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A preliminary version of this tract appeared in 1980 under the title
"Studieweek getaltheorie en computers'. It contained the written versions of
the lectures presented during the study week 'Number theory and computers"
that'was'held at the Mathematical Centre, September 1-5, 1980. The contents
have been thoroughly revised for the present edition. We are happy to in-
clude Carl Pomerance's paper "Analysis and comparison of some integer factor-

ing algorithms'", which does not correspond to a lecture during the study

week.

The editors are grateful to all those at the Mathematical Centre who

have contributed to the technical realization of the tract.

H.W. Lenstra, Jr.

R. Tijdeman
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INTRODUCTION

Let £ be a monic polynomial of degree n in Z[x]. Assume f is square
free, 1.e. £ has no double zeros. Ome of the fundamental invariants of f is
1ts Galots group, which may be described as follows. Let tyse--50  be the
zeros of f, then Q(al,...,an) is called the splitting field of f. This is a
Galois extension of Q. The Galois group G of this extension is called the
Galois group of £. The elements of G permute the o. so we can consider G as

1

a subgroup of Sn’ the symmetric group on n letters. We want to know which

subgroup 1t 1s; 1t 1s determined up to conjugacy.

We will discuss the existing techniques to determine G with the help of
an electronic computer. For simplicity we often restrict ourselves to the case
that f is Zrreducible. For G this means that it is a transitive subgroup of
Sn' We will give two major methods for the computation of G in Sections 1, 2.
The first one does not compute G in all cases, but it leaves us sometimes
with a choice between several subgroups of Sn'_" If we assume certain general-
tzed Riemann hypotheses more subgroups can be eliminated, but even then we
may be left with several possibilities. The method has the advantage that
essentially the same program can be used for different values of n. The se-
cond method determines G always, but we must use multiprecision real and
integral arithmetic, and for different values of n different programs have

to be used.

In Section 3 we show how the advantages of both methods can be combined.

Some methods of lesser importance are discussed in Section 4.
The cases m = 2, 3 are particularly easy. For n = 2 we always have

G = S, when £ is irreducible. For n = 3 we only have two transitive groups:

83 and A3. In Section 2 we show how to distinguish between them.
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In this section we fix a square free monic polynomial f € Z[x] of de-

Let G < S_ be its Galois group.

VAN DER WAERDEN gave in [19], §66, a method to compute G (see also [91).

27 used it to determine G with the help of

» » " . .

This method will be described in this section.

2 TS o

. r
he positive inte ith I, . = . say tha
be positive integers with lel d:x_ n. We t o e S

dr> if o is the product of r disjoint cycles of

E s B L

d_. lLet p be a prime number. Suppose that £ = (fmod p) ¢ ]Fp[x]

s

b

, with degree (?i) = di

£, are distinct monic irreducible polynomials in ]E'P[x] . In this
e say that p belongs to the cycle pattern (d1 se s oy dr) . We also

¢ cycle pattern belonging to the '"prime at infinity'.

can be defined by replacing in the above definition IE'p[x] by R[x] and

1se all di are 1 or 2.

uppose that p 18 a, possibly infinite, prime, which belongs to

E Then there exists an element o of G of cycle

primes see [19], §66. For the infinite prime we embed

Then o = '(-complex conjugat'ion) has CYCl& pattern (dl y s e

the methods of A.K. LENSTRA [7] to factorize f modulo

rimes. For n < 5 it can be easier because we have the f ollowing

a finite fileld of odd characteristic.
ynomal of degree n over K. Let r be the number

over K. Let A be the discriminant of g over K.
a square in X.
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For n < 5 there are at most two non—-linear facotrs. So 1in this case we

only have to find the linear factors of fmodp to get the complete cycle

pattern.

Now we can make a list of all subgroups of S which contain elements

with the encountered cycle pattern. Such a list is already available for

subgroups of S with n < 20, cf. [6]. By Theorem 1 we know that G is in this

list. This does not suffice to determine G except if we find G = S_ (or G =

A, if we know that the discriminart of f is a square; see Section 2). In

the other cases, 1t can be useful to know that for every cycle pattern occur—

ring in G there 1s a prime number p belonging to it; and these p's occur

with the expected frequency:

THEOREM 3 (FROBENIUS-TSCHEBOTAREFF). Let (d1 e e ’dr) be a cycle pattern. Let

C be the set of elements of G with cyecle pattern (d .o ,dr)_, and let P be

1"
the set of primes belonging to (dl Yoo ’dr)" Then

13 #{pex: peP}  #C
1m #lp<x: rime}  #G °
s FIP<X: p prime]

PROOF. See [3]1, [18]1, [5]1. [

4

This theorem i1s not very useful for our purpose. We want to have an ex—

plicit error term, or at least an upper bound for the smallest p € P. A few
years ago some results in this direction have been found. Unfortunately,

they are very weak.

THEOREM 4 (LAGRARIAS-ODLYZKO-MONTGOMERY). Let C and P be as in Theorem 3.
Suppose C # @, and that all prime divisors of the diseriminant of f are

divtsors of the discriminant D of Q(oal,... . ,an) over Q. Then there exists
p € P with

b < 2+ |DI2,

where A is an absolute, effectively computable constant.

PROOF. See [4], Theorem 1.1. [J

The assumption of the divisors of the discriminant of f can probably
be omitted by altering the definition of D, but no such theorem has been
published. The value of A in Theorem 4 is not given explicitly. OESTERLE

has given a much better result assuming the generalized Riemann hypothesis:



(OESTERLE) . Let the assumptions and notations be as in Theorem 3,

ssume moreover that the zeta-function of @( Cyse e czn) satisfies the

p £ 70+ (log lv!>2.

PROOF. P

omised in [10], Th&or&me 4; cf. [51, Corollary 1.2. [

Oesterlé& also announced a completely explicit remainder term in Theorem

3, still assuming the generalized Riemann hypothesis.

With these theorems we cannot get G for sure. We still know that G
LS t —bﬁ 1

to the same list, but in addition we have the moral certainty
that G must belong to a much smaller list just by looking at the frequencies

of the cycle patterns that are found. Often this list contains only one sub-

Table 1, abstracted from [24], gives all transitive subgroups of S

for n = 4, 5, together with their cycle patterns. The cases n = 2, 3 are

l; see the Introduction and Section 2.

TABLE 1

Transitive subgroups of Sn for n = 4, 5,

n Cycle pattern _ Frequency G

4 24 1111
211
22
31
4
4 12 1111
22
31
4 8 1111
. 211
22
4
4 5 111}
22
s 4 1111
- 22
4

MWW O —

00 (0 ==



n #G

5 120
5 60
5 20
5 10
5 5

EXAMPLE. let £ ﬁ‘xa-4x

The zeros of £ are approximately

3

Cycle pattern

11111
2111
221
311
32

41

5

11111
221
311

S5

11111
221
41

>

11111
221

11111

-~ 4x+ 13, This polynomial is irreducible over Q.

4y = 1.4159768...
az = 4.0481248...
Gy =
@, =

The discriminant of £ is -2".3

lowing cycle patternms:

8

Cycle pattern

211
22
4

Using Table 1, we see that G

that G = DA‘

.13

Primes
o 11,23
7,19
5,17

Frequency

10
15
20
20
30
24

15
20

ek
U= O U

o

~0.7320508... + 1(1.3160740...)
-0.7320508... - 1(1.3160740...)

or G = 84’ and that we are morally sure

203

. Factoring modulo primes gives the fol-
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2. THE METHOD OF STAUDUHAR

The method proposed by STAUDUHAR [16], cf. [8], to compute Galois groups,

1s based on the use of Galois resolvents. These are defined as follows:
Write u

i

(ul,.. . ,un), where the u, are indeterminants over Q. Consider the
field Q(u). We have an action of Sn on Q(u) by permuting the u.. For every
subgroup H of S we denote by Q(u)H the fixed field of H. By Galois theory
we have Gal (@ (u)/@(U) ) = H. Let Hg be a subgroup of H; then we have Q(&)H' =
Q(u) (F(u)) for some F(u) € Q(u) . We may choose F(u) ¢ Z[ul. Let

(I)H,H' (z,u) 0‘£R (z=-0F(u)), where R is a set of left coset representatives
of H' in H, i.e. H is the disjoint union of oH' for ¢ € R. We call @ the

H,H'
Galots resolvent of H' in H corresponding to F(u).

THEOREM 6. Let f e Z[x] be monic and Zrreducible, and G c S_ 1ts Galoils

group. Let H < §_ be a subgroup containing G, and H' c H a subgroup. Let
c € H. Write a

a) &

(al,...,an). Then

H H,(z,a) e Z[z];

b) Zf G c UH'O-.I then the zero oF(a) of ¢ H,(z,_gt_) 18 1n Z;

c) conversely, if oF (a) € Z, and oF(a) 28 not a double zero of <I>H B (z,a),
then G < oHo 1.

PROOF. See [ 161, Theorems 4, 5. For an important special case (H= Sn) see
[81. [

Stauduhar uses this theorem in the following way. Suppose one knows
that G < H, where H is a transitive subgroup of Sn; e.g. one knows this for
H = Sn' Using Galois resolvents and Theorem 6, we can determine whether or
not G < oH'c = for some maximal transitive subgroup H' ¢ H and some o ¢ H.

If this does not occur then G = H. If however G c crH'crH], we replace H by

OH'GMI and repeat the procedure.

Some remarks are i1n order here.

1) We compute CDH H,(z,_g_) with the help of its zeros which we get from the
b
zeros of f. Because we know that @H g (z,0) € Z[z], we can calculate it
|
exactly on an electronic computer using multiprecision arithmetic. If a zero

of @H H,(z a) 1s "almost" an integer, we can round it to an integer. With
the help of multiprecision integer arithmetic we can show that this integer

1s a zero of <I>H 0 (z,0) . In some cases there is an alternative: for small
| p )
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n we can express <I>H . (z,a) in the coefficients of f. For example, the re-
-

solvent ‘I’SaaDa’ which 1s also called the cubic resolvent of a quartic poly-

nomial, will be given below. The resolvent @SS’NS(Z,E_) = ¢A5,D5(z’9....) 1s

given in [1], app.l. For o5 A, See below.

2) From every H-conjugacy class of maximal transitive subgroups H' < H we

only have to consider one subgroup.

3) Suppose we get G < crH"orm1 for some 0 ¢ H. Then we renumber the zeros of

f to get G <« H'.

4) Let H] and H2 be subgroups of Sn' When we get G ¢ H, but G < H?.’ then we

]
have of course not to look whether G c Hl N H2, when H, n I-I2 1S a maximal

1

transitive subgroup of H,.

