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ON THE FINAL SIZE OF EPIDEMICS WITHIN HERDS 

0. DIEKMANN, A.A. DE KOEIJBR AND J.A.J. METZ 

ABSTRACT. We are concerned with an epidemic in a closed 
population under the assumption that the per capita number 
of contacts remains constant, when population size diminishes 
due to the fatal consequences of the disease. We focus on 
the final size as a function of the basic reproduction ratio 
Flo (which now is independent of population size!) and the 
survival probability f. Mathematically, the model is described 
by a nonlinear Volterra integral equation of convolution type, 
just as the general Kermack-McKendrick model. 

1. Introduction. As a rule, infectious agents either spread via a 
contamination of the environment or during a "direct" contact of two 
individuals. In any case, one has to model the contact process first 
and superimpose transmission of the agent afterwards. In this paper 
we scrutinize one of the assumptions underlying classical deterministic 
theory and then introduce a variant which seems particularly appro
priate for animals living in "herds," such that the density within the 
"herd" remains constant when population size decreases, for instance 
due to fatal consequences of the disease. (Here "herd" includes prides 
of lions, packs of wolves, family groups of foxes, breeding colonies of 
birds, as well as real herds of ungulates. And farm animals are included 
too.) We concentrate on the basic reproduction ratio ~ and on the 
final size of an epidemic within a completely susceptible closed popu
lation. The present work can be viewed as a generalization of a result 
of Lefevre and Picard (9) (see also [12 and 7)). 

2. Model formulation and analysis. We assume that individuals 
have on average c contacts per unit of time and that, given a contact 
between a susceptible and an infective that was infected T units of time 
ago, transmission occurs with probability a(T). By A(T) we denote 
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the product a(r)B(r), where B(r) is the probability to be still alive 
at disease age r. Let S(t) denote the number of susceptibles at time 
t and N(t) the total number of individuals (note that our variables 
are numbers, not densities!). Of all contacts that an infected makes, a 
fraction S/N will be with susceptibles. 

The assumptions formulated above lead to the consistency relation 

(2.1) S(t) = c ~~~ 100 
A(r)S(t - r) dr. 

To allow interpreting (2.1) as an equation for S, we still have to add 
an assumption that determines c. 

If, when population size changes, the density changes accordingly, the 
principle of mass action suggests to take c = /3N(t). We then arrive at 
the celebrated (6] model and find for the basic reproduction ratio, i.e., 
the expected number of secondary cases produced by a typical infected 
individual during its entire infectious period, 

(2.2) Ro= (J 100 A(r) drNo 

while the fraction s( oo) = S ( oo) /No that escapes from ever getting the 
disease is found as the solution of 

(2.3) lns(oo) = Ro[s(oo) - 1] 

(see [10, 11] for a derivation and discussion in the spirit of this paper). 
Here, however, we shall assume that the density stays constant when 
numbers change. Our original motivation to consider such a situation 
came from a study of the spread of Phocid distemper virus among 
seals (see [8], in preparation, and the references given there for further 
information; also see [5] and [2]). Observations suggest that the 
distance between individuals that rest and sun bathe on sand banks 
are independent of the colony size. We can imagine that this applies 
more generally for animals living in groups, while space is not a limiting 
factor. If c is constant we find straightaway that the basic reproduction 
ratio is given by 

(2.4) Ro= c 100 A(r) dr 
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which is independent of population size. The latter is exactly what 
Heide-J(Zlrgensen and Harkonen [4] found when analyzing data about 
Phocid distemper virus outbreaks in local seal colonies of different sizes. 
When we want to calculate s(oo), we need to be more specific about 
changes in N due to deaths. The meaning of B(T) implies that 

(2.5) N(t) = S(t) -100 B(T)S(t - T) dr 

(note that S is negative!). 

For any pair of nonnegative functions A and B, the equations (2.1) 
and (2.5) determine implicitly the fraction s( oo) that escapes the 
disease and its complement 1 - s( oo) that falls victim to it. We did not 
manage to give a simple characterization for the general case. However, 
if one is willing to assume that 

(2.6) B(T) = -qA(r) = -qa(T)B(T) 

for some nonnegative constant q, a simple characterization becomes 
possible. Before giving that characterization we discuss the biological 
interpretation of the relation (2.6). In fact, this relation states that the 
hazard rate of death is proportional to the rate of production (or, more 
precisely, dissemination) of the infectious agent by the host. Hence, it 
may not be an overly unreasonable condition. 

