19 · Y1e,

r21 = k21 · y19,

r23 = k23 · Yi · y4,

r2s = k2s · Y20.

r10 = kio · Y11 · Yi.

r12 = k12 · Y10 · Y2,

r14 = ki4 · Y1 · Y6,

Tt6 = kl6 · y4,

r1s = kis · Y15,

r20 = k2o · Y11 · Y6,

r22 = k22 · Y19,

T24 = k24. Y19 . Y1,

The values of the parameters ki are

ki = .350E+oo,
k3 = .123E+05,
k5 = .820E-03,
k1 = .130E-03,
kg = .165E+05,

ku = .220E-01,
k13 = .188E+Ol,
kis = .480E+07,
ki 1 = .l 75E-Ol,
k19 = .444E+12,
k21 = .210E+01,
k23 = .474E-Ol,
k2s = .312E+Ol.

k2 = .266E+02,
k4 = .860E-03,
k5 = .150E+05,
ks = .240E+05,

k10 = .900E+04,
ki2 = .120E+05,
ki4 = .163E+05,
ki6 = .350E-03,
k1s = .100E+09,
k2o = .124E+04,
k22 = .578E+Ol,
k24 = .178E+04,

The initial vector Yo is given by

y0 = (0, 0.2, 0, 0.04, 0, 0, 0.1, 0.3, 0.01, 0, 0, 0, 0, 0, 0, 0, 0.007, 0, 0, 0) T.

A.3. EMEP Problem

The problem is of form (1), where to = 14400, te = 417600, d = 66. Since the function f is
too voluminous to be described here, we refer to the Web page mentioned previously for more
details. The initial vector is given by

l.OE+09 for i = 1,
5.0E+09 for i E {2, 3},
3.8E+12 for i = 4,
3.5E+ 13 for i = 5,

YO,i = l.OE+07 for i E {6, 7, ... , 13},
5.0E+ 11 for i = 14,
l.OE+02 for i E {15, 16, ... , 37},
1.0E-03 for i = 38,
l.OE+02 for i E {39, 40, ... , 66}.

REFERENCES
1. I.S. Duff, MA28-A set of Fortran subroutines for sparse unsymmetric linear equations, Technical Report

AERE R.8730, HMSO, London, (1977).
2. Z. Zla.tev, J. Wasniewski and K. Schaumburg, YI2M, solution of large and sparse systems of linear algebraic

equations, In Lecture Notes in Computer Science, No. 121, Springer-Verla.g, Berlin, (1981).
3. B.P. Sommeijer, Parallelism in the numerical integration of initial value problems, Ph.D. Thesis, University

of Amsterdam, (1992).

Para.llel ODE Software 55

4. A. Bellen, Parallelism across the steps for difference and differential equations, In Lecture Notes in Ma.the­
matics, p. 1386, Springer-Verla.g, (1987).

5. A. Bellen, R. Vermiglio and M. Zennaro, Parallel ODE-solvers with stepsize control, JCAM 31, 277-293
(1990).

6. K. Burrage, Para.llel methods for initial value problems, Applied Numerical Mathematics 11, 5-26 (1993).
7. P. Chartier, Parallelism in the numerical. solutions of initial value problems for ODEs and DAEs, Ph.D.

Thesis, Universite de Rennes I, France, (1993).
8. B. Orel, Parallel Runge-Kutta. methods with real eigenvalues, Apf)lied Numerical Ma.thematics 11, 241-250

(1993).
9. P.J. va.n der Houwen and B.P. Sommeijer, Iterated Runge-Kutta. methods on parallel computers, SIAM J.

Sci. Stat. Com.put. 12, 1000-1028 (1991).
10. P.J. van der Houwen and B.P. Sommeijer, Analysis of parallel diagonally implicit iteration of Runge-Kutta

methods, APNUM 11, 169-188 (1993).
11. H.M. Markowitz, The elimination form of the inverse and its application to linear programming, Management

Sci. 3, 255-269 (1957).
12. LS. Duff, A.M. Erisman and J.K. Reid, Direct Methods for Sparse Matrices, Monographs on Numerical

Analysis, Oxford Science Publications, (1986).
13. J.J. Dongarra. a.nd E. Grosse, Distribution of software via electronic ma.il, Technical Report 30, Commun.

ACM, 403-407 (1987).
14. M.Z. Jacobson a.nd R.P. Turco, SMVGEAR: A sparse-matrix, vectorized gear code for atmospheric models,

Atmospheric Environment 28, 273-284 (1994).
15. A.C. Hindmarsh, ODEPACK, a. systemized collection of ODE solvers, In Scientific Computing, (Edited by

R. Steplema.n et al.), pp. 55-64, !MACS, North-Holla.nd, Amsterdam, (1983).
16. J.G. Verwer, J.G. Blom, M. va.n Loon and E.J. Spee, A comparison of stiff ODE solvers for atmospheric

chemistry problems, Atmoapheric Environment 29 (1995).
17. B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan and S.M. Watt, Maple V Language

Reference Manual, Springer-Verla.g, New York, (1991).
18. Cray Research, Inc., UNICOS Performance Utilities Reference Ma.nua~ SR-2040 8.0 edition, (1994).
19. Cray Research, Inc., CF77 Commands and Directi'lles, SR-3771 6.0 edition, (1994).