5) When <I>H e (z,a) has a double integral zero one has to take another Galois
. =
resolvent of H' in H. For most f this does not occur and for some pairs

H' <« H 1t never occurs. If CI)H qe (z,a) has a double integral zero the oL mus t
-

satlisfy a given algebraic relation, which happens with "probability" zero.
g g P y

One special case of Galois resolvents 1s the resolvent of An 1n Sn' In

this case we can take F =TI, . . (u.=-u.):; then
1<1<3j<n 1 ]

o (z,u) = (z - 1] (u.-u.)) (z + T (u.=-u.))
S’ fn l<i<jsn ¢ ] l<i<jsn b
=20 - e’
1<i<i<n ]
So ¢ Z,0) = zz--A, where A 1s the discriminant of f. So we have G < A
Sn>s — n

iff A 1s a square in Z. Because there are faster methods to compute the
discriminant, see the talk of H. ZANTEMA [23], we do not use the method

given above to look 1f G c An. We also see that 235 ,A, cannot have a double

integral zero, because A # O.

Let £ = :x.4+ a1x3 ta,x +33x+ a, be a quartic polynomial. For the
rgsolvegt @84,134 we can take 'F(E; = u];3+u2u4. Then we get @stA(z,&) =
z" -a,z + (a1a3-4a4)z+ 432a4- ata, — aj, the cubic resolvent of f. It can be

shown that 1ts discriminant is equal to that of f. Moreover it has no double
zero 1f f has none. Also VAN DER WAERDEN has given a cubic resolvent in [19],
§64., He took F(u) = (u] + uz) (u3+u4), and he considered only the case that

a; = 0. In this case, i.e. a;, = 0, his resolvent is equal to =25, ,D,(~2,2) -
STAUDUHAR has given in [16] data for using this method for 4 < n < 7.

2 we have only

|

He does not consider n = 2, 3 because these are easy: For n



S,, for n = 3 we have only S, and A, as possibilities. One can distinguish
S3 and AS by the discriminant. Stauduhar has made search trees (of depth <5)

of subgroups of S . He has given F(u) and systems of representatives for the
n o

various pairs of subgroups appearing in these search trees. Below we give

these data for n = 4, 5,

In Table 2 we give the Galois resolvents for pairs of subgroups H' c H of

Sn.' Here A means: if G <« H, then G < H' iff A is a square in Z.

Table 2

n H H' Generators of H' F(u) Representatives of

H' in H

4 84 D4 (1234),(13) ult.;t3+1l.12u4 (1),(23), (34)

4 S4 A..4 (123), (134) A (1),(12)

4 D C (1234) u u2+u u2+u u2+u u2 (1), (12) (34)

T4 T4 ' ' 12 7273 374 "4 ?

4 m, Y, (U2G4),03)(24) A (1), (13)

5 S Ng (12345), (2354) (ulu2+u2u3+u3u4+u4u5+ (1),(12) (34),
+u5u]~u1u3-u3u5*u5u2+ (12435), (15243),
“u2u4~u4u1)2 (12453), (12543)

5 S, A (123),(134),(12) (35) A (1), (12)

5 N5 D5 (12345), (25) (34) A (1), (2354)

. C (19248 | 2 2. 2 2 _

5 IJ)5 CS (12345) u1u2+u2u3+u3u4+u4u5+ (1), (12) (35)

2

+u5u1
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SOICHER [15] has written a thesis on the computation of Galois groups,

He introduces linear resolvents, i.e. resolvents in which the function F(u)

1s linear. He gives examples of computer programs for determining whether a

zero of a resolvent 1s integral, and for determining the Galois group using

the resolvents.

Recently Girstmair (unpublished) made an improvement on Stauduhar's
method. He used resolvents to distinguish whether or not a Galois group 1s
contained in some set of subgroups.of Sn' Such a set does not necessarily
consists only of conjugates of a given group, but it can contain more groups.
Moreover he calculated the resolvents in terms of the coefficients of the

polynomial, instead of the zeros, cf. Remark 1 above.

3. THE USE OF BOTH METHODS TOGETHER

We can use the methods of Sections | and 2 together in the following

way. The method of Section | gives us a list of subgroups of Sn and 1t 1is

known that one of its members has a conjugate contained in G. Now we can use

the Galois resolvent of Section 2 to show that G is contained in one of the
conjugates of one of the subgroups of the list. If this is the case we know
G exactly. If not, G must be bigger than our first guess. BUHLER [1] has

used this method to get many polynomials of which the Calois group 1s equal

to A..

5
We can use this on the example of Section 1 where f = x4-4x3-4x+-13.

We had the possibility G = D, -

We have

. D(Z,E) = (z~u1u3~u3u4)(z-u]u2~u3u4)(z~u]u4~u2u ) .

4224 3

When we calculate the roots of é(ztg)'we get

a, 0, +

1 %9 o, = /.9999999,..

3%

and

@(ztg) == z3 - 36z - 224

of which 8 is the only integral zero. So we conclude that C = D,
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In this section we discuss some other methods to calculate Galois groups.

First there are methods in which one calculates 0 (c : ,an) and in the

>
course of this calculation we get the Galois group. ]This can be dome in dif-
ferent ways. For examples, we can look at Q(al) and factorize £ over it. If
I has an irreducible factor of degree = 2 over Q(al) we take a zero, &, say
of this factor and do the same over Q(a],az). We repeat this until f factor-
1zes as a product of linear polynomials. For methods for factoring polyno-
mials over number fields see [21], [22] or the talk of A.K. LENSTRA [7].
Another way of computing Q(al,... ,an) 1s to use the methods of SMADJA
[14]. He gives methods how to compute 1n number fields, how to determine the
automorphism group of such a field and how one can show that an element with

given conjugates is in the ring of integers of the field. So as above we

look at

n If all a. are contained in its ring of Lntegers we are ready,

we compute 1ts automorphism group which is the Galois group of f. If e, 1S
not contained in it we look at Q(al,az) and so on.

The disadvantage of these methods is that 1f the Galois group of f is
S s Which it is in most cases (see [20]), we have to do the greatest amount
of work, contrary to the earlier methods, which are faster when the Galois

group 1is Sn' But one can use these methods when the methods of Section 1
suggest that G is small.

Une can also compute G with the help of the ramifying primes, in con-
trast with Section 1, where we use the primes which do not ranify. We can

do this because we know that the lnertia groups are subgroups of G which

_ e di(x e o n ~x) T
I L = = — ) ) (i) (1,) »  the Laguerre polynomials.
dx 1=0 :
n xi
1T E11 = X IT the "truncated exponential
1=0 series''.
X n
| _ a1
IIT J = (1) - n M_L_E_)_______
n X J Ln(t)dt Z (1) (1+1)!
0
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Il

1.2n 1

(0)

— — o & & & 1 o n""l
IV K 2 (=D (5;)1+3+5-...Q2i-Dx" .
1=0
ol . .
v kD = Y et @Y oses. L i-n Tt
n 120 21

The polynomials (--*I)nn.‘.'Ln, nIEn, (-l)n(n+l)!Jn, Kél) are monic and belong

to Z[x]. Schur found the following result.

THEOREM 7. (SCHUR).

: IR S _ '_
a) 1f f (1) n.L_ then G S 3

b) zf £ = ni.!E]L_1 then G = A 1f 4|n,
G =8_ 1f 4)n;

c) if f = (—l)n(n+l)IJn then G = A_ if 2]n,
G = A_ 1f n+l 78 a square,
| G =8_ in other cases;
) if £=K", i=0,1, then ¢ = S if n > 12.

PROOF. See [12], [13]. (O
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1. INTRODUCTION

Every non~zero rational number q has a Unique expression

_ . a (p)
(1) 9 < P pTrT'ime P

where € = *1 and the a(p) are lntegers, almost 511 zexro. Thilis statement em~—

bodies two properties of the ring of integers Z: first, that it has unique

factorization into primes, and secondly, that jt only has "trivial®

+1.

units

Let K be an algebraic number field, i.e., g3 finite extension of Q, and

define

0(K) := {x € K| g(x) = 0 for some monic g € Z[X]}.

This is a subring of K, called the ring of integeps of K. From Causs' lemma

we know that 0(Q) = Z. The ring 0(K) may fail to have the two properties

of Z mentioned above. To recover uniqueness of factorization we have to
pass to ideals of O(K). Put

I(K) := {a c K | Xa 1s a nonzero ideal of ((K) for some x ¢ K}.

Elements of I(K) are called ideals of K; to avoig confusion ideals of O (K)

will be called integral ideals. The set I(K) is an abelian group under multi-

plication:
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Every ideal a has a unique decomposition

(2) as g g_a(-E)

where p ranges over the non-zero prime ideals of O0(K), and a(p) € Z, almost
all equal to zero. An ideal of K is called a principal ideal if it can be
written as a0(K) for some o € K, o # O; the element a is called a generator.
The set of principal ideals is a subgroup P(K) of I(K): the class group CL(K)
1s defined by

CL(K) := I(R)/P(K).
For a ¢ I(K) we write

[a] := (amod P(K)) e CL(K)
and call i1t the 1deal clagss of 2. In 3.1 we shall see that CEL(K) is finite;
1ts order is called the cZass number h(K) of K. Roughly speaking, the class

number measures how far 0(K) fails to have unique factorization. More pre-

i

cisely, we have h(K) 1 1f and only if O(X) is a principal ideal domain,
and 1f and only if (0(K) has unique factorization.
If an ideal is principal, its generator is determined up to a umit of

0(K). The structure of the group of units O(K)* of 0(K) is given by

theory. For more details and proofs we refer to [SA]. In this paper we de-
scribe a computational technique for determining the class group and units
for general algebraic number fields K. Throughout the paper we suppose that

K 1s given as K = Q()\) where A is a zero of the polynomial

FCX) = X% + a x“"‘+...+ao, a; € Z, i =0,...,0-1,

and £ 1s irreducible over Z. It is well known that every K can be written
in this way.

For specific fields K there exist faster methods, see [SCH] for quadra-
tic fields and [A] and [B] for cubic fields; see also 3.5.



2. THE DISCRIMINANT

2.1. Write £ = T, (X-1,) for A, ¢ €, i = I,...,n;3 X\ = A . The discrininant

A(f) of £ is defined by

(3) AGE) t= T (O, ~3.)?

1<} ]
Clearly this doesn't depend on the chosen labeling of the Ki’ so A(f) can be

expressed in the coefficients of f. For example, we have

A(f) = a% - 430, if n = 2,

and

A(f) = afag - 4a? - 4a3a - 27a2 + 18a_.a. a

290 0 02132> i n = 3.

Similar expressions can be given for larger n, but they rapidly become un-
wieldy.