A specific example of a submodel for infectivity and death is the 
following. Assume that an infected individual can be in n different 
states. So we have at the individual level a continuous time Markov 
chain. Let() denote the initial probability vector (so ()i is the probability 
that a newly infected individual has state i). Let H denote the 
state transition matrix conditional on survival, and let µi denote the 
probability per unit of time of dying, given that the state is i. Then 
the probability vector x(t) satisfies 

dx/dt = Hx - (diagµ)x, x(O) = 0 

where, as usual, diag µ denotes the diagonal matrix with µi at position 
i. Let hi denote the probability of transmission, given a contact 
between a susceptible and an infective in state i. Then 

n 

A(T) = I:hiXi(T) 
i=l 
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while n 

B(r) = - Lµ;x;(r), B(O) = 1. 
i=l 

So the condition (2.6) amounts to the condition that the vectors h and 
µare proportional: µ = qh. 

When (2.6) holds, it follows that 

dN . loo .. -(t) = S(t) - B(r)S(t - r) dr 
dt 0 

= S(t) + [B(r)S(t - r)]Q° 

-100 
B(r)S(t - r)dr 

= q 100 A(r)S(t - r) dr. 

So if we divide (2.1) by S(t) and integrate over (-oo, t], we find that 

ln S(t) = ~ ln N(t). 
No q No 

Here we assumed that in the distant past everybody was susceptible, 
i.e., we assumed that S(-oo) = N(-oo) = N0 • If we define 

(2.7) f = B(oo), 

then integration of (2.6) over (0, oo) yields 

which we rewrite as 

(2.8) 

Thus, we obtain 

(2.9) 

f - 1 = -q 100 
A( r) dr 

c Ro 
-q=1-r 

S(t) == (N(t))Ro/(l-fl 
No No 
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and in the limit of t --* oo, 

(2.10) s(oo) = n(oo)Ro/(1-J), 

where 
n(oo) = N(oo). 

No 

A second equation is obtained by letting t--* oo in (2.5) while noting 
that 

r'0 B(r)S(t - r) dr =it B(t - -r)S(r) dr t~ f(S(oo) - No). 
lo -oo 

So this second equation reads 

(2.12) n(oo) - s(oo) = /(1 - s(oo)). 

Note that this is consistent with the interpretation off as the proba
bility to survive the infection, as the lefthand side is the fraction of the 
population that was infected and survived, while the second factor at 
the righthand side equals the fraction that was infected. 

Together the equations (2.10) and (2.12) give a complete characteri
zation of the final size parameters s( oo) and n( oo) in terms of Ro and 
f. Conversely, one can estimate f and Ro from data about s( oo) and 
n( oo) by using the formulae 

(2.13) 

(2.14) 

f = n(oo) - s(oo) 
1 - s(oo) 

Ro= (l - !) lns(oo) = 1- n(oo) lns(oo) 
lnn(oo) 1- s(oo) lnn(oo)' 

3. What difference does it make? When there are no deaths, we 
are back to Kermack and McKendrick. And, indeed, one can recover 
(2.3) from (2.10) and (2.12) by letting ft 1. 

Death has two effects, a direct one and an indirect one. The direct 
one is simply that a fraction 1 - f of 1 - s( oo) dies. The indirect one is 
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FIGURE 1. The straight line takes account only of the direct effect, as it 
simply multiplies the final size for f = 1 by the probability 1 - I to die. The 
curved line gives the fraction of the population that dies from the disease, 
according to (2.10) and (2.11) and so takes account of both effects. We see 
that the indirect effect is quite important for low values of R.o and low values 
of f. 

that s( oo) itself decreases since, while immunes hinder contacts between 
infectives a.nd susceptibles, dead individuals don't do so. The indirect 
effect makes the difference between the present model and the Kermack
McKendrick model. When R.o is big, s( oo) is very small (,...., e-Ro) and 
so the indirect effect is negligible. If, on the other hand, R.o is only little 
above the threshold value one, the indirect effect can be substantial, as 
the figure illustrates. 

In the case of seals affected by Phocid distemper virus, the survival 
probability f may very well depend on the general physiological con
dition which, in turn, is determined by environmental conditions like 
food availability and pollution. Such aspects are discussed in [8] (in 
preparation). 

4. The initial value problem. So far, our mathematical manip-
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ulations have been quite formal. Limiting Volterra integral equations 
like (2.1) and (2.5) describe the dynamics on the whole line (-oo, +oo), 
and they naturally appear when discussing omega-limit sets for dynam
ical systems defined in terms of Volterra integral equations on [O, oo), 
see, e.g., [1] and the references given therein. Yet we fear that some 
readers will find that our presentation lacks rigor, and for them we add 
this section. 