It is possible to compute A(f) by determining all zeros of f numerically
and then substituting them in (3). A more efficient way makes use of the pro-

perties of the resultant of two polynomials, which we shall now discuss. Let

g,h ¢ €[X] be two nonzero polynomials, and write

S t
g = a [Tl (X&ai), h=Db Tl

(X-8.)
i=1 j=1 J

with a,al,...,as,b,B],...,Bt e €, a,b # 0. The resultant R(g,h) of g and h
1s defined by

t,s S Lt
R(g,h) =ab T T (a.-B.).
: : 1]
1i=1 j=1
Clearly
¢ S
(4) R(g,h) =a T h(a,)
1=1
and
% S
(5) R(g,h) = (~1)°"R(h,g).
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If h = h1 mod g and h1 has degree t,, one derives from (4) that

tl""t
(6) R(gahl) = a R(g:h)*

Combining (5), (6) and the Euclidean algorithm for polynomials we obtain an

efficient method for computing resultants. Since f' (J\i) = nj#i (J\i---kj) we
have

T, +i1 r. +r.+1°
1 1 "2

for 1 = l,.......,rz, where r, and r, satisfy r, + 2r2 = n. Now K is embedded in
R°1 x g¥2 by identifying % ¢ K with

(0, (xX)y...,0 (%)) 3
‘ SRED.

this identification makes O(X) into a lattice in

If {a],...,an} 1s a basis of Q(K) as a lattice, the diseriminant A(K) of K
is defined by

(7) B := (det(o;(a;))).
Using A(f) = (det(?\g“]))z (Vandermonde) one shows

(8) A(£) = (index(0(K)): Z[AT))2+4 (k).
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From (7) we see that A(K) € O(K), and (8) gives A(K) € @, hence A(K) ¢ Z.
It would be nice if we could choose A such that the index of Z[A] in
O(K) equals 1, but this is not possible for each K. For example, if K = QX))

where A 1s a zero of X3 + 2X2-— 9X - 2, the prime 2 splits completely and

index(0(K): zZ[)21D)

choice of A in the same field, the method of 3.2 would give 3 distinct zeros

2. If 2 would not divide this index for some other

il

of some polynomial modulo 2, whi{:h 1s 1mpossible. For the theory about
primes dividing the index we refer to [H]; by '"the index" we mean
index(0(KR): Z[)1]).

The following theorem of DEDEKIND, see [D] and [U], is very useful to
determine the prime divisors of the index. Fora prime p decompose f mod p,
i.e. choose g € Z[X] monic and e. = 1 such that each g 1s irreducible

1 o .
mod p, the gi's are different mod p and f = I'T:..,L gil mod p. Then

p | index(0(K): Z[A]) if and only 1f
(9) e.
(gj mod P) l (Pul (f - TTi gil)mod p)

as elements of ¥, [X], for some j with e; 22, If (9 holds, then

e

1 i
'g gi(k)

....1 —
P (gj(x))

deg(gj) divides

1s an element of O(K) which is not contained in Z[A], and p
the index of A. In many cases, this suffices to determine A(K) using (8).
In some cases it is difficult to determine to which power a prime divides
the index. More information about K can be helpful in such cases. If p de-

composes 1n K as

pO(K) =T p -B-,

iy

i1ts contribution to A(K) 1is

epml
T NK/Q(-E- = )

1f p doesn't divide any e . In particular, unramified primes, i.e. primes

P
such that all ep = 1, will not occur in A(K). If p is wildly ramified in
K/Q, i.e. p divides some ep, one needs information about higher ramifica-

tion groups to compute the contribution of p in A(K), see [SE].
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from it, i.e. to find n € O(K) such that K = Q(n), and

now discuss some attempts to make the index smaller or remove primes

index(0(K): ZInl) < index(@(X): ZI[AD

or index(0(K): ZInl) is divisible by a smaller power of some prime than
index(Q0(K): zZ[\D.

n_klék for k = 0,1,...,n~1, choose n = A/p and

p we have p

index decreases by a factor p]:1 (nw])/2' If a5 = -J:pko for some é—n < ko <n

nd o for k < ko, choose n = p/A and the index decreases by a factor

Transformations like these can also be applied to minimum polynomials

of A -3
often succeed for small primes, in particular 2, that divide the index to a
hi

gh power.

or of other simple expressions in A. In practice they

Another method is the following. Choose ume OKINZLA], for example

1 -1 °i
g.(A) T g. (X
] P!

L=p

in the notation of (9). Try to find an element n # 0 of the lattice ZLA,ul

which is close to zero in the euclidean metric of RY! «x Crz.. Then by (3)

he minimum polynomial of n has a rather small discriminant. In practice
this is a useful method, but we can never be sure that it works. In fact,
the problem whether the index can be removed completely, i.e. O0(K) = Z[n]

ome n € (0(K), can be formulated as a rather difficult diophantine equa-
can be shown, see [G],

that for each K there exist at most finitely
= @(K) such that 0(K) = z[n],

up to translation by Z. These can all

be cﬁgstructedlin the following way. Write kln as a linear combination of
-

| N U U with rational coefficients for 1

pressions give rise to an nXn-matrix R satisfying

(nI~R)V = 3,



219

g(X) = det(XI -R):

we see that g(n) = 0. If Q(}) = @(n) then g is the minimum polynomial of n,
else g is the [Q(AM): @(n)] -th power of the minimum polynomial of n. We see

that ne O(K) if and only if ge Z[X]: this gives a method to check if ne 0(K).

2.4. We shall construct a basis for 0(K). Given )\ ¢ 0 (K) there 1s a unique

basis of the following form

h (A h,(A) h ()

a 9 a $ 29 e
] y, a

{1,

such that hi e Z[X], hi 1s monic of degree i, all coefficients at degree

< i of hi are in the interval (“31/231m1’ ai/Zai_lj and a. is a positive

1
integer for 1 = 1,2,...,n-1, while a, = 1. If the index of X 1s one, this
basis is simply {1,A,...,A" '}. It is trivial that

_ n-—1J

index(0(X): Z[A1D) = 1N a.

1=1

and

a.+a. | a, . for 1+ < n-1.

1 3 ' i+
In particular ailaiﬂ for 1 < n-2. Even if A(K) is not known, there is only

a finite number of possibilities for (81’32""’an~1) satisfying (8) and the
relations above. Under these restrictions a, 1s the maximal possible value
such that'h](k)/a] € O(K) for some choice of hl’ this can be found by trying
all possibilities for h]. The same can be done for 855 A and so on until
the whole basis has been constructed. Then also A(K) is given by (8).

Although this method always works, it is not fast. For primes p such
that

pl index(0(K): Z[A])
we can avoild this method by using the theorem of Dedekind discussed in 2.2.

A good algorithm which works in general is described in [Z1] in a more gen-

eral context of orders in a commutative Q-algebra.
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3. THE CLASS GROUP

R'! x €2 as a lattice.

112

3.1. As we saw in 2.2, (0(K) can be embedded in R"

One easily derives from (7) that its determinant is Z_rza/T_zX(K) | . Each non-

zero ideal a of O0(K) is a sublattice of determinant

8

det(a) = N(a)-2 /AT,

where N(a) denotes index((Q(K): a), the norm of a. Define the norm N(x) of

i

X € K by

N(x) :=

oo, (x);
1

1

h 35

one has N(x) € Q for x € K and N(x0(K)) = |N(x)| for x e OK), x # 0. Define
for t e R, t > 0: |

Y r. T o

B, := {(y]&-.-:yr ,z],--.,Z )Emlxmz' z ly l+zz

lz.] < t}.
1 2 i=1 521 3

The volume of Bt 18

r

r2 g}
(n/2) Tt /n! .
The inequality of arithmetic and geometric means gives
(10) B.NOK) c{xe 0| IN®]| < t*/n"}.

Minkowski's theorem from the geometry of numbers states that for each lattice

L in R and for each convex O- ~symmetric closed set S ¢ R" satisfying

vol(S) = 2° *det(L), there exists a non-zero element of S n L. We apply this
theorem to L = a and S = Bt’ where t is chosen such that vol (B ) = 2" det(a)

Then one obtains from (10) that each ideal a of O(K) contains an element

x # 0 such that

8
(11) ING)| < N(@)+ (4/m) “enlen EET.

Norir let g be an element of CZ(K). Choose an Integral ideal a such that [al-=
g , and an element 0 # x ¢ a satisfying (11). Then x-a“l 1s an integral

Ay

ideal of norm at most
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r2 -1l
(4/7) “enlen -/TAK)],

]

while [xea ] = g. We have proved:

THEOREM. Every Zdeal class of K containsg an integral ideal b with the pro—
perty

r
(12) N(b) < (4/m) 2-nl-n“n-'\/IA(K)l.

This theorem is very useful for computing class numbers: the class
group 1s generated by the ideal classes of the prime ideals of norm not ex-—
ceeding the right hand side of (12). Since at most finitely many integral
ideals satisfy (12), the class group is finite.

The bound in (12) is not best possible. Define M(n,rz) to be the small-
est value so that for each field K of degree n over @ with 2r2 non-real em-

beddings in €, each ideal class contains an lntegral ideal b of norm at most
M(n,rz)VIA(K)I. A reformulation of (12) is

2 n

r
M(h,rz) < (4/m) Cenlen .

The following values ofiM(n,rz) are known, see [C]:

n r, M(n,rz) polynomial for which the bound is sharp
2 0 571/2 X% + X - 1

2 1 3ml/2 X2 + X + 1

3 0 771 X> + X% - 2% — |

3 1 23“-]/2 X3 — X2 + ]

The values of M(n,rz) are ilmprovements of (12). For r, = O, they are iso-
lated bounds, i.e. if the field for which the bound is sharp i1is excluded,

the bounds can be improved again. It would be desirable to extend the table
to higher values of n, since for n = 2 or 3 better techniques for computing
class numbers are available. Though for n > 4 exact values ofTM(n,rz) are
not known, ZIMMERT gave in [Z2] sharper upperbounds than the Minkowski bounds

given by (12), as we see in the next table.
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upperbound for M(n,rz) given by

n r, Minkowskil Zimmert

4 0 .9375 .06921

4 ! 1194 .1026

; 2 1520 1473

5 0 .03840 .01992

5 ! .04890 03114

5 2 .06226 04737

6 0 .01544 .005317

6 3 .03186 .02140

100 0 9.333%10” %> 1.184%10 3
100 50 1.643%10 27 4.138%10°°

For larger n the difference between Minkowski's and Zimmert's results in-

creases. In fact from Minkowski's result it follows that for n large enough

r

M(p,rz) < (.38)n(1.28) 2

while Zimmert improved this to

Lo
M(n,r,) < (.141)"(2.55) “.

So far we only considered upper bounds for the smallest ideal in a
class which are valid for all classes in CL(K). But for our purpose it suf-
fices that the bound is valid for a set of generators of CL(K), which is a
far weaker condition. If a certain generalized Riemann hypothesis is true,
then the classes of integral ideals of norm less than A- (loglA (K) I)2 gener-

ate the whole class group, see [L.M.O.]. Here A is some absolute constant,

for which no explicit value has been published.

3.2. Let B denote the right hand side of (12) or am improved version of it.
We now construct all prime ideals with norm less than B.

If p is a prime not dividing the index, the prime decomposition of
pO(K) is the same as the decomposition of f modp in Fp[}(] into irreducible

polynomials. More precisely, if

e.
£(X) = m gi(X) 1modp,
i
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.modp for i # j, then

with g, monic and irreducible mod p, and g, # 2

e.
pO(K) =TI _E_il
1

for different prime ideals p. = (p,gi(k)) and

N( p;) = ydeg(gi)
In particular, for primes p not dividing the index, the prime ideals of norm
p are precisely the ideals of the form (p,A~k), where k is a zero of fmodp,
i.e. £(k) = Omodp. For factorizing fmod p we remark that for odd primes p
not dividing A(f) the number of irreducible factors of fmodp has the same
parity as n 1f and only if A(f) is a quadratic residue mod p, see [SW]. For
n < 5 this determines the decomposition type of fmod p completely if the
number of zeros of fmodp is known. For further information we refer to
[LE].

If p 1s a prime dividing the index we have to factorize f in Z,LX1,

where

ZZ := 1im (Zl/meZ).
P “~m

This means that we have to consider f modulo a power of p instead of modulo

p 1tself. It can be shown that, for pk"A(f) , the decomposition type of f in

ZPEXJ 1s the same as that of f mod ]_::»k.I~1 . Finding zeros of f in Zp can be

done by Newton's method, see [W]: let a, € Z, pS“f(ao) . pt"f' (ao). Assume
defined by

s > 2t, then the sequence (ai)ZmO

_ _ 7 .
ai+1 - ai (f(ai)/f (ai))s L =2 0.’#

converges to a root a € Z of f satisfying

P
- s—2t
o = a, mod p .
0
The condition s > 2t can always be satisfied by choosing a, to be a zero
of f modulo a sufficiently high power of p.
If £ = Wl;__l g 1s the decomposition of f into irreducible polynomials
i eﬂ*
in Zp [X], then pQ(K) decomposes as ﬂgml _P_.il’ where e’ifi = deg (gi) for 1 =

l1,...,u. Here f:i". denotes the residue class degree of P> defined by
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5
N(p.) =p .

If p 1is unramified we have e; = 1 and £, = deg(gi) for 1 = 1,...,u. If p is

ramified or the ramification behaviour of p is not known, one has to study
the ramification behaviour of the corresponding extensions of Qp 1n order t o
determine the e. and f..

i i ...
B(l/l)

. : 1
If for all primes p < the prime 1deals of norm p have been

found for i = 1,2,..., as describéed above, we know all prime ideals of norm

less than B. The ideal classes of these primes generate the class group. We
now have to find relations among these generators. These are obtained by
factorizing principal ideals; if p0Q(X) mﬂga(g) for u € K, one has the rela—
tion TTIZ_E_]a(-E-) = | in the class group.

For factorization of the principal ideal pO0(K), u € 0(K), first remark
that 1f p0O(K) m@a(_g) then |[N(u)| = ﬂ(N(B))a(-P—). Let ¢t = h(A), with h € QLX) =
then N(u) = R(f,h) by (3), so N(u) can be computed by the method of 2.1. In

particular, we have
N(a-bA) = b +f(a/b)

for a,b € Z, b # 0. If h ¢ Z[X] and p|N(u) for a prime p not dividing the
index, then a prime ideal (p,g(A)) divides p0(K) if and only if

(g mod p) [ (hmod p). In particular, a prime (p,A-a) divides u0(K) if and only
1f h(a) = Omodp. If several primes p above p divide u0O(K), the exact power
of p dividing p0(K) can usually be determined by remarking that _P_k cannot
divide u0O(K) if N(B)k doesn't divide N(u+n) for some n € _E_k.

To generate many relations, one applies the above technique to p = p
for small primes p, and to p = h(}) for several h ¢ Z [X] with small degree
and small coefficients. In particular m = a-b) may be used for small inte-—
gers a and b. Also u = a:-b)« where a/b is close to a real zero of f may be
a good choice; such a and b can be found with a continued fraction algorithm.
If many relations have been generated, select a small set of prime ideals
among which many relations have been found. In the cases that can be treat-—
ed by hand with the help of a pocket calculator, usually no more than ten
prime ideals and a few more relations are sufficient. Define G to be the
free abelian group generated by these prime 1deals, divided by the subgroup
generated by the relations. This group 1s easily determined explicitly.
There 1s a natural group homomorphism ¢: G + CL(K). If G is finite, we may

hope to prove that ¢ is an isomorphism.
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To prove that ¢ 1s surjective we have to express all prime ideals of
norm less than B in the generators of G, modulo principal ideals. If we do
not yet have an expression for (p,g())) among the relations already found,
we can look for one by decomposing elements of (p,g())) = pO(K) + g (A0 (K)
of small norm. Theoretically a suitable expression can always be found if ¢
1s surjective. However, if a suitable expression is hard to find it is bet-
ter, in practice, to go on with other prime ideals. In this way the set of
"expressed' prime ideals increages, and this makes it easier to deal with
the difficult prime ideal. If such expressions have been found for all prime

ideals of norm less than B then ¢ is surjective. If we do not succeed we

have to change G by adding a generator.

3.3. To prove that ¢ is injective we do the following. If ¢ is not injective

then there exists a prime p and x € ker$ such that the order of x is p. For
a fixed p define

H := {x € Gl xP = e};

if JH] = pt

such that

choose generators g12e--s8, for H and integral ideals_il,...tit

¢(gi) == [Ei], 1 = l,...,t.

To prove that ¢ 1s injective we have to show that no (ﬂl,...,ﬂt) exists,

L. € Z and not all Ki are divisible by p, such that

i
+r L.

1
d.
W

1=}

1s a principal ideal, and this for all p dividing |G]. Definebi to be a

generator of the principal ideal aP, i = ly...,t. Assume

—1°
t *ei

f-_i = a( (K):

1=1

not .z-:tllf.:..‘L divisible by p. Then

L.
(T b, H0E) = aPO(K),
i=]
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£

hence n:itf*l bii 1s a unit times the p-th power of an element of K. By

Dirichlet's unit theorem there exists a set {ul"”"url“"rZ‘“l} of units, which

1s called a fundamental set of units, such that each unit u of 0(K) can uni-
quely be written as

rl"i'rz'“'l Ci

i=1 1

for C. € Z and 7 1s a root of unity contained in K. The set of roots of
unity in K is easy to determine; most times it is {*1}. Constructing a funda-
mental set of units will be discussed in 4; constructing a generating set

of units modulo p-th powers is far easler, and is done as follows. Observe

that by Dirichlet's theorem, O(K) /0 (K)"P is an s-dimensional vector space

over IF , where s = v, +r

| ) 1f K contains a primitive p~th root of unity and

S = r. + r, = I 1f not. If, in the procedure of 3.2, the same relation among

I

prime ideals is found twice, then we have found two generators of the same
principal ideal. Its quotient is then a unit. In this way we can gemnerate

as many units as we wish. Continue doing this until s units Uyse--,u_ have

_ S
been found whose images in O(K) /0 )P are linearly independent over Fp
this is checked by the method described below, with t = 0. Then Upseeesl
generate 0(K)” modulo p—th powers.

.
b J

To prove the injectivity of ¢, we now have to derive a contradiction
from the hypothesis that there exist integers k

l’”"ks’ ﬂl,...,ﬂt, not all
divisible by p, such that

S 3 "1
(13) M u,”« 1 bi 1s a p-th power.

We may regard kl,...,ks, 'el’“"f“t as elements of F

[ o, - P
ldeal not containing any of the bi’ for which N(q) = 1 mod p. Then (13) taken

modulo q, gives rise to a linear relation among the k. and £. over ¥ , since
p divides the order of (O(K)/g)*. Similar relations can be f:;und by feducing
(13) modulo a power of prime ideal above p. Further, if p
tions can also be found by looking at signs in (13) at

Continue finding linear relations among the k.
independent

- Let q be a prime

= 2, such rela-
real embeddings of K.

and 'Ei until s+ t of them are

, then all kj’ and f’i are zero, which is the required contradic-
tion.

If we do not succeed in finding s+ t independent relations then probab-
ly ¢ is not injective and we have to find another relation among prime
ideals and define G anew. It can be proved

» that if ¢ is lnjective, then s +t
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independent relations can always be found using prime ideals g as above.

3.4. We give a simple example of computing a class group using the technique
described in 3.2 and 3.3. Let K be given as K = Q()\) where A is a zero of
f(X) = X34-2X2—-8X4-1. One has A(f) = 1957 = 19.103; since A(f) is square
free 1t follows from (8) that A(f) = A(K). Since f has 3 real zeros we have
r, = 3, r, = O and by (12) we may choose B = (2/9)VTE?EST < 10. Modulo 2 the
Modulo 2 the polynomial f decomposes as (X+1) (X2 + X+ 1), modulo 3 and modulo
7 1t is irreducible because none of the values £(0), f(+1), f(£2), £(+x3) are
divisible by 3 or by 7. Modulo 5 the decomposition of f is (X+l)(X2+X+l).
Hence there are only 3 prime ideals of norm less than ten: (2,Xx+1),

(2,22

ing relations among these three generators of the class group (each row is

+A+1) and (5,A+1). Writing the ideal group additively we get the follow-

a relation):

|

principal ideal | (2,A+1) (2,X2+A+l) (5,A+1)
(2) ' 1 1 0
(A+1) 1 O 1
(A=1) 2 0 0

From thlis table we see that the ideal (2,\+1) is a generator of CL(K) and
that its order in CL(K) is at most 2; hence CL(K) = Z/2Z or CL(K) = {1}.

Assume CL(K) = {1}. Then (2,A+1) = BO(K) for some B € O(K) and since ()\-1) =

(2,7\+1)2 some unit u will exist such that u()i-1) = 82. Since r, = 3, and *1

are the only roots of unity in K, the set of units is as a group isomorphic

to (Z/2Z) o zz, hence O(K)*’/O(K)j"rz has dimension 3 over F.. We immediate-

2

ly discover the units -1, A and X +4, and we wonder if they generate all
units modulo squares. In the next table we write O if an element is a square
modulo a prime, or positive, and 1 if it is not. For example, A +4 is not a

square mod(5,A-4), because 3 = A+ 4 mod(5,1-4) and 3 is not a square modulo
5.

(5,1—-4) (11,2-3) = -4 ,0410 A=0.1295 A=1.9115
~1 0 ] 1 1 ]
A+4 ] 1 I O
A 0 0 1 0

Cc O O
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Since the first three rows are linearly independent over F, our three units
generate all units modulo squares. Since all rows are independent over Fz
there 1s no unit u such that u(A-1) is a square, hence CL(K) # {1}, hence
CL(K) = ZzZ/22Z.

3.2. In this section we spend a few words on other techniques helpful for
the determination of the class number of a number field. ODLYZKO [OD] found

a set of universal constants-.-A, B and E such that for each number field K:

r. 2r ,
(14) AR > A ]*B z'emE.