The initial value problem is described by the equations 

(4.1) S(t) = c ~w) {lot A(r)S(t - r) dr + h(t)} 

(4.2) N(t) = S(t) - lot B(r)S(t - r) dr + g(t) 

where 

( 4.3) 

( 4.4) 

h(t) = - l 00 A~(:)T) cf>(r)dr 

( 00 B(t + r) , 
g(t) =Jo B(r) ~(r) dr 

for some nonnegative ef> E L1(R+)· The function <P describes the 
population state at time t = 0 in the sense that J.,,7 <f>(a) dO' equals 
the number of individuals at that time who were infected more than 
r 1 and less than r 2 time units ago. The conditional probability that 
an individual of disease age T is still alive t units of time later is 
B(t + r)/B(r) and then its probability to transmit the agent to a 
susceptible, given a contact, is a(t + r), whence the expressions for h 
and g. In addition to ef> we have to provide an initial condition for S: 

(4.5) S(O) =So. 

Note that N(O) = So+ J;'° <f>(r) dr. Now assume that (2.6), which we 
here repeat as 

(4.6) B(r) = -qA(r), 

holds. As before, we find that 

(4.7) S(t) = ~ S(t) N(t) 
q N(t) 
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and by integration that 

(4.8) 
S(t) _ ( N(t)) c/q 
So - N(O) . 

Using integration by parts once more, we can rewrite ( 4.2) as 

(4.9) N(t) = B(t)So + q 1t A(r)S(t - r) dr + g(t) 

which, upon substitution of (4.8) becomes 

N(t) = B(t)So + g(t) 
(4.10) + qSoN(o)-cfq 1t A(r)(N(t - r))cfq dr. 

This is a nonlinear renewal equation, i.e., a Volterra integral equation of 
convolution type, to which standard results of existence and uniqueness 
of solutions apply, e.g., [3]. Once N is "known,'' S follows from (4.8). 

The next step is to prove that N is a decreasing function of t. In 
order to do so, we rewrite, using ( 4.6), ( 4.10) as 

N(t) =So+ g(t) + qSo 1t A(r){ ( N~(~)r)) c/q - 1} dr. 

Since g is differentiable (see (4.4) and recall that B is differentiable), 
so is N. By differentiation we obtain 

N(t) = . (t) s t A( ) (N(t - r)) (c/q)-1 N(t - r) d 
9 + c 0 } 0 

7 N(O) N(O) r, 

from which it follows at once that N ::::; 0. Rather directly ( 4.10) implies 
that N ~ 0. Hence, limt-+oo N(t) exists. Taking the limit t -+ oo in 
(4.10), we obtain, using (2.4), (2.7) and (2.8), 

(
N( ))Ro/(1-fl 

N(oo) = JSo + 9(00) + (1 - /)So N~ · 
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Since ( 4.8) implies that 

(4.11) 
S(oo) = (N(oo)) R.o/(l-f) 

So N(O) ' 

we can rewrite the identity as 

(4.12) N(oo) - S(oo) =!(So - S(oo)) + g(oo). 

Together, (4.11) and (4.12) are the rigorous version of (2.11) and (2.12), 
to which they tend for g( oo) ..!- 0. 

5. Discussion. When animals live in herds, the number of contacts 
per unit of time per individual could very well be quite independent of 
herd size. If herd size diminishes due to a fatal infectious disease, the 
force of infection does not go down as quickly as it does in the standard 
Kermack-McKendrick model, which assumes that the density, and 
hence the per capita number of contacts per unit of time, is proportional 
to the population size. We have derived an equation for the final size 
of an epidemic in a closed population, as a function of the survival 
probability f and the basic reproduction ratio Ro and compared the 
result with the Kermack-McKendrick case. The difference is substantial 
for Ro values slightly above the threshold value 1 combined with small 
values of f, but rather small otherwise. The derivation is based on the 
assumption that the hazard rate of death is proportional to the rate at 
which the infectious agent is disseminated by the host. This assumption 
is warranted when replication of the infective agent is disseminated 
by the host. This assumption is warranted when replication of the 
infective agent in organs from which it is excreted to the outside world 
is responsible for the morbidity. For some agents, excretion and disease 
may relate to replication in different organs and then the assumption is 
less defendable. So it remains a relevant open problem to give a simple 
characterization of the final size in general, without making the special 
assumption. 
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