From class field theory we know that each number field K has a maximal abe-
lian totally unramified extension H(K), the A<lbert class field of K and

that the Galois group of H(K) /K is isomorphic to CEL(K). Applying (14) to
H(K) gives

(15) h(K) < E(r, logA+ 2r, log B~ logA(K)) "

1f the right hand side of (15) is positive; i.e. if A(K) 1s not too large,
then we have an upperbound for h(K).

If we can construct an abelian extension M/K which is totally unrami-
fied, the field M has to be contained in H(K) and the Galois group of M/K
has to be a factor group of CL(K) and we have a divisor of h(K) .

Until now all methods can be used for each number field K, which in

general will not be Galois over Q or over another non-trivial subfield. If

4.4, which relates the class number and the number of units to the value of

K modulo p-th powers for a given prime number P. Now we want to find

a gen-
erating set of gl units. As an element

of 0(K) each unit u corresponds to
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an element (ul,... sUr 15U (4] 5 - - - :Ur1+r2) of R"! x ¢'2, Taking the logarithm

we let the unit u correspond to

r. +r
|
(loglull,1og|u2|,...,loglur I,Zloglur +]l,...,2log|ur o 1) € R .

1 1 1 2

Since u has norm *1, the sum of all these coordinates is zero and we may

omit one coordinate, say the last one, without loss of information. We will

| tro=—1

. : . Y . . :
identify this element of R with the unit u modulo roots of unity.

According to Dirichlet's unit theorem the set of all units modulo roots of

r1+r2—1

unity 1s a lattice in R The regulator of K is defined to be the

determinant of this lattice; a basis of this lattice is called a fundamental
set of units. As mentioned in 3.3 one can find as many units as one wants;
now find a set of units large enough to generate a lattice L in ]er-!-rzw-l'
If L 1s not the whole lattice of units modulo roots of unity, another unit

has to be contained i1n some bounded set S in ]Rr1+r2--1' Such a bounded set

can be pulled back to a bounded set S in R°! x ¢ 2. Since O(K) is a lattice
in R'1 x g2 only a finite number of elements of 0(K) is contained in S.
The units among this finite number of elements generate together with the

units already found, the whole set of units.

4.2. Next a few words on the choice of S for which the technique of 4.1
works. Assume we know from the technique of 3.3 that, for some q, the lat-
tice L contains all units modulo p—th powers for all primes p < q. Then the
index of L in the lattice of all units is only divisible by primes larger
than or equal to q. Choose a basis {Zi |i=1,... ,r1+r2-—1} of L; for compu-
tations it will be pleasant if ll;ill 1s not too large. If L is not equal to

the lattice of units, then

contalns a unit not contained in L. Another choice of S with the same pro-

perty 1is
r]+r2f1 .
S := { -Z uiai l |1Ji_| < bi}
1=1
with bi > 0,
ri+ro-1
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Although the volume of the latter set is larger, it has the advantage that

for large q for a good choice of bi all coordinates become small instead of

£ ' L » - - L ”1
Just one. If u 1s a unit in S not contained in L, then so is u , and of one

~

of them the sum of the coordinates is positive. Hence for S we may choose:

r

] rZ,
' yo°e sl )e R  x C | u 151,
r, +1 :r:l-i-r2 r]+r2

(loglull ,...,loglur]l, 21(':)glurl_'_1 I,.4..,......,,Zloglurl_*_]:_2“_“1 1) € S}.

4.3. As an example we compute all units of the same field as in 3.4, K =

&. where A is a zero of f(X) — XB + 2X2*—" 8X + 1. In 3,4 we Saw that "'"l, A

and A+4 generate all units modulo Squares and now we examine if in fact they
generate all units. Two numerical values of XA are —4.0410 and 0.1295; thus
A+4 corresponds to (=3.1950, 1.4181) and ) to (1.3965, -2.0444). We choose

ara

a;, = (1.3965, -2.0444) corresponding to A and a, = (1.7985, 0.6263) corres-—

2
. _ et N B _ > > I 1
ponding to (A+4) A ': now S = {ulal + u,a, [ lull < 3 Iu2| < "Q"}' We get

¥

. 3
S = {(x,v,2) ¢ R I |10.6263 log|x| - 1.7985 loglyl| < 1.5172,

[2.0444 loglx| +1.3965 logly|] < 2.2757,

(A

| z | 1}.
Notice that ScB := {(x,y,2) ¢ 113 | 1x] < 3.9147, |y| < 2.7037, |z] < 1}. A

basis of 0(K) is {l,l,)\z}, Or written in coordinates
{(1,1,1), (—-4.0410,0.1295,1.9115), (16.3294,0.0168,3.6538) }.

The intersection of B and 0(K) is {0,%+1}; this doesn't glve new units, hence

-1, A and A+4 generate all units of K.

such a lower bound. Assume we know from the technique of 3.3 that for all
primes p < k the lattice I contains all units module P—-th powers. Then L

contains all units. By this approach choosing a bounded set S and determin-

ing all integral elements in S are avoided. We conclude by suggesting an
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alternative method for computing the units of K.

By geometrical arguments one shows that the number At of integral

ideals in K of norm less than t satisfies

(16) At = pKt + O(t(n“l)/n)y C > ®,
where
r,+r, r
Pp 3= 2 - 2*'-»R(K)"-'h(K) -WCK)-I-(IA(K) I)ﬂl/z,

in which R = R(K) is the regulator, h(K) the class number and w(K) the num-

ber of roots of unity in K. Define for s > 1:

Z,(s) := Y  Na) "=} (A ., -A)n °.
K Ofi;O(K) o n=1 n+l o
One derives from (16): lims+l (s~l)cK(s) = Py hence
(17) iﬁl CK(S)/CQ(S) = r:vK/pQ = Pg-

By decomposing the ideals in the definition of Tk into prime ideals we ob-

tain the Euler product

g (s) = L (1- (NE)H ™ HT.
pco(K)prime

Hence:

Py = lim CK(S)/Z;Q(S) = lim T ((1-p ) 1 (1- (N(_g_))"s)“l)

st1 sv¥1 pprime __R_!P

It can be shown that s = 1 simply may be substituted in the right hand side,

il.e.

(18) pg =TT 3
P Prime

where

a = (1-p ) M (1-NE)H H7L

P plp
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The values of ap follow immediately from the decomposition types of p0(K)

which were discussed in 3.2. As in 4.2, let L denote the lattice of units
containing all units modulo p-th powers for primes p < q. Denote R' to be

the determinant of L, then we know that R'/R e Z, and i1f R # R' then
R'/R > q. Assume we know h(K), then

, I}ty Ty

0y 1= 2 v 2R eR(K) ~w(®) - 1a®) |2

a or 1s at least q times larger. The problem now is how

equals TI .
P prime p

fast TI : a_ converges; it doesn't converge absolutely. We would like
p prime p
to have
(19) | X log a | < F(x)
P>X d
for some explicit function F satisfying lim F(x) = 0. Denote G to be the

00
Galois group of the normal closure of K over ®; then G 1s a transitive sub-

group of S and is discussed in [LI]. There is a theorem that states that

for each (b ,...,b), t,b ,...,b ¢ Z, >0, ZL b, = n:

I 1

1 t

- t . . _
i 1 {p pr1me<x]f od p-—-ﬂiml fi,p’fi,p irreduclble mod p, deg fi - bi} |

X->00 |{p prime < x}|

l{geGI g splits into t disjoint cycles of order b1 > o o .,bt}l
1G|

With a slightly weaker notion of density this theorem was already proved by
FROBENIUS, see [F]. A stronger version of Frobenius' theorem, known as
Chebotarev's density theorem, states an analogous result on conjugacy class-
es of Frobenius symbols instead of cycle types, see [LA]. Assuming certain
generalized Riemann hypotheses one can prove an effective version of
Chebotarev's theorem, for results see [OE]. From this effective theorem an
explicit function F satisfying (19) can be derived, of order xﬂl/z log x.

Having such a function F, for proving R = R' it is sufficient to compute

values of ap until

log pI'< - Z log ap + F(x) < loggqg.
p<x
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It's likely that much sharper results can be obtained than those deduced

from [OE]. Although this might possibly lead to an efficient way to deter-

mine the regulator, no results have been published yet. The convergence of

ﬂﬁ{x ap %s illgstrated by the next table for the field given by
f(X) = X" + 2X" - 8X + 1, where p; denotes the i-th prime number:

X pLTX ay, X PLTX 2

P = 11 0.8267 Py = 97 0.8268

Pig = 29 0.9557 Pag = 113 0.8507

Py = 47 0.9021 Py = 149 0.8403

Pyg = 71 0.8582 Pao = 173 0.8241

The value of Py 1s 0.8231.
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1. INTRODUCTION

Let K be an algebraic number field and 0 = 0(K) its ring of integers.
We recall a few basic definitions and facts concerning algebraic number
fields.

By I(K) we denote the group of fractional (O-ideals and by P(K) its sub-

group of principal fractional O-ideals, which is a subgroup of I(K). The

class group CL(K) of K is defined by
CL(K) = I(XK)/PK).

The class group 1s a finite abelian group and its order is denoted by h(K),
the class number of K. By 0" we denote the multiplicative group of units of

X
0. The structure of 0 as an abelian group, 1s given by Dirichlet's Unit

Theorem:

THEOREM 1.1. Let K be an algebraic number field and O its ring of integers,
then

r.+r.~1
0 ~ u(0) @ Z | 2

Here 1(0) denotes the finite group of roots of unity in K,

r, number of embeddings K% R,

r, = half the number of embeddings K - € with im(K) ¢ R.
It holds that r, + 21:':2 = n = [K:Ql], the (absolute) degree of K. For these

and more definitions and facts from algebraic number theory see for instance

[17].
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In general, it is hard to determine the class group of a number field,
which, for instance, is given by a generator; for this general problem see
ZANTEMA's talk [13]. Here we shall concentrate on fields with small degrees;
in this case, the rings of integers do not contain too many units and the
computation of the class group is relatively easy. It appears to be possible
to determine the class group of fields with small degrees, which have very

large discriminants.

First we consider complex quadratic number fields. A field K is called

complex quadratic if [K:Q] = 2 and if r, = 0, r, = 1; 1t follows from

»

Dirichlet's Unit Theorem that O(K) contains only finitely many units.

The study of the class groups of these fields is a very old one; 1t was
initiated by Gauss, in the beginning of the 19th century [12]. Gauss studied
the problem in the language of "binary quadratic forms" and he made extensive
lists of class groups of complex quadratic fields. In Section 2 we shall dis-
cuss the complex quadratic fields in more detail; 1t appears that for our
purposes, it is useful to formulate matters in the old-fashioned terms of
binary quadratic forms again. An algorithm, due to D. SHANKS [31], to com—
pute class groups of complex quadratic fields will be treated in Section 3.
Next we consider real quadratic number fields i.e. fields of degree 2

wilth r, = 2 and r, = 0. For a real quadratic field K, Dirichlet's Unit Theo-
rem boils down to

O(K)x > Z/27Z o 7ZZ.

The determination of the class group of a real quadratic field cannot go,

it seems, without the determination of the group of units; the latter is
equivalent to finding a unit ¢ in O such that 0" is generated by £ and -1,
which in turn is easily seen to be equivalent to solving a so-called Pellian
equation, a problem which dates back to Fermat. The study of class groups of

real quadratic fields was also begun by Gauss, who studied the subjeet in

terms of binary quadratic forms.

to determine the class group and, in some sense, the size of the group of
units of a real quadratic field. We will describe this algorithm in Section

5>t 1t is closely related to Shanks', discussed in Section 3, but slightly
more complicated.
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Complex cubic fields are fields of degree 3 over Q with r, = 1 and
r, = 1. Complex cubic fields are not Galois extensions of Q; the structure
of their groups of units is the same as for real quadratic fields: if K is

a complex cubic fields we have that
0(K)" ~ Z/2Z ® Z.

We do not discuss this class of fields; an algorithm to compute the class
groups and the groups of units of these fields is being developed by WILLIAMS
and SCHMID [40], their algorithm is along the same lines as the algorithm
for real quadratic fields discussed in Section 5.

In Section 6 we point out how the algorithms, discussed in Sections 3
and 5 may be used to factor the discriminant of the number fields under con-
sideration. We will in fact, describe two deterministic factorization algo-
rithms which, on assumption of certain generalized Riemannhypotheses, factor

an integer N in time, bounded by N1/5+€

for all € > 0. For a discussion of
related algorithms see [13,23].

The algorithms discussed are suitable to compute the class groups and
units of quadratic fields that have very large discriminants. In fact, det-
ermining the class group and units of quadratic fields with discriminants
of fewer than, say, 6 decimal digits, may be done faster by simpler and more
direct methods. Therefore, in application of these algorithms, one should
think of discriminants of 10 to 30 decimal digits.

Using these algorithms, one can practice a kind of experimental mathe-
matics; it seems to be generally believed, that every finite abelian group
occurs as a subgroup of the class group of some, say, complex quadraticfield
but theoretical results on this question are very scarce indeed. By means of
these algorithms, however, one is able to compute class groups of quadratic
fields with very large discriminants, and, guided by heuristic, one can
search for explicit examples of quadratic fields that have unusual subgroups
of their class groups. Only recently, some progress in this direction has
been made. Some o0ld and new results will be discussed in Section 7.

Finally, in Section 8, we will give a few details on the actual imple-

mentation of the algorithms on the SARA CDC-Cyber 170-750 computer.
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2. CLASS GROUPS OF COMPLEX QUADRATIC NUMBER FIELDS

It is well known that the discriminant of complex quadratic number
fields are negative integers, congruent to O or 1 (mod 4). Furthermore, com-

plex quadratic fields are characterized by their discriminants, but it is

1

not true that every negative integer = 0 or 1 (mod 4) is the discriminant of

some complex quadratic number field.

H

However, every A e E<0’ A
2

D, where D is the discriminant of a complex quadratic
number field K, and f ¢ Z

O or 1 (mod 4), can in one and only one
way be written as A = f

.1~ Now, 4 = A(0) is the discriminant of the uni-

que subring 0 of index f in O(K): the unique quadratie order of discriminant
A

i

So for every A € Z_ g, 8 20 o0or 1 (mod 4), there exists a unique complex
quadratic order 0 = 0(A), with discriminant A, contained in the ring of inte-
gers of some complex quadratic number field. Rings of integers themselves

are also called maxzmal orders. It is also possible to 'define the notion of
class group for non-maximal ordarsﬁ

Let 0 be a complex quadratic order, contained in a complex quadratic

fractional O-ideals and by P(0) the group of principal fractional ideals, a
subgroup of I(0). The class group of 0 is denoted by CL(0) and defined by
CL(0) = 1(0)/P(0). The group CL(0) is finite abelian and its order will be
denoted by H(0), the class number of 0.

REMARK. If 0 is a maximal complex quadratic order, i.e. the ring of integers

of some complex quadratic field, then 0 is a Dedekind ring and all fraction-
al O-ideals are invertible.

EXERCISE. Let 0 be a complex quadratic order, and M a fractional (-ideal;
then M is invertible iff {a ¢ K| oM c M} = 0.

The ring {o € K| aM © M} is called "the ring of coefficients of M'", cf.
[1].

For definitions, notations, terminology and facts on complex quadratic
orders see [1]. Next we will discuss the correspondence between ideal class-—

es of 0 and primitive positive definite binary quadratic forms of discrimin-
ant A(0).



DEFINITION 2.1. A polynomial f = aX2 + bXY + de € Z [X,Y] with bzw-4ac = A

2 2

£ = aX + bXY + cY~ is called positive definite if A < O and a > 0, and 1is
called primitive if ged(a,b,c) = 1.
We will often denote a form.aX2 + bXY + ch by (a,b,c), or even (a,b)

since ¢ is determined by bz-—4ac = A,

DEFINTTION 2.2. Let f = aX2 + bXY + CYZ and g = a'X2 + b'XY + 'Y’ be posi-

tive definite binary quadratic forms. We shall call £ and g equivalent if

there i1s a o = (g ?Sr) € SL2 (Z) such that

a'U2 + b'UV + c'V2 = aXz + bXY + dYZ;

where U = aX + yY and V = BX + &Y.

Since SLZ(ZD 1s a group, '"equivalence'" is indeed an equlvalence rela-

tion.

THEOREM 2.3. Let 0 be a complex quadratic order with discriminant A. There
18 a 1-1 correspondence between classes of tnvertible fractional O—ideals
and equivalence classes of primitive positive definite binary quadratic

forms of diseriminant A.

PROOF. Let M be a primitive invertible fractional O-ideal i.e. a non—zera

O-submodule of K with its ring of coefficients equal to 0, we shall attach

a primitive positive definite form f to M.

The fractional ideal M is a free Z-module of rank 2 in K, i.e. a two
dimensional lattice in K“ €. We can attach a quadratic form to M in the
following way:

Let {a,B} be an oriented Z-basis for M (i.e. Im(B/a) > 0) and take

_ N(aX+BY)

f —NaD

(Here N denotes the norm; for definitions and properties of the norm see

[1]1.)
The choice of the basis {a,B} does not affect the SLZ(ZD class of f;

1t can be proved that f is of discriminant A, and that f is primitive if M

1s invertible. However, for future purposes, we prefer to give another
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construction of the form f.

Let M denote a fractional O-ideal; the ideal class, represented by M

contains the ideals BM, with B e Kx, so we can find an O-submodule of K,

equivalent to M and of the form Z + Zao, o € K; This module will be denoted
by M again.

We can always choose o in the upper half plane and under this condition
o 1is unique up to SL2(ZZ) —action.

Next, let's exploit the fact that M is an O-module: assume A is even,

then {1,-21--/5} 1s a Z -basis for 0 and "lf VB *M < M:
1 - 1~ _ 1 : 1y
mz-ﬂ/ZEM—a--é-/_- —imb+aa (-é-b,ae Z )
b+vA
IR P

with a > 0 since a is in the upper half plane;

%-/E'GEM'*%-'/&'G"—‘C"'CI'd (c,d € Z)

which, combined with the fact, that

_ b+/A
2a
gives us that
A“bz = c € Z
h4a )

We conclude that M = Z + 7% b-h/E/Za with a > 0 and ¢ € Z such that

bZ — bac = A. If A is odd, {l,-%-(l-l-/l_S)} 1s a Z-basis for 0, and a completely

analogous proof gives exactly the same result.

To the ideal class represented by M we associate the positive definite
2 2

quadratic form f = aX" + bXY + cY°. It remains to check that this association
respects equivalence and that f is primitive if M is invertible; this is
strarghtforward and left to the reader, see [1]. Next let f = aX2 + bXY + ch
be a primitive binary quadratic form of discriminant A with a > 0. To £ we
associate the ideal class represented by M = Z + b+/A/2a Z; since f is pri-
mitive, M is invertible and the association is correctly defined with re-

spect to equivalence. This completes the proof of Theorem 2.3. []
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Let 0 be a complex quadratic order with discriminant A, and let k be an
0 - ideal class; then k consists of fractional ideals (Z +b+V/A/2a Z) - B,
B € Kx, and to k 1s associated the quadratic form aXz + bXY + cYZ. The inte-
gers a and b are unique up to SL2 (Z) ~action on Z + b+V/A/2a Z, so it 1s al-
ways possible to choose a and b such, that the number b+YA/2a is in the stan-

dard fundamental domain of SL,, (Z), acting on the upper half plane. This

choice gives the following conditions on a, b and c:

b-r:/ﬁi
2a

]

v

i.e.

b

IA
m
IA
0

BN

G,\ UMMM

N\

DEFINITION. A binary quadratic form f = aX2 + bXY + ch is called reduced

if |b| € a < c.

It is obvious that Theorem 2.3 can also be stated in the following form:

THEOREM 2.3'. Let O be a complex quadratic order of discriminant A. The
classes of invertible fractional O-ideals are in 1-1 correspondence with the

reduced primitive definite binary quadratic form of discriminant A.

CONVENTION. We will always identify reduced forms (a,b,c) and (a,-b,c), when-
ever ]b] = a or a = ¢. These forms correspond to ideal classes represented

by Z + Z+a, with a on the boundary of the fundamental domain.
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. 2 .
It 1s easily seen, that the conditions b~ - 4ac = A and |b| € a € ¢ im-

ply that a < Y[AT/3 and this shows that the class group of O is finite. By
means of the dictionary between ideal classes and quadratic forms, the prob-

lem of counting the ideal-classes of a given quadratic order is reduced to a

finite problem.

Next, we transport the natural group structure of the group of ideal

classes to the finite set of reduced binary quadratic forms.
2 2

If £ = aX" + bXY + cY" = (a,b,c) is a primitive positive definite form
of discriminant A, then the ideal class associated to f consists of ideals

M= (Z +b+/5/23 Z)* a, o € Kx; the number o is a so-called primitive point

o,

of M, 1.e. for all n 2 2 in Z we have a/n ¢ M.
Let (a],b],cl) and (az,bz,cz) be two primitive positive definite qua-
dratic forms of discriminant A. Let M and N be two fractional ideals in the

ideal classes associated to them:

b1+/5 b2+/{§
M= (Z + ZZ) o and N = (Z + Z)B .
2a 2a
] 2
Put
b3+JE
MN = (Z + 5 Z) vy
“3

where we choose y such that aB ¢ YZ, say aB = dy;

bl+/E b2+/E b.+vA

Zal m) (Z + 232 Z)GB = (Z + 23_3 Z)Y

(Z +

taking norms on both sides gives (cf. [1]):

N(aB) _ N(y) _ N(aB)
4178 33 d%a
3
So we find
a.a
§ s b
(1) a3 --'-:1-2—— .
Multiplying out gives
b.+VA b, +/A (b,*b_+A)+ (b, +b..) VA b.+VA
(%-{-IZZ.-P] 7 4 1.2. 1 72 )CLB“(R"'B Z)
2a1 2&2 4alaz 2a3 Y
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b.+b
] 1 1 72 | o3 d
(— Z +—— T + JaB = —— Z - = Z oB
2a1 2a2 4ala2 2a3 d Za]az
b,+b,
aZZ + aIZZ + % Z = dZZ
So
b1+b2
(2) d = ng(alaazsﬂ_“i“m)

and we can easily compute Vy>V,,W € Z such that

b,+b
v.,a, + v,a, + w L2

1] 2%9 57— = d.

Finally it is easily seen that b3 can be taken to be
(3) b, = v b, +—— + v_eb_ e + 1 o

Formulas (1), (2) and (3) give a form (a3,b3,c3) that corresponds to the
ideal class that contains MN.

By Theorem 2.3', these formulas enable us to perform computations in
the class group of a complex quadratic order, on condition, that we have a
way to compute the unique reduced form equivalent to a given form. Fortun-

ately there is a very simple and fast algorithm to do this:

REDUCTION AIGORITHM. Let f = (a,b,c) be a primitive positive definite qua-
dratic form of discriminant A.
(1) reduce b (mod 2a) such that ]b] < a, and adjust c;

if £ 1s not reduced then

(i1) £ « (e,-b,a) and start all over.

It 1is left to the reader to verify that this algorithm terminates and

1s correct. Perhaps, it is worth noting that (a,b,c) « (c,-b,a) corresponds

td action of S = (__(1)(1)) € SL2 (Z) and reducing b (mod 2a) correspond to ac-—

(])}) € SL, (Z) and k is some suitable integer. The group

SL,, (Z) 1is generated by S and T.

tion of 'I‘k where T = (
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EXERCISE. In order to reduce a form (a,b,c) no more than

O(max(1l,log(lal/YI[a])) applications of (i) and (11) are needed.

Now we can calculate in the class group by means of computations with
reduced quadratic forms. For completeness we give: the inverse of a reduced
form (a,b,c) equals (a,-b,c) and the unit element of the class group corres-
ponds to the form (l,l,l-}é—) or (1,0, ---2—) depending on whether A is odd or
even.

In the next section we will give Shanks' algorithm to compute class
groups of quadratic orders. One of the basic ingredients of the algorithm
1s the ability to do calculations in the class group itself in an efficient
way. The formulas given above are sufficiently efficient for these purposes.

Perhaps it is worth quoting the following formulas, which are essential-
ly the formulas (1), (2) and (3), but somewhat more suitable for computation
[31]:

Let £ = (al’bl’cl)’ g = (aZ’bZ’CZ) be two primitive positive definite
binary quadratic forms of discriminant A. Put d = gcd(al,az, (bl+b2)/2) and

let VisV5,W € Z such that via, + vya, ¥ w(b1+b2)/2 = d. Let

I b
3 d2
(*)
a, ‘b -b )
_ 2,71 2 ,

the form (aB’bB’CB) now needs reduction. The term (*) does only matter
mod al/d.

The algorithm for composition and reduction of binary quadratic forms
can easily be programmed on a pocket calculator, like TI58, TI59, HP67,

HP41C. In fact it is possible to compute class groups of complex quadratic
orders, with the aid of a calculator like that, if the discriminant of the

order 1s not too large, say, < 10 decimal digits.

3. SHANKS' ALGORITHM

Let K be a finite abelian extension of Q, then the following formula,
the class number formula holds [17]:

(4) L Iy, R A"
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where

w = w(K) = #1(K) = the number of roots of unity in K,
A = A(K) = the discriminant of K,
r, = r, (K) = the number of embeddings K& IR,

r, = r, (K) half the number of embeddings K% C (im(K) ¢ TR),

R = R(K) = the regulator of K,
X runs over the non—trivial characters of Gal(K/Q),

1 s e, Res > 1.

— T Xx(n) _ _ -8
L(s,x) anl S np prime (I=x{p )

Any complex quadratic field K is abelian over @ and the only non-trivial

character of Gal(K/@) is the Legendre-symbol (%-), where A 1s the discrimin-

ant of K. The class number formula reduces to

w(0)
2

h = l‘IA| L(lsx)s

and this formula also holds for non-maximal orders [1]. Here w(0) denotes

the number of roots of unity contained in 0. If A = -3 or A = -4, the class
number of the order of discriminant A equals 1, so there is no harm in assum-

ing that A # -3,-4. Then always w = 2 and the class number of formula reduces

further to

vV ]A] A, 1.-1
T'[ (1 - ('I';)E) .
p prime

lA] L(ls)() =

(5) h =22 -

The Infinite product (5) converges slowly to h. An analysis on assumption
of the Generalized Riemann Hypothesis (GRH in the sequel) for this field,
shows that only an expansion of this product that uses all primes < c-|Al I+e
for some universal ¢ and €, gives an approximation of h, accurate enough to
determine h.

There are also explicit "finite" formulas for the class number of com-

plex quadratic orders 0 with discriminant A; for maximal orders it holds
that

| B

h = 5—ry ) x(®, (4 # -3,-4)
2=X O<x<|A/2]

(x,0)=1
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here X denotes the Legendre symbol (-?—-), see [1]. However, calculation of
the class number of a quadratic order with a discriminant of say 10 decimal
digits, using this formula, would be hardly possible.

Using the 1-1 correspondence between O-ideal classes and reduced primi-

tive forms of discriminant A = A(0), one can also determine the class number
of 0 by counting integral triples (a,b,c) with ged(a,b,c) =1, a > 0,

b2-4acmﬁand Ib] < a € c.

XAMPLE. A = 691,
(Recall that if (a,b,c) is reduced, |b]| < a < ‘,“____MI and realize that for any

form b = A (mod 2)). :
+b | ~A+b? forms
4

15 229

13 5+43

1 729

9 | 193

7 5¢ 37

5 179 |

3 52.7 | (7,%3,25),  (5,%3,35)
! 173 (1,1,173)

So the class number of Q(v-691) is 5. But this method is only efficient for
small discriminants.

Counting methods of this sort are very useful to compute tables of class
numbers; one then computes forms (a,b,c) with |b| £ a < ¢, a >0 and counts
them, sorting them on discriminant A = b2 — 4ac. This is a very fast method
and D.A. BUELL [3] used it, to compile a table of class numbers of complex

quadratic number fields with discriminants A with 0 < -A < 4000000.

estimate of the class number of the order and computations in the class group
itself; it is particularly effective if the discriminant of the order is very
large.

Let 0 be a complex quadratic order of discriminant A, and let h be the
class number of 0. The starting point in Shanks algorithm is an approxima-
tion of the class number; this is obtained by means of the class number for-

mula
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M (1- ALt
P prime PP

(5) h /141 L(l1,x) = /187

T m

We approximate h, by simply evaluating

E’ VIA]

(i

- &Ll
=)

P prime
psX

1

for some X (which we will take'O(lAls); we'll say more on choices of particu-

lar constants later). Due to convergence of the product (5), we have that

(6) (1-e)h < h < (1+e)h,

where e 1s a small positive number depending on X. This gives us a rough idea

of the size of h. Next we choose a form f = (a,b,c) of discriminant A (for

instance by taking a = p, a prime with (é) = +1, and bz A (mod 4a)). By
group theory, we have that f0 = | and we use this fact together with the

{4

P

estimate h m'ﬁ; to find h by searching in the (relatively short!) interval

(7) ((1-e)h, (1+e)h)

 {
for a number h' such that fh = ]. Perhaps h' = h, but this need not be the
case. Next we compute the precise order of f, by factoring h', which has
slze 0(]A]%+e) and we put H = the cyclic group generated by f; we keep H by

means of a list of (independent) generators of its p-Sylow subgroup. If
(I“E)E'ﬂ #H < (l+e)h we conclude that H = C£(0); if not, we pick a new form
f' and compute its order in the same way, now using that #H|#CL(0) and com-

pute the group generated by H and f', by computing a set of independent gen-
erators for its Sylow-subgroup; we call this group H again.

We repeat this procedure until (l-e)h < #H < (l+e)h and then we conclude
that H = C£(0).

A few remarks on this algorithm:

¥
— The search for a number h' in the interval (7), such that fh = ] can be

performed effectively, by means of the so-called "baby-giant-step strategy'":

Let £ = 2¢h be the length of the interval (7), then compute fh and

-+

search successively for fh_fhe*l fho*2 = otrc. (the giant steps) in the

list of baby-steps. If one finds



L

h

flol = 58

with |al < b, for some i,

fh+21b“a = 1

and h' = h + 21b - a.

!
Ilng the precise order of f, knowing that fh = 1, is done by fac-

ng h' (~ YTAT) and by computing suitable powers of f:; it is a relative-—
ly fast procedure.
- It is possible that many forms are needed to generate the whole class

group, but usually, the time consuming baby-giant-step strategy need
only be performed once: usually one of
large part of the class

Primes q such that qn [ h

the first forms picked generates a
group; its order n is often divisible by some large

> since no multiple of qn is in the interval
((IWE)ﬁ, (I*e)ﬁ).

This

implies that the a-Sylow subgroups of the group generated by this form
equal the a-Sylow subgroups of CL(0).

After encountering a form like that, we can raise new forms f to the

power m, being the part of n consisting of

these large primes q; then we
know that f has a multiple of

1ts order in the interval
_ h h
(=), (1+e)D)

which is a very short interval. Usually we need not perform the baby-gi

Step strategy and we can avoid

computations in the g-Sylow subgroups for
the large primes q.
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— We will sketch a derivation, under GRH, of the order of the algorithm.

For the details we refer to Section 6, where an analysis of the factoriza-

tion algorithm that is based on Shanks' algorithm is given.
Put

]

Y LR VA

(1!

no a-GH"
P prime PP
p<X

then for some effectively computable, universal constant C and for all X

large enough:

h;X) -1l < ¢ log|AX]
VX
(cf. Section 6).

If we take X & ]Ala for some o, to be determined, we have that

(8) h(lal™ _

where the O constant depends on «¢.

The length of the interval (7) equals

] ] I 1
=+ € --'--2-- o+g 5T F ote

f.mlalz « | A] = | Al

2

1/2+¢

where we used that h(0(A)) = 0o(]A] ). [37]. Since evaluating Legendre

symbols 1is logarithmic in the arguments, we have, by the prime number theo-

rem, that the time for evaluating a truncated product

VlAl ALl,~-1
- TT (I - (“)_) 9
P pPrime PP
p<X
. 1+e . . 40
1s O(X ), 1f we take X ~ |A]~. So

(9) "time for approximating h" ~ |A|“

The time needed to perform the baby-giant strategy is proportional to vZ,

SO
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11
"baby-giant costs™ ~|A] ﬁ

We will have an optimum if

1 l o , 1
Z - "2:' A = O lL.€, O = ? ®

e e e : 1/5+¢ .
This 1ndicates that Shanks'-algorithm has order |A] s however, there

-
are some details:

— Many primes may be needed to generate the whole class group. However,

1t easily follows from results of LAGARIAS, MONTGOMERY and ODLYZKO [15],

obtained under assumption of GRH, that the class group is generated by

2

the classes of the primes with norm << log“|A] , cf. Section 6.

- The computations necessary to compute a presentation of the class group
by 1ndependent generators, may become time consuming 1f the structure of

the class group is complicated i.e. "highly non-cyclic". At present we

» but since "almost all" class groups appear to have a large

cyclic factor (cf. Section 7), JA] L/ 5+e seems to be a more practical esti-

mate. For bounds on the exponent of class groups see [2,41]. However,

puting the class number can always be done in time O(IAII/ 5-H::)

comr-

. Also det-

4. CLASS GROUPS AND UNITS OF REAL QUADRATIC NUMBER FIELDS

If K 1s a real quadratic number field, let 0(K) denote its ring of
Integers and A(K) its discriminant.

ized by their discriminants, which are positive integers congruent to O

Real quadratic fields are character-

or 1 (mod 4), but, like in the complex case, not every positive integer

= 0 or 1 (mod 4), is the discriminant of a real quadratic field.

However, every non-square positive integer A = 0 or | (mod 4) is the

discriminant of a unique reql quadratic order 0, a subring of a ring of

Integers of a real quadratic field: A can uniquely :

be written as A £f D
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The class group of a real quadratic order O is defined as the group of

invertible fractional O-ideals modulo the principal fractional O-ideals.

If A = f2 1s a square, we can consider A to be the discriminant of the
subring Z(1,1) x Z(0,f) of index f in Z x Z: the class group of this ring
1s 1lsomorphic to (ZZ/fZZ)x/{:tl}. We do not enter into these rather pathologi-
cal cases. For the "imtermediate case"™ A = 0 see GAUSS [12].

Let O be a real quadratic order, then
0" ~z o z/27;

. _ . Y . %
more precisely: there exists an € € ( such that every unit u ¢ 0 can be

. k . X
written as *e , k ¢ Z. There are four numbers in 0 , that each, together

with -1, generate Ox; fixing an embedding K& IR, one of these numbers 1is

greater than 1. We denote this number by €0 and call it the fundamental unit
of 0.

DEFINITION 1If €0 is the fundamental unit of O then
R(O) = 10g EO

is called the regulator of O.

If no confusion is likely, we will omit the indices 0. Let K be a real

quadratic field with discriminant A.

DEFINITION. N: K - @ by No = a-o(a) where 1 # ¢ ¢ Gal(K/Q). We call N the

. g . : x
norm map; it is a homomorphism and if we write a ¢ K , o = p+q/A then

By means of the norm map we can refine the concept of the class group

somewhat:

DEFINITION. Let O be a real quadratic order and let P(O)+ = {principal ideals

generated by elements of positive morm}. We have the following commutative

diagram with exact rows and columns:
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C,e_ O - .

and( t): TS called the narrow clgss group of 0; it maps surjectively to CE(0)
1t 1s easy to see, that the kernel of this map has order 1 or 2. By h*

we denote the order of CL'(0): h* = h or B' = o1

DEFINITION. € := ¢ if Ne = +l and € := € if Ne = -1: R .= log €
9 . »

PROPOSITION 4.1.

(1) Zf Ne = -1} then h+mhcde
Zf Ne = +1 then h°

(ii) 2nR = n'R*.

H
o
3
Q,

)
ol
dHON
2 ,‘w

PROOF. []

N - : : : ..
exXt we'll explain the setting, 1n which the calculation of the class
ng:'oup and the regulator, as discussed in the next section, are performed
The ideas involved are due to LENSTRA and SHANKS [18.33]
, »

G}
'
<
p -
i
f a1
Y
[e8
S
£
S’
w
m
~
X
2
(o8
\'
-
2
{n
0
S
o
~
frd o
B
r+
fd &
<
(D
et

We turn F'(0) into an abelian group, by defining

(M,C.’L) (N: B) = (MN::'Y):
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where af = dy, with d ¢ Z?—»] and vy € MN primitive. We then have the series

of subgroups

Kisg € G'(0) < F'(0).

Here K:T>0L+ G'(0) by a >~ (al,a).

DEFINITION.
F(0) = F'(0)/K__ .

G (0)

i

p

N\

-

o’

~—
o
-

PROPOSITION 4.2. There is an exact sequence
0 >~ G(0) »F() ~ G€+(O) -+ 0.

PROOF. Define F'(0) - C€+(O) by (M,a) - class of M; the kernel of this map

is precisely G ). O

In terms of binary quadratic forms we have that

F(0)

{primitive binary quadratic forms}//l 2)
?
0

\

of discriminant A = A(Q) 1

primlitive binary quadratic forms of discriminant |
GQ) = {A = A(0) that are SLo (Z) - equivalent to }/
X2 + AXY + (A2-8)/4 Y2

(For definitions and facts on quadratic forms see [1], or Section 2.) A
translation between the different descriptions of F(0) and G(0) can be given
as follows:

Let A be the discriminant of 0 and suppose (M,a) € F'(0): let

b+/A
M= (Z + 5 ZZ ) o
with sgna = sgnNa. The image of (M,a) in F(0) corresponds to the (é Z']Z) -orbit

of aX2 + bXY + ch wi th bz - Lac = A. So we can look at F(0) as consisting
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il

of binary quadratic forms (a,b,c) where we identify forms (a1 ,bl,c]) and
(az,bz,cz) whenever a, “—; ? and b] b2 (mod Zal).

G(0) consists of (O ]) -orbits of quadratic forms that are SL2 (ZZ) -
equivalent to those corresponding to the image of (0,1) in G(0): these are
precisely the ((1),2‘;:) - orbits of form that are SL, (Z) - equivalent to
X2 + AXY + (A2-4/4)Y.

: K> R be a fixed embedding and i,: K > R

DEFINITION. Let o ¢ K and let il.

ok
the other one; then

ol = 1, (@] and  Jal_, = |i,(a)].

cc |

We define a map, the dZstance map,

D: G(0) » R/R'Z & Z/2Z,

D((80,0)Ky, ) = G5 log(131,_ /131 ,), sgn Na).

Here we use the isomorphism of groups: {+1,-1} Z[27.

- PROPOSITION 4.3. D 728 a well defined homomorphism and D is injective.

PROOF. It 1s trivial to check, that the value of D on (80,a) and on

£« (B0,a) = (880, %g-), (d € Z}l’ NE > 0) 1s the same. If (RO,a) = (B'0,a)

in G(0), we have that B8 and B' differ by a norm positive unit, say, that
, + k

B'" = (e ) *B, for some k ¢ Z. Then

d(8'0,a) = (‘L 10g( = l / 2 l ), sgn Na)
. e 8 lw1/ | () Kp w2
- (-%- log(lg ml/|%I 2) - kR+, sgn No)

i
a ¥
Ve 8
™
-
QR
e
L

and we see that D is well defined. To prove injectivity, let (80,a) e G(0),
with
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d(B0,a) = (-—2-- log(l-é- m]/lmlmz)’ sgn Na) = (0,0).

This implies

Qo _ o .
I"'é-lml lBI““Z and No > 0.
OL a ¥ ] (1
SO g € @ or B € Q-/E, whence, since Na,NB8 > O, it follows that B € § and so,

since o € B0 primitive, we have that a = +8 and we find that
(80,a) = (0,1) mod K__ . ]

NB. The 1mage of D is dense in ]R/R+ZZ ® Z/27ZZ; however for cardinality rea-

sons, D 1s not surjective.

DEFINITION 4.4. Let ¢l R qbz be two elements of F(0), that are in the same

G(0)—coset. We define the distance from qbl to ¢>2 to be the first coordinate
-1
of D(¢,¢, ).

So distances between elements of F, that are in different G (0)-cosets,

are not defined. However, it is possible to define a notion of absolute dis-

tance, as follows: It is possible to lift the map
(B0,a) -+ sgn Na,

to the whole of F(0) in a canonical way:
(M,0) - sgn Na.

Since ]R/R+Z 1s a divisible group, ome can lift

(80,0) ~ 5 Log(|2]_ /12| ),

o ' o2

to the whole of F(0) as well (uncanonically this time). Combining these
maps one finds a lift of D to the whole of F(0O):

O

l

00— G(0) ——— F(0) — > ¢ (0) ————» 0.

lD /

R/R¥ZeZ /272
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We will denote this 1lift by D again, and if (M,0) € F(0), we will call D(M,a)
the absolute distance of (M,a). Note, that the absolute distance depends up-
on the 1ift of D: G(0) + R/R' Z ® Z/2Z to F(0).

+ :
The class group C£+(O) can now be viewed as a set of h double circles,

: + _ : : .
each of "circumference”™ R, each point of the image of D on a double circle

representing a ((]) zlz)--orbit, or Z-orbit for short, of a quadratic form. We

will call these ((]) 2?) -orbits forms again.

ct (0):

We will call the ideal classes, pictured as these double circles, also
cycles.

The double circle, corresponding to the principal ideal class, will be
called the prineipal cycle. On the principal cycle, there is always a form

(1 ,A,A2-A/4) (a Z-orbit!), which we will call the principal form.

Iwo forms on a double circle that are at the same absolute distance,
but on different circles, differ by the sign of a: One circle contains forms
(a,b,c) with a > 0, the other one contains forms (a,b,c) with a < 0.

Like in the complex case, it is possible to translate the composition
law 1n terms of quadratic forms (or rather Z-orbits of forms); this yields

the same formulas as the formulas (1), (2) and (3) given in Section 2.

The notion of a reduced form is slightly different however:

DEFINITION. Let f = (a,b,c) be a primitive binary quadratic form of discri-
minant &8; then f is called reduced if

|YA - 12a]] < b < V&
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i.e. if we picture K as embedded in R x R wvia its embeddings 1y, 1,:K > R

via x - (:'i".1 (x), :i'.z(x)) , the point b+v/A/a is in the shaded area.

1

SN

VA

The condition for a form (a,b,c) to be reduced implies that

0 < b < VA and la] < VA:

from this 1t follows easily, that only finitely many reduced forms of dis-
criminant A exist; the Z-orbits of these forms form a discrete subset of

F(O) and every ideal class (= double circle) contains at least one reduced

form.

In view of the applications to the algorithm discussed in Section 5,
we like to do our calculations in the finite set of reduced forms: We need

a reduction algorithm, in order to determine a reduced form equivalent to

a given form.

Reduction algorithm. Let (a,b,c) be a quadratic form of discriminant A:

(1) if Jal < VA reduce b (mod 2a) such that

YA — |2a] < b < VA

and adjust c;

if lal > VYA reduce b (mod 2a) such that
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b] < ]a]

and adjust c;

(1i) if the form is not reduced then
(a,b,c) <« (c,-b,a)

and start all over.
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